Bài viết hướng dẫn phương pháp xét tính liên tục của hàm số tại một điểm, kiến thức và các ví dụ trong bài viết được tham khảo từ các tài liệu giới hạn xuất bản trên giaitoan.edu.vn.
Phương pháp: Để xét tính liên tục của hàm số \(y = f(x)\) tại điểm \(x = x_0\), ta thực hiện theo các bước sau:
• Cách 1:
+ Tính \(f\left( {{x_0}} \right).\)
+ Tìm \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right).\)
+ Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) thì hàm số \(f(x)\) liên tục tại \(x_0 .\)
• Cách 2:
+ Tìm \(\mathop {\lim }\limits_{x \to x_0^ – } f\left( x \right).\)
+ Tìm \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right).\)
+ Nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ – } f\left( x \right) = f\left( {{x_0}} \right)\) thì hàm số \(f(x)\) liên tục tại \({x_0}.\)
Ví dụ minh họa:
Ví dụ 1. Xét tính liên tục của các hàm số sau tại điểm \(x = – 2.\)
a) \(f\left( x \right) = \frac{{{x^2} – 4}}{{x + 2}}.\)
b) \(g\left( x \right) = \left\{ \begin{array}{l}
\frac{{{x^2} – 4}}{{x + 2}}\:với\:x \ne – 2\\
– 4\:với\:x = – 2
\end{array} \right.\)
a) Vì \(f\left( { – 2} \right)\) không xác định, suy ra hàm số không liên tục tại \(x = – 2.\)
b) Ta có: \(\mathop {\lim }\limits_{x \to – 2} g\left( x \right)\) \( = \mathop {\lim }\limits_{x \to – 2} \frac{{\left( {x + 2} \right)\left( {x – 2} \right)}}{{x + 2}}\) \( = \mathop {\lim }\limits_{x \to – 2} \left( {x – 2} \right)\) \( = – 4 = f\left( { – 2} \right).\)
Do đó hàm số liên tục tại \(x = – 2.\)
Ví dụ 2. Cho hàm số: \(y = f\left( x \right) = \left\{ \begin{array}{l}
\frac{{3 – \sqrt {{x^2} + 5} }}{{{x^2} – 4}} \: với \:x \ne \pm 2\\
– \frac{1}{6}\:với\:x = 2
\end{array} \right.\)
a) Tính \(\mathop {\lim }\limits_{x \to 2} f\left( x \right).\)
b) Xét tính liên tục của hàm số \(f\left( x \right)\) tại \(x = 2\); \(x = – 2.\)
a) Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{3 – \sqrt {{x^2} + 5} }}{{{x^2} – 4}}\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{9 – {x^2} – 5}}{{\left( {{x^2} – 4} \right)\left( {3 + \sqrt {{x^2} + 5} } \right)}}\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{ – 1}}{{3 + \sqrt {{x^2} + 5} }}\) \( = – \frac{1}{6}.\)
b) Từ câu a suy ra \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right).\) Vậy hàm số đã cho liên tục tại \(x = 2.\) Hàm số đã cho không xác định tại \(x = – 2.\) do đó hàm số không liên tục tại \(x = – 2.\)
Ví dụ 3. Xét tính liên tục tại giá trị \({x_0}\) của các hàm số sau:
a) \(f\left( x \right) = \left\{ \begin{array}{l}
\frac{{{x^2} – 3x + 2}}{{x – 2}}\:với\:x \ne 2\\
1\:với\:x = 2
\end{array} \right.\) tại \({x_0} = 2\) và tại \({x_0} = 4.\)
b) \(f\left( x \right) = \left\{ \begin{array}{l}
\frac{{\sqrt {x + 3} – 2}}{{x – 1}}\:với\:x \ne 1\\
\frac{1}{4}\:với\:x = 1
\end{array} \right.\) tại \({x_0} = 1.\)
c) \(f\left( x \right) = \left\{ \begin{array}{l}
\frac{{1 – \sqrt {\cos x} }}{{{x^2}}}\:với\:x \ne 0\\
\frac{1}{4}\:với\:x = 0
\end{array} \right.\) tại \({x_0} = 0\) và tại \({x_0} = \frac{\pi }{3}.\)
d) \(f\left( x \right) = \left\{ \begin{array}{l}
\frac{{2 – 7x + 5{x^2} – {x^3}}}{{{x^2} – 3x + 2}}\:với\:x \ne 2\\
1\:với\:x = 2
\end{array} \right.\) tại \({x_0} = 2\) và tại \({x_0} = 5.\)
e) \(f\left( x \right) = \left\{ \begin{array}{l}
\frac{{x – 5}}{{\sqrt {2x – 1} – 3}}\:với\:x /> 5\\
{\left( {x – 5} \right)^2} + 3\:với\:x \le 5
\end{array} \right.\) tại \({x_0} = 5\), tại \({x_0} = 6\) và tại \({x_0} = 4.\)
f) \(f\left( x \right) = \left\{ \begin{array}{l}
\frac{{\sqrt {2x + 3} – 1}}{{x + 1}}\:với\:x /> – 1\\
\frac{{\sqrt {3 – x} }}{2}\:với\:x \le – 1
\end{array} \right.\) tại \({x_0} = – 1.\)
g) \(f\left( x \right) = \left\{ \begin{array}{l}
\frac{{{x^2} – 3x + 2}}{{{x^2} – 1}}\:với\:x /> 1\\
\frac{1}{2}\:với\:x = 1\\
x – \frac{3}{2}\:với\:x < 1
\end{array} \right.\) tại \({x_0} = 1.\)
[ads]
a)
• Xét tính liên tục của hàm số tại \({x_0} = 2:\)
Ta có:
\(f\left( {{x_0}} \right) = f\left( 2 \right) = 1.\)
\(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} – 3x + 2}}{{x – 2}}\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x – 2} \right)\left( {x – 1} \right)}}{{x – 2}}\) \( = \mathop {\lim }\limits_{x \to 2} (x – 1) = 1.\)
Vì \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\) suy ra hàm số liên tục tại \({x_0} = 2.\)
• Xét tính liên tục của hàm số tại \({x_0} = 4:\)
Ta có: \(\mathop {\lim }\limits_{x \to 4} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 4} \frac{{{x^2} – 3x + 2}}{{x – 2}}\) \( = \frac{{{4^2} – 3.4 + 2}}{{4 – 2}}\) \( = 3 = f\left( 4 \right)\), suy ra hàm số \(f(x)\) liên tục tại \({x_0} = 4.\)
b) Ta có:
\(f\left( {{x_0}} \right) = f\left( 1 \right) = \frac{1}{4}.\)
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} – 2}}{{x – 1}}\) \( = \mathop {\lim }\limits_{x \to 1} \frac{{x + 3 – 4}}{{\left( {\sqrt {x + 3} + 2} \right)\left( {x – 1} \right)}}\) \( = \mathop {\lim }\limits_{x \to 1} \frac{{x – 1}}{{\left( {\sqrt {x + 3} + 2} \right)\left( {x – 1} \right)}}\) \( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt {x + 3} + 2}}\) \( = \frac{1}{4}.\)
Vì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) suy ra hàm số liên tục tại \(x = 1.\)
c)
• Xét tính liên tục của hàm số tại \({x_0} = 0:\)
Ta có:
\(f\left( {{x_0}} \right) = f\left( 0 \right) = \frac{1}{4}.\)
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 0} \frac{{1 – \sqrt {\cos x} }}{{{x^2}}}\) \( = \mathop {\lim }\limits_{x \to 0} \frac{{1 – \cos x}}{{{x^2}\left( {1 + \sqrt {\cos x} } \right)}}\) \( = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\sin }^2}\frac{x}{2}}}{{{x^2}\left( {1 + \sqrt {\cos x} } \right)}}\) \( = \mathop {\lim }\limits_{x \to 0} \frac{1}{2}{\left( {\frac{{\sin \frac{x}{2}}}{{\frac{x}{2}}}} \right)^2}\frac{1}{{1 + \sqrt {\cos x} }}\) \( = \frac{1}{4}.\)
Vì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\) suy ra hàm số liên tục tại \({x_0} = 0.\)
• Xét tính liên tục của hàm số tại \({x_0} = \frac{\pi }{3}:\)
Ta có: \(\mathop {\lim }\limits_{x \to \frac{\pi }{3}} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to \frac{\pi }{3}} \frac{{1 – \sqrt {\cos x} }}{{{x^2}}}\) \( = \frac{{1 – \sqrt {\cos \frac{\pi }{3}} }}{{{{\left( {\frac{\pi }{3}} \right)}^2}}}\) \( = f\left( {\frac{\pi }{3}} \right)\), suy ra hàm số \(f(x)\) liên tục tại \({x_0} = \frac{\pi }{3}.\)
d)
• Xét tính liên tục của hàm số tại \({x_0} = 2:\)
Ta có:
\(f\left( x \right) = f\left( 2 \right) = 1.\)
\(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{2 – 7x + 5{x^2} – {x^3}}}{{{x^2} – 3x + 2}}\) \( = \frac{{\left( {x – 2} \right)\left( { – {x^2} + 3x – 1} \right)}}{{\left( {x – 2} \right)\left( {x – 1} \right)}}\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{ – {x^2} + 3x – 1}}{{x – 1}}\) \( = 1.\)
Vì \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\) suy ra hàm số liên tục tại \({x_0} = 2.\)
• Xét tính liên tục của hàm số tại \({x_0} = 5:\)
Ta có: \(\mathop {\lim }\limits_{x \to 5} f\left( x \right)\) \( = \frac{{2 – 7.5 + {{5.5}^2} – {5^3}}}{{{5^2} – 3.5 + 2}}\) \( = f\left( 5 \right)\), suy ra hàm số \(f(x)\) liên tục tại \({x_0} = 5.\)
e)
• Xét tính liên tục của hàm số tại \({x_0} = 5:\)
Ta có:
\(\mathop {\lim }\limits_{x \to {5^ + }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{x – 5}}{{\sqrt {2x – 1} – 3}}\) \( = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{\left( {x – 5} \right)\left( {\sqrt {2x – 1} + 3} \right)}}{{2x – 1 – 9}}\) \( = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{\left( {x – 5} \right)\left( {\sqrt {2x – 1} + 3} \right)}}{{2x – 10}}\) \( = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{\left( {x – 5} \right)\left( {\sqrt {2x – 1} + 3} \right)}}{{2\left( {x – 5} \right)}}\) \( = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{\left( {\sqrt {2x – 1} + 3} \right)}}{2}\) \( = \frac{{\sqrt {2.5 – 1} + 3}}{2}\) \( = 3.\)
\(\mathop {\lim }\limits_{x \to {5^ – }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to {5^ – }} \left[ {{{\left( {x – 5} \right)}^2} + 3} \right]\) \( = 0 + 3 = 3\) \( = f\left( 5 \right).\)
Vì \(\mathop {\lim }\limits_{x \to {5^ + }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to {5^ – }} f\left( x \right)\) \( = f\left( 5 \right)\), suy ra hàm số liên tục tại \({x_0} = 5.\)
• Xét tính liên tục của hàm số tại \({x_0} = 6.\)
Ta có: \(\mathop {\lim }\limits_{x \to 6} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 6} \frac{{x – 5}}{{\sqrt {2x – 1} – 3}}\) \( = \frac{{6 – 5}}{{\sqrt {2.6 – 1} – 3}}\) \( = \frac{1}{{\sqrt {11} – 3}}\) \( = f\left( 6 \right).\)
Vậy hàm số \(f(x)\) liên tục tại \({x_0} = 6.\)
• Xét tính liên tục của hàm số tại \({x_0} = 4.\)
Ta có: \(\mathop {\lim }\limits_{x \to 4} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 4} \left[ {{{\left( {x – 5} \right)}^2} + 3} \right]\) \( = {\left( {4 – 5} \right)^2} + 3\) \( = 4 = f\left( 4 \right)\), suy ra hàm số \(f(x)\) liên tục tại \({x_0} = 4.\)
f) Ta có:
\(\mathop {\lim }\limits_{x \to – {1^ + }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to – {1^ + }} \frac{{\sqrt {2x + 3} – 1}}{{x + 1}}\) \( = \mathop {\lim }\limits_{x \to – {1^ + }} \frac{{2x + 3 – 1}}{{\left( {\sqrt {2x + 3} + 1} \right)\left( {x + 1} \right)}}\) \( = \mathop {\lim }\limits_{x \to – {1^ + }} \frac{{2\left( {x + 1} \right)}}{{\left( {\sqrt {2x + 3} + 1} \right)\left( {x + 1} \right)}}\) \( = \mathop {\lim }\limits_{x \to – {1^ + }} \frac{2}{{\sqrt {2x + 3} + 1}}\) \( = \frac{2}{{\sqrt {2.\left( { – 1} \right) + 3} + 1}}\) \( = 1.\)
\(\mathop {\lim }\limits_{x \to – {1^ – }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to – {1^ – }} \frac{{\sqrt {3 – x} }}{2}\) \( = \frac{{\sqrt {3 – \left( { – 1} \right)} }}{2}\) \( = 1.\)
\(f\left( { – 1} \right) = \frac{{\sqrt {3 – ( – 1)} }}{2} = 1.\)
Vì \(\mathop {\lim }\limits_{x \to – {1^ + }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to – {1^ – }} f\left( x \right)\) \( = f\left( { – 1} \right)\), suy ra hàm số liên tục tại \({x_0} = – 1.\)
g) Ta có:
\(f\left( {{x_0}} \right) = f\left( 1 \right) = \frac{1}{2}.\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} – 3x + 2}}{{{x^2} – 1}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x – 1} \right)\left( {x – 2} \right)}}{{\left( {x – 1} \right)\left( {x + 1} \right)}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x – 2}}{{x + 1}}\) \( = \frac{{1 – 2}}{{1 + 1}}\) \( = – \frac{1}{2}.\)
\(\mathop {\lim }\limits_{x \to {1^ – }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to {1^ – }} \left( {x – \frac{3}{2}} \right)\) \( = 1 – \frac{3}{2}\) \( = – \frac{1}{2}.\)
Vì \(f\left( 1 \right) \ne \mathop {\lim }\limits_{x \to – 1} f\left( x \right)\), suy ra hàm số không liên tục tại \({x_0} = 1.\)
Ví dụ 4. Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}
\frac{{{x^2} – 3x + 2}}{{x – 2}}\:với\:x \ne 2\\
a\:với\:x = 2
\end{array} \right.\). Với giá trị nào của \(a\) thì hàm số đã cho liên tục tại điểm \(x = 2?\)
Ta có: \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} – 3x + 2}}{{x – 2}}\) \( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x – 1} \right)\left( {x – 2} \right)}}{{x – 2}}\) \( = \mathop {\lim }\limits_{x \to 2} \left( {x – 1} \right)\) \( = 1.\)
Hàm số liên tục tại \(x = 2\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\) \( \Leftrightarrow a = 1.\)
Vậy hàm số đã cho liên tục tại \(x = 2\) khi \(a = 1.\)
Ví dụ 5. Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}
\frac{{\left| {2{x^2} – 7x + 6} \right|}}{{x – 2}}\:khi \:x < 2\\
{\rm{a + }}\frac{{1 – x}}{{2 + x}}\:khi\:x \ge 2
\end{array} \right. .\) Xác định \(a\) để hàm số \(f(x)\) liên tục tại \({x_0} = 2.\)
Ta có:
\(\mathop {\lim }\limits_{x \to {2^ – }} f\left( x \right)\) \( = \frac{{\left| {2{x^2} – 7x + 6} \right|}}{{x – 2}}\) \( = \mathop {\lim }\limits_{x \to {2^ – }} \frac{{\left| {\left( {x – 2} \right)\left( {2x – 3} \right)} \right|}}{{x – 2}}\) \( = \mathop {\lim }\limits_{x \to {2^ – }} \frac{{\left( {2 – x} \right)\left( {2x – 3} \right)}}{{x – 2}}\) \( = \mathop {\lim }\limits_{x \to {2^ – }} \left( {3 – 2x} \right)\) \( = – 1.\)
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{\rm{a + }}\frac{{1 – x}}{{2 + x}}} \right)\) \( = a – \frac{1}{4} = f\left( 2 \right).\)
Hàm số liên tục tại \({x_0} = 2\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ – }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) \( = f\left( 2 \right)\) \( \Leftrightarrow a – \frac{1}{4}\) \( = – 1\) \( \Leftrightarrow a = – \frac{3}{4}.\)
Ví dụ 6. Cho các hàm số \(f(x)\) sau đây. Có thể định nghĩa \(f\left( 0 \right)\) để hàm số \(f\left( x \right)\) trở thành hàm liên tục tại \(x = 0\) được không?
a) \(f\left( x \right) = \frac{{7{x^2} – 5x}}{{12x}}\) với \(x \ne 0.\)
b) \(f\left( x \right) = \frac{{3x}}{{\sqrt {x + 4} – 2}}\) với \(x \ne 0.\)
c) \(f\left( x \right) = \frac{3}{{2x}}\) với \(x \ne 0.\)
d) \(f\left( x \right) = \frac{{\sqrt {x + 2} – \sqrt {2 – x} }}{{3x}}\) với \(x \ne 0.\)
a) Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {7x – 5} \right)}}{{12x}}\) \( = \mathop {\lim }\limits_{x \to 0} \frac{{7x – 5}}{{12}}\) \( = – \frac{5}{{12}}.\)
Hàm số liên tục tại \(x = 0\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right).\)
Vậy nếu bổ sung \(f\left( 0 \right) = – \frac{5}{{12}}\) thì hàm số liên tục tại \(x = 0.\)
b) Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 0} \frac{{3x}}{{\sqrt {x + 4} – 2}}\) \( = \mathop {\lim }\limits_{x \to 0} \frac{{3x\left( {\sqrt {x + 4} + 2} \right)}}{{x + 4 – 4}}\) \( = \mathop {\lim }\limits_{x \to 0} 3\left( {\sqrt {x + 4} + 2} \right)\) \( = 12.\)
Hàm số liên tục tại \(x = 0\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right).\)
Vậy nếu bổ sung \(f\left( 0 \right) = 12\) thì hàm số liên tục tại \(x = 0.\)
c) Ta có \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to {0^ + }} \frac{3}{{2x}} = + \infty .\)
Hàm số không có giới hạn hữu hạn tại \(x = 0\), do đó hàm không thể liên tục tại \(x = 0.\)
d) Ta có \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to 0} \frac{{x + 2 – 2 + x}}{{3x\left( {\sqrt {x + 2} + \sqrt {2 – x} } \right)}}\) \( = \mathop {\lim }\limits_{x \to 0} \frac{2}{{3\left( {\sqrt {x + 2} + \sqrt {2 – x} } \right)}}\) \( = \frac{2}{{6\sqrt 2 }}\) \( = \frac{1}{{3\sqrt 2 }}.\)
Hàm số liên tục tại \(x = 0\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right).\)
Vậy nếu bổ sung \(f\left( 0 \right) = \frac{1}{{3\sqrt 2 }}\) thì hàm số liên tục tại \(x = 0.\)
Giải Toán xét tính liên tục của hàm số tại một điểm với Đáp Án Mới Nhất
Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề xét tính liên tục của hàm số tại một điểm, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.
xét tính liên tục của hàm số tại một điểm là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.
Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:
Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.
Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.
Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:
Chủ đề xét tính liên tục của hàm số tại một điểm là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!
Chúc các bạn học tốt và đạt kết quả cao! 😊
>> Xem thêm đáp án chi tiết về: xét tính liên tục của hàm số tại một điểm.