Tài liệu gồm 529 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập các chuyên đề phát triển bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán, có đáp án và lời giải chi tiết.
Trích dẫn Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán:
+ Có bao nhiêu giá trị nguyên của tham số m để hàm số 4 2 y x x mx 6 có ba điểm cực trị? Lời giải: Chọn B. Ta có: 3 y x x m 4 12. Xét phương trình 3 y x x m 0 4 12 0 1. Để hàm số có ba điểm cực trị thì phương trình 1 phải có 3 nghiệm phân biệt. Ta có: 3 1 4 12 m x x. Xét hàm số 3 g x x x 4 12 có 2 g x x 12 12. Cho 2 g x x 12 12 0 1. Bảng biến thiên của g x. Dựa vào bảng biến thiên ta thấy, phương trình 1 có 3 nghiệm phân biệt khi 8 8 m. Do m 6 5. Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài.
+ Gọi H là hình chiếu của S lên đáy I J K là hình chiếu của S lên AC CB BA. Dễ dàng chứng minh được góc giữa các mặt bên và đáy là các góc SIH SJH SKH và các tam giác vuông SHI SHJ SHK bằng nhau nên HI HJ HK. Do đó H là tâm đường tròn nội tiếp của tam giác ABC. Ta có: 0 AC AB a BC tan 60 3 2a. Nên diện tích và nửa chu vi của tam giác ABC lần lượt là: 2 2 a a AB AC BC S AB. Suy ra bán kính đường tròn nội tiếp của tam giác ABC là: 2 a S r HK p. Đường cao của khối chóp SABC là 3 3 tan 60 2 a SH HK. Vậy thể tích khối chóp đã cho là?
+ Cho hàm số 1 3 2 2 4 3 y f x x x mx. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 2023 2023 để hàm số y f x 4 nghịch biến trên khoảng 03? Lời giải: Ta có: y f x f x. Đặt t x 4 với x t x 1. Do đó, hàm số y f x 4 nghịch biến trên khoảng 03 khi và chỉ khi hàm số y f t nghịch biến trên khoảng 4 1. Mặt khác y f t là hàm số chẵn, có đồ thị đối xứng qua trục tung. Suy ra hàm số y f t nghịch biến trên khoảng 4 1 khi hàm số y f t đồng biến trên 14 tương ứng với hàm số y f t đồng biến trên 14. Do m và m 2023 2023 nên có 2023 giá trị nguyên của m thỏa mãn bài toán.
Xem thêm đáp án: chuyên đề phát triển vd – vdc đề tham khảo thi tn thpt 2023 môn toán
Giải Toán chuyên đề phát triển vd – vdc đề tham khảo thi tn thpt 2023 môn toán với Đáp Án Mới Nhất
Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề chuyên đề phát triển vd – vdc đề tham khảo thi tn thpt 2023 môn toán, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.
chuyên đề phát triển vd – vdc đề tham khảo thi tn thpt 2023 môn toán là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.
Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:
Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.
Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.
Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:
Chủ đề chuyên đề phát triển vd – vdc đề tham khảo thi tn thpt 2023 môn toán là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!
Chúc các bạn học tốt và đạt kết quả cao! 😊
>> Xem thêm đáp án chi tiết về: chuyên đề phát triển vd – vdc đề tham khảo thi tn thpt 2023 môn toán.