Tài liệu gồm 24 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết.
A. KIẾN THỨC CƠ BẢN
B. BÀI TẬP
1. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐỒ THỊ HÀM PARABOL.
Bước 1. Chọn hệ trục tọa độ, xác định parabol.
Bước 2. Tính diện tích hình phẳng giới hạn đồ thị hàm số y f x và các đường được cho trong bài toán.
Bước 3. Tùy theo thực tế mỗi bài, tính diện tích theo yêu cầu.
Chú ý: Mấu chốt của vấn đề tính diện tích parabol nằm ở khâu chọn hệ trục tọa độ phù hợp. Nên chọn hệ trục sao cho đỉnh parabol luôn nằm trùng với gốc O hoặc nằm trên trục Oy. Khi đó hàm số parabol luôn có dạng 2 y ax b.
DẠNG 1: CÁC BÀI TOÁN TÍNH DIỆN TÍCH PARABOL ĐƠN THUẦN.
DẠNG 2: CÁC BÀI TOÁN TÍNH DIỆN TÍCH XÁC ĐỊNH BỞI HAI HÀM SỐ.
2. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐỒ THỊ HÀM ELIP.
Bước 1. Chọn hệ trục tọa độ, xác định Elip.
Bước 2. Tính diện tích hình phẳng giới hạn đồ thị hàm số f x và các đường được cho trong bài toán.
Bước 3. Tùy theo thực tế mỗi bài, tính diện tích theo yêu cầu.
Chú ý Mấu chốt của vấn đề tính diện tích Elip nằm ở khâu chọn hệ trục tọa độ phù hợp. Nên chọn hệ trục sao cho tâm Elip luôn nằm trùng với gốc O. Khi đó hàm số elip luôn có dạng 2 2 2 2 1.
3. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐƯỜNG TRÒN.
Bước 1. Xác định Phương trình của đường tròn 2 2 2 x a y b R. Diện tích toàn phần của đường tròn: 2 S R.
Bước 2. Trọn hệ trục tọa độ để đặt đường tròn và phác họa phần mặt phẳng cần tính diện tích được giới hạn bởi đồ thị hàm số y f x và đường tròn.
Bước 3. Ta sử dụng công thức tính diện tích d v u f x g x x để tính diện tích phần cần tính.
Bước 4. Tùy thuộc vào câu hỏi để kết luận và đưa ra kết quả bài toán.
Giải Toán ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế với Đáp Án Mới Nhất
Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.
ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.
Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:
Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.
Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.
Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:
Chủ đề ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!
Chúc các bạn học tốt và đạt kết quả cao! 😊
>> Xem thêm đáp án chi tiết về: ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế.