Logo Header
  1. Môn Toán
  2. phương pháp quy nạp toán học

phương pháp quy nạp toán học

Quý độc giả đang tham khảo tài liệu , được biên soạn bám sát chuẩn môn toán mới nhất. Nội dung được cấu trúc chặt chẽ, phân tầng từ cơ bản đến nâng cao, hỗ trợ củng cố và mở rộng kiến thức toán học một cách hệ thống. Hãy tận dụng tối đa tài liệu này để nâng cao hiệu quả học tập và chinh phục mọi kỳ kiểm tra, kỳ thi với kết quả xuất sắc.

Bài viết hướng dẫn dùng phương pháp quy nạp toán học để chứng minh các dạng toán về đẳng thức, bất đẳng thức, tính chia hết trong số học, một số bài toán hình học …

Phương pháp quy nạp toán học

Cho bài toán: Chứng minh mệnh đề \(P(n)\) đúng với mọi số tự nhiên \(n\ge {{n}_{0}},\) \({{n}_{0}}\in N\).

Ta có thể sử dụng phương pháp quy nạp toán học như sau:

Bước 1: Kiểm tra \(P({{n}_{0}})\) có đúng hay không, nếu bước này đúng thì ta chuyển qua bước 2.

Bước 2: Với \(k \in N, k\ge {{n}_{0}}\), giả sử \(P(k)\) đúng ta cần chứng minh \(P(k+1)\) cũng đúng.

Kết luận: \(P(n)\) đúng với \(\forall n\ge {{n}_{0}}\).

Các dạng toán và ví dụ minh họa

Dạng toán 1. Dùng phương pháp quy nạp toán học chứng minh đẳng thức

Ví dụ 1. Chứng mình với mọi số tự nhiên \(n \ge 1\) ta luôn có: \(1 + 2 + 3 + … + n = \frac{{n(n + 1)}}{2}.\)

Đặt \(P(n) = 1 + 2 + 3 + … + n\) và \(Q(n) = \frac{{n(n + 1)}}{2}\).

Ta cần chứng minh \(P(n) = Q(n)\), \(\forall n \in N, n \ge 1\).

+ Bước 1: Với \(n = 1\) ta có \(P(1) = 1\), \(Q(1) = \frac{{1(1 + 1)}}{2} = 1\) \( \Rightarrow P(1) = Q(1)\) \(⇒ P(n) = Q(n)\) đúng với \(n = 1.\)

+ Bước 2: Giả sử \(P(k) = Q(k)\) với \(k \in N, k \ge 1\) tức là: \(1 + 2 + 3 + … + k = \frac{{k(k + 1)}}{2}\).

Ta cần chứng minh \(P(k + 1) = Q(k + 1)\), tức là: \(1 + 2 + 3 + … + k + (k + 1)\) \( = \frac{{(k + 1)(k + 2)}}{2}\) \((*).\)

Thật vậy: \(VT(*)\) \(= (1 + 2 + 3 + … + k) + (k + 1)\) \( = \frac{{k(k + 1)}}{2} + (k + 1)\) \( = (k + 1)(\frac{k}{2} + 1)\) \( = \frac{{(k + 1)(k + 2)}}{2}\) \( = VP(*)\)

Vậy đẳng thức cho đúng với mọi \(n \ge 1.\)

Ví dụ 2. Chứng minh với mọi số tự nhiên \(n \ge 1\) ta luôn có: \(1 + 3 + 5 + … + 2n – 1 = {n^2}.\)

+ Với \(n = 1\) ta có \(VT = 1\), \(VP = {1^2} = 1\), suy ra \(VT = VP\) \( \Rightarrow \) đẳng thức cho đúng với \(n = 1.\)

+ Giả sử đẳng thức đã cho đúng với \(n = k\) với \(k \in N, k \ge 1\), tức là: \(1 + 3 + 5 + … + 2k – 1 = {k^2}.\)

Ta cần chứng minh đẳng thức đã cho đúng với \(n = k + 1\), tức là: \(1 + 3 + 5 + … + (2k – 1) + (2k + 1)\) \( = {\left( {k + 1} \right)^2}\) \((*).\)

Thật vậy: \(VT(*)\) \( = (1 + 3 + 5 + … + 2k – 1) + (2k + 1)\) \( = {k^2} + (2k + 1)\) \( = {(k + 1)^2}\) \( = VP(*)\)

Vậy đẳng thức đã cho đúng với mọi \(n \ge 1.\)

Dạng toán 2. Dùng phương pháp quy nạp toán học chứng minh bất đẳng thức

Ví dụ 3. Chứng minh rằng \(\forall n \ge 1\), ta có bất đẳng thức: \(\frac{{1.3.5…\left( {2n – 1} \right)}}{{2.4.6.2n}} < \frac{1}{{\sqrt {2n + 1} }}.\)

+ Với \(n = 1\) ta có bất đẳng thức đã cho trở thành \(\frac{1}{2} < \frac{1}{{\sqrt 3 }} \Leftrightarrow 2 /> \sqrt 3 \) (đúng) \( \Rightarrow \) bất đẳng thức đã cho đúng với \(n = 1.\)

+ Giả sử bất đẳng thức đã cho đúng với \(n = k \ge 1\), tức là: \(\frac{{1.3.5…\left( {2k – 1} \right)}}{{2.4.6…2k}} < \frac{1}{{\sqrt {2k + 1} }}.\)

Ta phải chứng minh bất đẳng thức đã cho đúng với \(n = k + 1\), tức là: \(\frac{{1.3.5…\left( {2k – 1} \right)\left( {2k + 1} \right)}}{{2.4.6….2k\left( {2k + 2} \right)}}\) \( < \frac{1}{{\sqrt {2k + 3} }}\).

Thật vậy, ta có: \(\frac{{1.3.5…\left( {2k – 1} \right)\left( {2k + 1} \right)}}{{2.4.6….2k\left( {2k + 2} \right)}}\) \( = \frac{{1.3.5…(2k – 1)}}{{2.4.6…2k}}.\frac{{2k + 1}}{{2k + 2}}\) \( < \frac{1}{{\sqrt {2k + 1} }}\frac{{2k + 1}}{{2k + 2}}\) \( = \frac{{\sqrt {2k + 1} }}{{2k + 2}}.\)

Ta chứng minh: \(\frac{{\sqrt {2k + 1} }}{{2k + 2}} < \frac{1}{{\sqrt {2k + 3} }}\) \( \Leftrightarrow (2k + 1)(2k + 3) < {(2k + 2)^2}\) \( \Leftrightarrow 3 /> 1\) (luôn đúng).

Vậy bất đẳng thức đã cho đúng với mọi số tự nhiên \(n \ge 1.\)

Ví dụ 4. Chứng minh rằng với \(\forall n \ge 1, \forall x /> 0\) ta có bất đẳng thức: \(\frac{{{x^n}({x^{n + 1}} + 1)}}{{{x^n} + 1}} \le {\left( {\frac{{x + 1}}{2}} \right)^{2n + 1}}\). Đẳng thức xảy ra khi nào?

+ Với \(n = 1\) ta cần chứng minh: \(\frac{{x({x^2} + 1)}}{{x + 1}} \le {\left( {\frac{{x + 1}}{2}} \right)^3}\) \( \Leftrightarrow 8x({x^2} + 1) \le {(x + 1)^4}.\)

Tức là: \({x^4} – 4{x^3} + 6{x^2} – 4x + 1 \ge 0\) \( \Leftrightarrow {(x – 1)^4} \ge 0\) (đúng).

+ Giả sử \(\frac{{{x^k}({x^{k + 1}} + 1)}}{{{x^k} + 1}} \le {\left( {\frac{{x + 1}}{2}} \right)^{2k + 1}}\), ta chứng minh: \(\frac{{{x^{k + 1}}({x^{k + 2}} + 1)}}{{{x^{k + 1}} + 1}} \le {\left( {\frac{{x + 1}}{2}} \right)^{2k + 3}}\) \((*).\)

Thật vậy, ta có: \({\left( {\frac{{x + 1}}{2}} \right)^{2k + 3}}\) \( = {\left( {\frac{{x + 1}}{2}} \right)^2}{\left( {\frac{{x + 1}}{2}} \right)^{2k + 1}}\) \( \ge {\left( {\frac{{x + 1}}{2}} \right)^2}\frac{{{x^k}({x^{k + 1}} + 1)}}{{{x^k} + 1}}.\)

Nên để chứng minh \((*)\) ta chỉ cần chứng minh \({\left( {\frac{{x + 1}}{2}} \right)^2}\frac{{{x^k}({x^{k + 1}} + 1)}}{{{x^k} + 1}}\) \( \ge \frac{{{x^{k + 1}}({x^{k + 2}} + 1)}}{{{x^{k + 1}} + 1}}.\)

Hay \({\left( {\frac{{x + 1}}{2}} \right)^2}{({x^{k + 1}} + 1)^2}\) \( \ge x({x^{k + 2}} + 1)({x^k} + 1)\) \((**).\)

Khai triển \((**)\), biến đổi và rút gọn ta thu được: \({x^{2k + 2}}{(x – 1)^2}\) \( – 2{x^{k + 1}}{(x – 1)^2} + {(x – 1)^2} \ge 0\) \( \Leftrightarrow {(x – 1)^2}{({x^{k + 1}} – 1)^2} \ge 0\), bất đẳng thức này hiển nhiên đúng.

Đẳng thức xảy ra \( \Leftrightarrow x = 1.\)

Vậy bài toán được chứng minh.

Dạng toán 3. Dùng phương pháp quy nạp toán học chứng minh bài toán chia hết

Ví dụ 5. Cho \(n\) là số tự nhiên dương. Chứng minh rằng: \({a_n} = {16^n} – 15n – 1 \vdots 225\).

+ Với \(n = 1\) ta có: \({a_1} = 0 \Rightarrow {a_1} \vdots 225.\)

+ Giả sử \({a_k} = {16^k} – 15k – 1 \vdots 225\), ta chứng minh: \({a_{k + 1}} = {16^{k + 1}} – 15(k + 1) – 1 \vdots 225.\)

Thật vậy: \({a_{k + 1}} = {16.16^k} – 15k – 16\) \( = {16^k} – 15k – 1 – 15\left( {{{16}^k} – 1} \right)\) \( = {a_k} – 15\left( {{{16}^k} – 1} \right).\)

Vì \({16^k} – 1\) \( = 15.\left( {{{16}^{k – 1}} + {{16}^{k – 2}} + … + 1} \right) \vdots 15\) và \({a_k} \vdots 225.\)

Nên ta suy ra \({a_{k + 1}} \vdots 225.\)

Vậy bài toán được chứng minh.

Ví dụ 6. Chứng minh rằng với mọi số tự nhiên \(n \ge 1\) thì \(A(n) = {7^n} + 3n – 1\) luôn chia hết cho \(9.\)

+ Với \(n = 1\) \( \Rightarrow A(1) = {7^1} + 3.1 – 1 = 9\) \( \Rightarrow A(1) \vdots 9.\)

+ Giả sử \(A(k) \vdots 9\), \(\forall k \ge 1\), ta chứng minh \(A(k + 1) \vdots 9.\)

Thật vậy: \(A(k + 1) = {7^{k + 1}} + 3(k + 1) – 1\) \( = {7.7^k} + 21k – 7 – 18k + 9\)

\( \Rightarrow A(k + 1) = 7A(k) – 9(2k – 1)\).

Vì \(\left\{ \begin{array}{l}

A(k) \vdots 9\\

9(2k – 1) \vdots 9

\end{array} \right. \Rightarrow A(k + 1) \vdots 9.\)

Vậy \(A(n)\) chia hết cho \(9\) với mọi số tự nhiên \(n \ge 1.\)

Ví dụ 7. Cho \(n\) là số tự nhiên dương. Chứng minh rằng: \({B_n} = \left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right) \ldots .\left( {3n} \right)\) \( \vdots {3^n}.\)

+ Với \(n = 1\), ta có: \({B_1} = 2.3 \vdots 3.\)

+ Giả sử mệnh đề đúng với \(n = k\), tức là: \({B_k} \) \(= \left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right) \ldots \left( {3k} \right) \vdots {3^k}.\)

Ta chứng minh: \({B_{k + 1}} = \left( {k + 2} \right)\left( {k + 3} \right)\left( {k + 4} \right)\) \( \ldots \left[ {3\left( {k{\rm{ }} + {\rm{ }}1} \right)} \right] \vdots {3^{k + 1}}.\)

Ta có: \({B_{k + 1}} = 3\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)\) \( \ldots \left( {3k} \right)\left( {3k + 1} \right)\left( {3k + 2} \right)\) \( = 3{B_k}\left( {3k + 1} \right)\left( {3k + 2} \right).\)

Mà \({B_k} \vdots {3^k}\) nên suy ra \({B_{k + 1}} \vdots {3^{k + 1}}.\)

Vậy bài toán được chứng minh.

Dạng toán 4. Dùng phương pháp quy nạp toán học chứng minh tính chất hình học

Ví dụ 8. Trong mặt mặt phẳng cho \(n\) điểm rời nhau \((n /> 2)\) tất cả không nằm trên một đường thẳng. Chứng minh rằng tất cả các đường thẳng nối hai điểm trong các điểm đã cho tạo ra số đường thẳng khác nhau không nhỏ hơn \(n.\)

Giả sử mệnh đề đúng với \(n=k\ge 3\) điểm.

Ta chứng minh nó cũng đúng cho \(n=k+1\) điểm.

Ta có thể chứng minh rằng tồn tại ít nhất một đường thẳng chỉ chứa có hai điểm. Ta kí hiệu đường thẳng đi qua hai điểm \({{A}_{n}}\) và \({{A}_{n+1}}\) là \({{A}_{n}}{{A}_{n+1}}\). Nếu những điểm \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\) nằm trên một đường thẳng thì số lượng các đường thẳng sẽ đúng là \(n+1\): Gồm \(n\) đường thẳng nối \({{A}_{n+1}}\) với các điểm \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\) và đường thẳng chúng nối chung. Nếu \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\) không nằm trên một đường thẳng thì theo giả thiết quy nạp có \(n\) đường thẳng khác nhau. Bây giờ ta thêm các đường thẳng nối \({{A}_{n+1}}\) với các điểm \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\). Vì đường thẳng \({{A}_{n}}{{A}_{n+1}}\) không chứa một điểm nào trong \({{A}_{1}},{{A}_{2}},…,{{A}_{n-1}}\), nên đường thẳng này khác hoàn toàn với \(n\) đường thẳng tạo ra bởi \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\). Như vậy số đường thẳng tạo ra cũng không nhỏ hơn \(n+1\).

Ví dụ 9. Chứng minh rằng tổng các trong một \(n\)-giác lồi \((n\ge 3)\) bằng \((n-2){{180}^{0}}\).

+ Với \(n=3\) ta có tổng ba góc trong tam giác bằng \({{180}^{0}}.\)

+ Giả sử công thức đúng cho tất cả \(k\)-giác, với \(k<n\), ta phải chứng minh mệnh đề cũng đúng cho \(n\)-giác. Ta có thể chia \(n\)-giác bằng một đường chéo thành ra hai đa giác. Nếu số cạnh của một đa giác là \(k+1\), thì số cạnh của đa giác kia là \(n – k + 1\), hơn nữa cả hai số này đều nhỏ hơn \(n\). Theo giả thiết quy nạp tổng các góc của hai đa giác này lần lượt là \(\left( k-1 \right){{180}^{0}}\) và \(\left( n-k-1 \right){{180}^{0}}.\)

Tổng các góc của \(n\)-giác bằng tổng các góc của hai đa giác trên, nghĩa là \(\left( {k–1 + n – k–1} \right){180^0}\) \( = \left( {n – 2} \right){180^0}.\)

Suy ra mệnh đề đúng với mọi \(n\ge 3.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay phương pháp quy nạp toán học – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng môn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Hình Ảnh Chi Tiết

images-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-001.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-002.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-003.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-004.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-005.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-006.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-007.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-008.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-009.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-010.jpg

File phương pháp quy nạp toán học PDF Chi Tiết

Giải Toán phương pháp quy nạp toán học với Đáp Án Mới Nhất

Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề phương pháp quy nạp toán học, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.

1. Tổng Quan về Chủ Đề phương pháp quy nạp toán học

phương pháp quy nạp toán học là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.

2. Các Bài Tập Đặc Trưng trong phương pháp quy nạp toán học

  • Bài tập cơ bản: Những bài tập này giúp bạn hiểu rõ định nghĩa, công thức và cách áp dụng kiến thức.
  • Bài tập nâng cao: Dành cho những bạn muốn thử sức với các dạng bài khó hơn, đòi hỏi tư duy sáng tạo và kỹ năng phân tích.
  • Bài tập ôn luyện: Bao gồm các câu hỏi tương tự đề thi thực tế, giúp bạn làm quen với cấu trúc và cách trình bày bài thi.

3. Hướng Dẫn Giải Chi Tiết

Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:

  1. Phân tích đề bài để hiểu yêu cầu.
  2. Áp dụng công thức và phương pháp phù hợp.
  3. Trình bày lời giải rõ ràng và khoa học.

Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.

4. Đáp Án Mới Nhất và Chính Xác

Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.

5. Tài Liệu Ôn Luyện Kèm Theo

Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:

  • Bảng công thức toán học liên quan đến phương pháp quy nạp toán học.
  • Các mẹo giải nhanh và cách tránh sai lầm thường gặp.
  • Đề thi thử và bài tập rèn luyện theo cấp độ.

6. Lợi Ích Khi Học Chủ Đề Này

  • Giúp bạn hiểu sâu bản chất của kiến thức thay vì chỉ học thuộc lòng.
  • Tăng khả năng tư duy logic và sáng tạo.
  • Tự tin hơn khi đối mặt với các kỳ thi quan trọng.

Kết Luận

Chủ đề phương pháp quy nạp toán học là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!

Chúc các bạn học tốt và đạt kết quả cao! 😊

>> Xem thêm đáp án chi tiết về: phương pháp quy nạp toán học.