Logo Header
  1. Môn Toán
  2. đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi

đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi

Quý độc giả đang tham khảo tài liệu , được biên soạn bám sát chuẩn toán học mới nhất. Nội dung được cấu trúc chặt chẽ, phân tầng từ cơ bản đến nâng cao, hỗ trợ củng cố và mở rộng kiến thức toán học một cách hệ thống. Hãy tận dụng tối đa tài liệu này để nâng cao hiệu quả học tập và chinh phục mọi kỳ kiểm tra, kỳ thi với kết quả xuất sắc.

giaitoan.edu.vn trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 12 bộ đề thi chọn học sinh giỏi môn Toán cấp tỉnh, năm học 2024 – 2025, do Sở Giáo dục và Đào tạo tỉnh Quảng Ngãi tổ chức. Đề thi này là bước đệm quan trọng để thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán THPT.

Kỳ thi được diễn ra trong hai ngày 24/09/2024 và 25/09/2024. Đây là cơ hội tuyệt vời để các em học sinh thể hiện năng lực, kiến thức và niềm đam mê với môn Toán.

Dưới đây là trích dẫn nội dung đề thi:

  1. Bài 1: Hình học

    Cho tam giác ABC nhọn, không cân. Gọi (I) là đường tròn tâm I nội tiếp tam giác ABC và D, E, F lần lượt là các tiếp điểm của đường tròn (I) với các cạnh BC, CA, AB. Gọi H là trực tâm của tam giác ABC, K là chân đường cao kẻ từ D của tam giác DEF, L là điểm đối xứng của I qua EF.

    • a) Chứng minh rằng các điểm H, K, L có cùng phương tích đối với đường tròn đường kính BE và đường tròn đường kính CF.
    • b) Đường thẳng DK cắt AH tại M. Chứng minh rằng đường tròn tâm H, bán kính HM đi qua trực tâm của tam giác DME.
  2. Bài 2: Tổ hợp

    Cho một dãy gồm 30 chữ số 1 như sau:

    111111111111111111111111111111

    • a) Có bao nhiêu cách thêm 5 chữ số 0 vào dãy đã cho để tạo thành một xâu kí tự sao cho giữa hai chữ số 0 nào cũng có ít nhất 4 chữ số 1?
    • b) Có bao nhiêu cách điền một hoặc nhiều dấu cộng (+) vào giữa các chữ số 1 trong dãy đã cho ban đầu sao cho tổng thu được chia hết cho 30?
  3. Bài 3: Hình học nâng cao

    Cho ngũ giác đều P1.

    • a) Chứng minh rằng không thể chọn một hệ trục tọa độ trên mặt phẳng chứa P1 sao cho tất cả các đỉnh của ngũ giác đã cho đều có tọa độ nguyên.
    • Kéo dài các cạnh của ngũ giác đều P1 cắt nhau tạo ra hình sao 1 S. Nối các đỉnh kề nhau của 1 S ta nhận được ngũ giác đều mới 2P và lại kéo dài các cạnh của P2 tạo ra hình sao mới 2 S. Lặp lại quá trình ấy ta thu được dãy vô hạn các hình ngũ giác đều và hình sao. Kí hiệu độ dài cạnh của các ngũ giác đều là an và độ dài cạnh của các hình sao là bn. Xét dãy số (un) với un = bn/an. Chứng minh rằng kể từ số hạng thứ ba, mỗi số hạng của dãy bằng tổng của hai số hạng đứng ngay trước nó.
    • c) Hỏi trong dãy tồn tại hay không hình ngũ giác và hình sao mà độ dài cạnh của hình sao gấp 2024 lần độ dài cạnh của hình ngũ giác? Vì sao?

Đánh giá chung về đề thi:

Đề thi có độ khó cao, đòi hỏi học sinh phải có kiến thức vững chắc, kỹ năng giải quyết vấn đề linh hoạt và khả năng tư duy logic tốt. Các bài toán được thiết kế đa dạng, bao gồm kiến thức về hình học, tổ hợp và hình học nâng cao, giúp đánh giá toàn diện năng lực của học sinh. Bài toán hình học đặc biệt chú trọng vào việc vận dụng các định lý và tính chất hình học một cách sáng tạo. Bài toán tổ hợp đòi hỏi sự cẩn thận và chính xác trong tính toán. Bài toán hình học nâng cao mang tính chất khám phá và đòi hỏi học sinh phải có kiến thức sâu rộng về toán học.

Lời khích lệ:

Các em học sinh thân mến! Đề thi này là một thử thách lớn, nhưng cũng là một cơ hội tuyệt vời để các em khẳng định bản thân và phát triển niềm đam mê với môn Toán. Hãy tự tin vào khả năng của mình, ôn tập kỹ lưỡng kiến thức và rèn luyện kỹ năng giải toán thường xuyên. Đừng ngại khó khăn, hãy xem chúng như những bài học quý giá để trưởng thành hơn. Chúc các em đạt kết quả tốt nhất trong kỳ thi sắp tới!

giaitoan.edu.vn luôn đồng hành và hỗ trợ các em trên con đường chinh phục tri thức!

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Hình Ảnh Chi Tiết

images-post/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-thpt-nam-2024-2025-so-gd-dt-quang-ngai-1.jpgimages-post/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-thpt-nam-2024-2025-so-gd-dt-quang-ngai-2.jpg

File đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi PDF Chi Tiết

Giải Toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi với Đáp Án Mới Nhất

Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.

1. Tổng Quan về Chủ Đề đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi

đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.

2. Các Bài Tập Đặc Trưng trong đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi

  • Bài tập cơ bản: Những bài tập này giúp bạn hiểu rõ định nghĩa, công thức và cách áp dụng kiến thức.
  • Bài tập nâng cao: Dành cho những bạn muốn thử sức với các dạng bài khó hơn, đòi hỏi tư duy sáng tạo và kỹ năng phân tích.
  • Bài tập ôn luyện: Bao gồm các câu hỏi tương tự đề thi thực tế, giúp bạn làm quen với cấu trúc và cách trình bày bài thi.

3. Hướng Dẫn Giải Chi Tiết

Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:

  1. Phân tích đề bài để hiểu yêu cầu.
  2. Áp dụng công thức và phương pháp phù hợp.
  3. Trình bày lời giải rõ ràng và khoa học.

Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.

4. Đáp Án Mới Nhất và Chính Xác

Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.

5. Tài Liệu Ôn Luyện Kèm Theo

Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:

  • Bảng công thức toán học liên quan đến đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi.
  • Các mẹo giải nhanh và cách tránh sai lầm thường gặp.
  • Đề thi thử và bài tập rèn luyện theo cấp độ.

6. Lợi Ích Khi Học Chủ Đề Này

  • Giúp bạn hiểu sâu bản chất của kiến thức thay vì chỉ học thuộc lòng.
  • Tăng khả năng tư duy logic và sáng tạo.
  • Tự tin hơn khi đối mặt với các kỳ thi quan trọng.

Kết Luận

Chủ đề đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!

Chúc các bạn học tốt và đạt kết quả cao! 😊

>> Xem thêm đáp án chi tiết về: đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt quảng ngãi.