Logo Header
  1. Môn Toán
  2. bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Quý độc giả đang tham khảo tài liệu , được biên soạn bám sát chuẩn toán math mới nhất. Nội dung được cấu trúc chặt chẽ, phân tầng từ cơ bản đến nâng cao, hỗ trợ củng cố và mở rộng kiến thức toán học một cách hệ thống. Hãy tận dụng tối đa tài liệu này để nâng cao hiệu quả học tập và chinh phục mọi kỳ kiểm tra, kỳ thi với kết quả xuất sắc.

Trong bài viết này, chúng ta sẽ cùng nhau đề cập đến một dạng toán nâng cao liên quan đến thể tích của khối đa diện, đó là dạng toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện, bài viết tập trung chủ yếu vào phần thể tích của khối chóp, các dạng khối đa diện khác, phương pháp tiếp cận bài toán cũng tương tự.

A. MỘT SỐ KIẾN THỨC CẦN LƯU Ý

Phương pháp tìm giá trị lớn nhất, nhỏ nhất:

+ Nhóm bình phương và so sánh.

+ Dùng bất đẳng thức Côsi: với các số \(a\), \(b\), \(c\) không âm thì:

\(\frac{{a + b}}{2} \ge \sqrt {ab} \), dấu bằng xảy ra khi \(a = b.\)

\(\frac{{a + b + c}}{3} \ge \sqrt[3]{{abc}}\), dấu bằng xảy ra khi \(a = b = c.\)

+ Dùng tam thức bậc hai.

+ Dùng đạo hàm, dựa vào tính chất đơn điệu hay lập bảng biến thiên để đánh giá.

Chú ý:

1) Hình chóp đều là chóp có các cạnh bên bằng nhau và có đáy là đa giác đều. Trong hình chóp đều thì hình chiếu của đỉnh chóp là tâm của đáy.

2) Thể tích của một khối chóp bằng một phần ba tích số của diện tích mặt đáy và chiều cao của khối chóp đó.

3) Tứ diện hay hình chóp tam giác có \(4\) cách chọn đỉnh chóp.

B. BÀI TOÁN ÁP DỤNG

Bài toán 1: Cho tứ diện \(SABC\) có các góc phẳng ở đỉnh \(S\) vuông. Biết rằng \(SA = a\), \(SB + SC = k.\) Đặt \(SB = x.\) Tính thể tích tứ diện \(SABC\) theo \(a\), \(k\), \(x\) và xác định \(SB\), \(SC\) để thể tích tứ diện \(SABC\) lớn nhất.

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Thể tích tứ diện:

\({V_{SABC}} = \frac{1}{6}giaitoan.edu.vn\) \( = \frac{1}{6} ax (k – x)\) \( \le \frac{1}{6}a{\left( {\frac{{x + k – x}}{2}} \right)^2} = \frac{{a{k^2}}}{{24}}.\)

Dấu bằng xảy ra khi \(x = k – x \Leftrightarrow x = \frac{k}{2}.\)

Bài toán 2: Cho tam giác \(ABC\), \(AB = AC.\) Một điểm \(M\) thay đổi trên đường thẳng vuông góc với mặt phẳng \((ABC)\) tại \(A.\)

a) Tìm quỹ tích trọng tâm \(G\) của tam giác \(MBC.\)

b) Gọi \(O\) là trực tâm của tam giác \(ABC\), hãy xác định vị trí của \(M\) để thể tích tứ diện \(OHBC\) đạt giá trị lớn nhất.

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Gọi \(D\) là trung điểm của \(BC.\)

Ta có: \(MB = MC.\)

Do đó \(MD \bot BC\) và trọng tâm \(G\) của tam giác \(MBC\) nằm trên \(MD\) thoả mãn hệ thức: \(\overrightarrow {DG} = \frac{1}{2}\overrightarrow {DM} .\)

Do đó \(G\) là ảnh của \(M\) trong phép vị tự tâm \(D\), tỉ số vị tự \(\frac{1}{3}.\)

Vậy quỹ tích các trọng tâm \(G\) của tam giác \(MBC\) là đường \(d’\) vuông góc với mặt phẳng \((ABC)\) tại trọng tâm \(G’\) của tam giác \(ABC.\)

b) Hạ \(CE \bot AB\), \(CF \bot MB\) ta có \(H = DM \cap CF\) là trực tâm của tam giác \(MBC\), \(O = DA \cap CE\) là trực tâm của tam giác \(ABC.\)

Gọi \(HH’\) là chiều cao của tứ diện \(OHBC\), ta có \(H’\) thuộc \(DO.\)

Hình chóp này có đáy \(OBC\) cố định nên \({V_{OHBC}}\) lớn nhất khi và chỉ khi \(HH’\) lớn nhất. Điểm \(H\) chạy trên đường tròn đường kính \(OD\) nên \(HH’\) lớn nhất khi \(HH’ = \frac{1}{2}DO\) nghĩa là \(DHH’\) là tam giác vuông cân tại \(H’\), suy ra tam giác \(DMA\) lúc đó vuông cân tại \(A.\)

Vậy tứ diện \(OHBC\) có thể tích đạt giá trị lớn nhất, cần chọn \(M\) trên \(d\) (về hai phía của \(A\)) sao cho \(AM = AD.\)

Bài toán 3: Cho ba tia \(Ox\), \(Oy\), \(Oz\) vuông góc với nhau từng đội một tạo tam diện \(Oxyz.\) Điểm \(M\) cố định nằm trong góc tam diện. Một mặt phẳng qua \(M\) cắt \(Ox\), \(Oy\), \(Oz\) lần lượt tại \(A\), \(B\), \(C.\) Gọi khoảng cách từ \(M\) đến các mặt phẳng \((OBC)\), \((OCA)\), \((OAB)\) lần lượt là \(a\), \(b\), \(c.\)

a) Chứng minh: \(\frac{a}{{OA}} + \frac{b}{{OB}} + \frac{c}{{OC}} = 1.\)

b) Tính \(OA\), \(OB\), \(OC\) theo \(a\), \(b\), \(c\) để tứ diện \(OABC\) có thể tích nhỏ nhất.

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

a) Ta có: \({V_{OABC}} = {V_{MOAB}} + {V_{MOBC}} + {V_{MOCA}}\) nên \(\frac{1}{6}giaitoan.edu.vn\) \( = \frac{1}{6}giaitoan.edu.vn.c + \frac{1}{6}giaitoan.edu.vn.a + \frac{1}{6}giaitoan.edu.vn.b.\)

Do đó: \(1 = \frac{a}{{OA}} + \frac{b}{{OB}} + \frac{c}{{OC}}.\)

b) Điểm \(M\) cố định tức là các số \(a\), \(b\), \(c\) không đổi.

Ta có: \(V = \frac{1}{6}giaitoan.edu.vn.\)

Do đó \(V\) nhỏ nhất \( \Leftrightarrow giaitoan.edu.vn\) nhỏ nhất.

Áp dụng bất đẳng thức Cô si:

\(1 = \frac{a}{{OA}} + \frac{b}{{OB}} + \frac{c}{{OC}}\) \( \ge 3\sqrt[3]{{\frac{{abc}}{{giaitoan.edu.vn}}}}\) \( \Leftrightarrow giaitoan.edu.vn \ge 27abc.\)

\(giaitoan.edu.vn\) nhỏ nhất \( \Leftrightarrow \frac{a}{{OA}} = \frac{b}{{OB}} = \frac{c}{{OC}}.\)

Vậy: \(V\) nhỏ nhất khi và chỉ khi \(OA = 3a\), \(OB = 3b\), \(OC = 3c.\)

Bài toán 4: Khối chóp tam giác \(giaitoan.edu.vn\) có đáy \(ABC\) là tam giác vuông cân đỉnh \(C\) \(\left( {\widehat C = {{90}^0}} \right)\) và \(SA \bot (ABC)\), \(SC = a.\) Hãy tìm góc giữa hai mặt phẳng \((SCB)\) và \((ABC)\) để thể tích khối chóp lớn nhất.

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Ta có \(BC \bot AC\) \( \Rightarrow BC \bot SC.\)

Mặt khác \(BC \bot AC\) suy ra góc \(SCA\) là góc giữa hai mặt phẳng \((SCB)\) và \((ABC).\)

Đặt \(\widehat {SCA} = x.\)

Khi đó \(SA = a\sin x\), \(AC = a\cos x.\)

\({V_{giaitoan.edu.vn}} = \frac{{a\sin x}}{3}.\frac{{{a^2}{{\cos }^2}x}}{2}\) \( = \frac{{{a^3}}}{6}\sin x.{\cos ^2}x.\)

Xét hàm số \(y = \sin x{\cos ^2}x\) với \(0 < x < \frac{\pi }{2}.\)

Ta có \(y’ = {\cos ^3}x – 2\cos x{\sin ^2}x\) \( = \cos x\left( {{{\cos }^2}x – 2 + 2{{\cos }^3}x} \right)\) \( = \cos x\left( {3{{\cos }^2}x – 2} \right)\) \( = 3\cos x\left( {\cos x – \sqrt {\frac{2}{3}} } \right)\left( {\cos x + \sqrt {\frac{2}{3}} } \right).\)

\(y’ = 0 \Leftrightarrow \cos x = \sqrt {\frac{2}{3}} = \cos \alpha \) với \(0 < \alpha < \frac{\pi }{2}.\)

Bảng biến thiên:

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Vậy \({S_{giaitoan.edu.vn}}\) đạt giá trị lớn nhất khi \(x = \alpha \), \(0 < \alpha < \frac{\pi }{2}\) và \(\cos \alpha = \sqrt {\frac{2}{3}} .\)

Bài toán 5: Cho khối chóp tứ giác đều \(giaitoan.edu.vn\) mà khoảng cách từ đỉnh \(A\) đến mặt phẳng \((SBC)\) bằng \(2a.\) Với giá trị nào của góc giữa mặt bên và mặt đáy của khối chóp thì thể tích của khối chóp nhỏ nhất.

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Hạ \(SO \bot (ABCD)\) thì \(O\) là tâm hình vuông \(ABCD.\)

Gọi \(EH\) là đường trung bình của hình vuông \(ABCD.\)

Vì \(AD//BC \Rightarrow AD//(SBC).\)

\( \Rightarrow d(A,(SBC)) = d(E,(SBC)).\)

Hạ \(EK \bot SH\), ta có: \(EK \bot (SBC).\)

\( \Rightarrow EK = d(A,(SBC)) = 2a.\)

Ta có \(BC \bot SH\), \(SB \bot OH.\)

\( \Rightarrow \widehat {SHO}\) là góc giữa mặt bên \((SBC)\) và mặt phẳng đáy.

Đặt \(\widehat {SHO} = x.\)

Khi đó: \(EH = \frac{{2a}}{{\sin x}}\), \(OH = \frac{a}{{\sin x}}\), \(SO = \frac{a}{{\sin x}}\tan x = \frac{a}{{\cos x}}.\)

Vậy \({V_{giaitoan.edu.vn}} = \frac{1}{3}{S_{ABCD}}.SO = \frac{{4{a^3}}}{{3\cos x{{\sin }^2}x}}.\)

Do đó \({V_{giaitoan.edu.vn}}\) nhỏ nhất \( \Leftrightarrow y = \cos x.{\sin ^2}x\) đạt giá trị lớn nhất.

Ta có: \(y’ = – {\sin ^3}x + 2\sin x{\cos ^2}x\) \( = \sin x\left( {2{{\cos }^2}x – {{\sin }^2}x} \right)\) \( = \sin x\left( {2 – 3{{\sin }^2}x} \right)\) \( = 3\sin x\left( {\sqrt {\frac{2}{3}} – \sin x} \right)\left( {\sqrt {\frac{2}{3}} + \sin x} \right).\)

\(y’ = 0 \Leftrightarrow \sin x = \sqrt {\frac{2}{3}} .\)

Xét giá trị \(\alpha \) sao cho: \(\sin \alpha = \sqrt {\frac{2}{3}} \), \(0 < \alpha < \frac{\pi }{2}.\)

Bảng biến thiên:

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Vậy \({V_{giaitoan.edu.vn}}\) đạt giá trị nhỏ nhất \( \Leftrightarrow x = \alpha \), \(0 < \alpha < \frac{\pi }{2}\) và \(\sin \alpha = \sqrt {\frac{2}{3}} .\)

Bài toán 6: Trên cạnh \(AD\) của hình vuông \(ABCD\) có độ dài cạnh là \(a\), lấy điểm \(M\) sao cho: \(AM = x\) \((0 \le x \le a).\) Trên nửa đường thẳng \(Az\) vuông góc với mặt phẳng chứa hình vuông tại điểm \(A\), lấy điểm \(S\) sao cho \(SA = y\) \((y /> 0).\)

a) Chứng minh rằng \((SAB) \bot (SBC)\) và tính khoảng cách từ điểm \(M\) đến mặt phẳng \((SAC).\)

b) Tính thể tích khối chóp \(giaitoan.edu.vn\) theo \(a\), \(y\) và \(x\). Giả sử \({x^2} + {y^2} = {a^2}\) tìm giá trị lớn nhất của thể tích khối chóp \(giaitoan.edu.vn.\)

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

a) Ta có \(BC \bot AB\), \(BC \bot SA\) nên \(BC \bot (SAB).\)

Do đó \((SAB) \bot (SBC).\)

Vì \((SAC) \bot (ABCD)\) theo giao tuyến \(AC\) nên hạ \(MH \bot AC\) thì \(MH \bot (SAC).\)

Vậy \(MH\) là khoảng cách từ \(M\) tới mặt phẳng \((SAC).\)

Trong tam giác vuông \(AMH\) có:

\(MH = x.\sin {45^0} = \frac{{\sqrt 2 x}}{2}.\)

b) Hình chóp \(giaitoan.edu.vn\) có đường cao \(SA = y\) và có đáy là hình thang vuông nên diện tích đáy là \(S = \frac{1}{2}a(a + x).\)

Do đó thể tích khối chóp \(giaitoan.edu.vn\) là:

\(V = \frac{1}{3}y.\frac{1}{2}a(a + x) = \frac{1}{6}ya(a + x).\)

Theo giả thiết \({x^2} + {y^2} = {a^2} \Rightarrow {y^2} = {a^2} – {x^2}\) nên:

\({V^2} = \frac{1}{{36}}{a^2}\left( {{a^2} – {x^2}} \right){(x + a)^2}\) \( = \frac{1}{{36}}{a^2}(a – x){(a + x)^3}.\)

Đặt \(f(x) = {V^2}\) với \(0 \le x \le a\), ta có:

\(f'(x) = – \frac{{{a^2}}}{{36}}{(a + x)^3} + \frac{{{a^3}}}{{36}}3(a – x){(a + x)^2}\) \( = \frac{{{a^2}{{(a + x)}^2}(2a – 4x)}}{{36}}.\)

\(f'(x) = 0 \Leftrightarrow x = \frac{a}{2}.\)

Bảng biến thiên:

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Vậy \(f(x)\) đạt giá trị lớn nhất tại \(x = \frac{a}{2}\), khi đó thể tích của khối chóp \(giaitoan.edu.vn\) đạt giá trị lớn nhất là: \(V = \sqrt {f{{(x)}_{\max }}} = \frac{{{a^3}\sqrt 3 }}{8}.\)

Bài toán 7: Cho hình chóp \(giaitoan.edu.vn\) có bảy cạnh bằng \(1\) và cạnh bên \(SC = x.\) Định \(x\) để thể tích khối chóp là lớn nhất.

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Đáy \(ABCD\) có \(4\) cạnh bằng \(1\) nên đáy là một hình thoi \( \Rightarrow AC \bot BC.\)

Ba tam giác \(ABD\), \(CBD\), \(BSD\) có chung cạnh \(BD\), các cạnh còn lại bằng nhau và bằng \(1\) nên bằng nhau, các trung tuyến \(AO\), \(SO\) và \(CO\) bằng nhau.

Suy ra tam giác \(ASC\) vuông tại \(S\), ta được \(AC = \sqrt {{x^2} + 1} .\)

Gọi \(H\) là hình chiếu đỉnh \(S\) trên đáy \((ABCD).\)

Do \(SA = SB = SD = 1\) nên \(HA = HB = HD\), suy ra \(H\) là tâm đường tròn ngoại tiếp tam giác \(ABD\) \( \Rightarrow H \in AC\) \( \Rightarrow SH\) là đường cao của tam giác vuông \(ASC.\)

Ta có \(giaitoan.edu.vn = giaitoan.edu.vn\) \( \Rightarrow SH = \frac{x}{{\sqrt {{x^2} + 1} }}.\)

\(O{B^2} = A{B^2} – O{A^2}\) \( = 1 – {\left( {\frac{{\sqrt {{x^2} + 1} }}{2}} \right)^2} = \frac{{3 – {x^2}}}{4}\) \( \Rightarrow OB = \frac{1}{2}\sqrt {3 – {x^2}} .\)

Điều kiện \({x^2} < 3 \Leftrightarrow 0 < x < \sqrt 3 .\)

Ta có \({S_{ABCD}} = giaitoan.edu.vn\) \( = \frac{1}{2}\sqrt {{x^2} + 1} .\sqrt {3 – {x^2}} \) \( = \frac{1}{2}\sqrt {\left( {{x^2} + 1} \right)\left( {3 – {x^2}} \right)} .\)

Vậy \({V_{SABCD}} = \frac{1}{3}{S_{ABCD}}.SH = \frac{1}{6}x\sqrt {3 – {x^2}} .\)

Ta có thể dùng đạo hàm hay bất đẳng thức Côsi:

\(V = \frac{1}{6}\sqrt {{x^2}\left( {3 – {x^2}} \right)} \) \( \le \frac{1}{6}.\frac{{{x^2} + 3 – {x^2}}}{2} = \frac{1}{4}.\)

Dấu bằng khi \({x^2} = 3 – {x^2}\) \( \Leftrightarrow 2{x^2} = 3\) \( \Leftrightarrow x = \frac{{\sqrt 6 }}{2}.\)

Bài toán 8: Cho hình chóp \(giaitoan.edu.vn\) có đáy là tam giác \(ABC\) vuông cân tại đỉnh \(B\), \(BA = BC = 2a\), hình chiếu vuông góc của \(S\) trên mặt phẳng đáy \((ABC)\) là trung điểm \(E\) của \(AB\) và \(SE = 2a.\) Gọi \(I\), \(J\) lần lượt là trung điểm của \(EC\), \(SC\), \(M\) là điểm di động trên tia đối của tia \(BA\) sao cho \(\widehat {ECM} = \alpha \) \(\left( {\alpha < {{90}^0}} \right)\) và \(H\) là hình chiếu vuông góc của \(S\) trên \(MC.\) Tính thể tích của khối tứ diện \(EHIJ\) theo \(a\), \(\alpha \) và tìm \(\alpha \) để thể tích đó lớn nhất.

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

Vì \(SE \bot (ABC)\), \(SH \bot CM\) nên \(EH \bot CM.\)

\(CE = \sqrt {B{C^2} + B{E^2}} \) \( = \sqrt {4{a^2} + {a^2}} = a\sqrt 5 .\)

Mà \(IJ\) là đường trung bình trong tam giác \(SCE\) nên \(IJ = \frac{{SE}}{2} = a.\)

Hơn nữa \(IJ//SE \Rightarrow IJ \bot (ABC).\)

Trong tam giác vuông \(CEH\) với góc \(\widehat {ECH} = \alpha \) và trung tuyến \(HI\) ta có:

\({S_{EHI}} = \frac{1}{2}{S_{ECH}} = \frac{1}{4}giaitoan.edu.vn\) \( = \frac{1}{4}CE.\sin \alpha .CE.\cos \alpha \) \( = \frac{5}{8}{a^2}\sin 2\alpha .\)

Thể tích của khối tứ diện \(EHIJ\) là:

\({V_{EHIJ}} = \frac{1}{3}IJ.{S_{EHI}}\) \( = \frac{a}{3}.\frac{{5{a^2}}}{8}.\sin 2\alpha = \frac{5}{{24}}{a^3}\sin 2\alpha .\)

Thể tích tứ diện \(EHIJ\) lớn nhất khi và chỉ khi: \(\sin 2\alpha = 1 \Leftrightarrow \alpha = {45^0}.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán math. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải Toán bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện với Đáp Án Mới Nhất

Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.

1. Tổng Quan về Chủ Đề bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.

2. Các Bài Tập Đặc Trưng trong bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện

  • Bài tập cơ bản: Những bài tập này giúp bạn hiểu rõ định nghĩa, công thức và cách áp dụng kiến thức.
  • Bài tập nâng cao: Dành cho những bạn muốn thử sức với các dạng bài khó hơn, đòi hỏi tư duy sáng tạo và kỹ năng phân tích.
  • Bài tập ôn luyện: Bao gồm các câu hỏi tương tự đề thi thực tế, giúp bạn làm quen với cấu trúc và cách trình bày bài thi.

3. Hướng Dẫn Giải Chi Tiết

Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:

  1. Phân tích đề bài để hiểu yêu cầu.
  2. Áp dụng công thức và phương pháp phù hợp.
  3. Trình bày lời giải rõ ràng và khoa học.

Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.

4. Đáp Án Mới Nhất và Chính Xác

Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.

5. Tài Liệu Ôn Luyện Kèm Theo

Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:

  • Bảng công thức toán học liên quan đến bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện.
  • Các mẹo giải nhanh và cách tránh sai lầm thường gặp.
  • Đề thi thử và bài tập rèn luyện theo cấp độ.

6. Lợi Ích Khi Học Chủ Đề Này

  • Giúp bạn hiểu sâu bản chất của kiến thức thay vì chỉ học thuộc lòng.
  • Tăng khả năng tư duy logic và sáng tạo.
  • Tự tin hơn khi đối mặt với các kỳ thi quan trọng.

Kết Luận

Chủ đề bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!

Chúc các bạn học tốt và đạt kết quả cao! 😊

>> Xem thêm đáp án chi tiết về: bài toán giá trị lớn nhất và nhỏ nhất thể tích khối đa diện.