Logo Header
  1. Môn Toán
  2. đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội

đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội

Quý độc giả đang tham khảo tài liệu , được biên soạn bám sát chuẩn đề thi toán mới nhất. Nội dung được cấu trúc chặt chẽ, phân tầng từ cơ bản đến nâng cao, hỗ trợ củng cố và mở rộng kiến thức toán học một cách hệ thống. Hãy tận dụng tối đa tài liệu này để nâng cao hiệu quả học tập và chinh phục mọi kỳ kiểm tra, kỳ thi với kết quả xuất sắc.

giaitoan.edu.vn trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 12 bộ đề thi chọn đội tuyển thành phố Hà Nội tham dự kỳ thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 do Sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức. Kỳ thi được thực hiện trong hai ngày: vòng 1 vào ngày 22/10/2022 và vòng 2 vào ngày 23/10/2022.

Bộ đề thi này là một tài liệu vô cùng quý giá, không chỉ giúp các em học sinh làm quen với cấu trúc và độ khó của đề thi học sinh giỏi Quốc gia, mà còn là cơ hội để rèn luyện và nâng cao kỹ năng giải quyết các bài toán phức tạp, đòi hỏi tư duy sáng tạo và vận dụng kiến thức sâu rộng.

Dưới đây là trích dẫn nội dung chi tiết của bộ đề:

  1. Bài 1: Hình học

    Cho tam giác nhọn ABC nội tiếp đường tròn (O). Trên cung nhỏ AC lấy điểm D sao cho tứ giác ABCD không là hình thang. Đường tròn ngoại tiếp tam giác AOD và đường tròn ngoại tiếp tam giác BOC cắt nhau tại hai điểm phân biệt H và O. Gọi I là giao điểm của AC và BD.

    • a) Chứng minh đường thẳng HI vuông góc với đường thẳng HO.
    • b) Gọi M là trung điểm của CD và N là hình chiếu của I lên BC. Chứng minh bốn điểm M, H, N và C cùng thuộc một đường tròn.
  2. Bài 2: Tổ hợp

    Cho tập hợp M gồm 10 màu khác nhau và hai đoạn thẳng AB, CD cùng có độ dài bằng 100. Chia AB thành 100 đoạn và tô mỗi màu trong M cho đúng 10 đoạn. Chia CD thành 10 đoạn và tô mỗi màu trong M cho đúng 1 đoạn. Chồng khớp AB lên CD sao cho A trùng C và B trùng D. Gọi S là tổng độ dài của các phần có chung màu trên AB và CD.

    • a) Chứng minh rằng tồn tại một cách chia và tô màu cho AB, đồng thời tồn tại một cách chia CD mà với mọi cách tô màu cho CD thì S = 10.
    • b) Chứng minh rằng với mọi cách chia và tô màu cho AB, đồng thời với mọi cách chia CD, luôn tồn tại cách tô màu cho CD để S ≥ 10.
  3. Bài 3: Số học

    Cho số nguyên dương n lớn hơn 3. Viết các số 1, 2, …, n vào các ô vuông của bảng ô vuông cỡ n x n sao cho hai ô vuông khác nhau được viết hai số khác nhau. Chứng minh rằng tồn tại hai ô vuông nằm trên cùng một hàng hoặc nằm trên cùng một cột sao cho hiệu của hai số được viết trên hai ô vuông đó lớn hơn n²/2.

Đánh giá chung về đề thi:

Đề thi có độ khó cao, đòi hỏi học sinh phải có kiến thức vững chắc, kỹ năng giải toán tốt và khả năng tư duy logic, sáng tạo. Các bài toán được thiết kế đa dạng, bao gồm hình học, tổ hợp và số học, giúp đánh giá toàn diện năng lực của học sinh. Đặc biệt, bài toán hình học yêu cầu học sinh phải có khả năng phân tích, tổng hợp và vận dụng các định lý, tính chất hình học một cách linh hoạt. Bài toán tổ hợp đòi hỏi học sinh phải có tư duy sắc bén và khả năng xây dựng các lập luận chặt chẽ. Bài toán số học kiểm tra khả năng vận dụng các kiến thức về số học và kỹ năng chứng minh.

Lời khích lệ:

Các em học sinh thân mến! Đề thi này là một thử thách lớn, nhưng cũng là một cơ hội tuyệt vời để các em khẳng định năng lực và đam mê của mình với môn Toán. Hãy tự tin, bình tĩnh và sử dụng tất cả những kiến thức đã học để giải quyết các bài toán. Đừng nản lòng khi gặp khó khăn, hãy kiên trì và tìm tòi các phương pháp giải khác nhau. Chúc các em đạt kết quả tốt nhất trong kỳ thi sắp tới!

giaitoan.edu.vn luôn đồng hành và hỗ trợ các em trên con đường chinh phục tri thức!

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội đặc sắc thuộc chuyên mục toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Hình Ảnh Chi Tiết

images-post/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-nam-2022-2023-so-gd-dt-ha-noi-1.jpgimages-post/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-nam-2022-2023-so-gd-dt-ha-noi-2.jpg

File đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội PDF Chi Tiết

Giải Toán đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội với Đáp Án Mới Nhất

Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.

1. Tổng Quan về Chủ Đề đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội

đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.

2. Các Bài Tập Đặc Trưng trong đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội

  • Bài tập cơ bản: Những bài tập này giúp bạn hiểu rõ định nghĩa, công thức và cách áp dụng kiến thức.
  • Bài tập nâng cao: Dành cho những bạn muốn thử sức với các dạng bài khó hơn, đòi hỏi tư duy sáng tạo và kỹ năng phân tích.
  • Bài tập ôn luyện: Bao gồm các câu hỏi tương tự đề thi thực tế, giúp bạn làm quen với cấu trúc và cách trình bày bài thi.

3. Hướng Dẫn Giải Chi Tiết

Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:

  1. Phân tích đề bài để hiểu yêu cầu.
  2. Áp dụng công thức và phương pháp phù hợp.
  3. Trình bày lời giải rõ ràng và khoa học.

Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.

4. Đáp Án Mới Nhất và Chính Xác

Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.

5. Tài Liệu Ôn Luyện Kèm Theo

Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:

  • Bảng công thức toán học liên quan đến đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội.
  • Các mẹo giải nhanh và cách tránh sai lầm thường gặp.
  • Đề thi thử và bài tập rèn luyện theo cấp độ.

6. Lợi Ích Khi Học Chủ Đề Này

  • Giúp bạn hiểu sâu bản chất của kiến thức thay vì chỉ học thuộc lòng.
  • Tăng khả năng tư duy logic và sáng tạo.
  • Tự tin hơn khi đối mặt với các kỳ thi quan trọng.

Kết Luận

Chủ đề đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!

Chúc các bạn học tốt và đạt kết quả cao! 😊

>> Xem thêm đáp án chi tiết về: đề chọn đội tuyển thi hsg qg môn toán năm 2022 – 2023 sở gd&đt hà nội.