Logo Header
  1. Môn Toán
  2. giải toán bằng sơ đồ ven

giải toán bằng sơ đồ ven

Quý độc giả đang tham khảo tài liệu , được biên soạn bám sát chuẩn môn toán mới nhất. Nội dung được cấu trúc chặt chẽ, phân tầng từ cơ bản đến nâng cao, hỗ trợ củng cố và mở rộng kiến thức toán học một cách hệ thống. Hãy tận dụng tối đa tài liệu này để nâng cao hiệu quả học tập và chinh phục mọi kỳ kiểm tra, kỳ thi với kết quả xuất sắc.

Bài viết hướng dẫn phương pháp giải toán bằng cách sử dụng sơ đồ Ven (được xây dựng bởi nhà toán học John Venn).

Phương pháp giải toán bằng sơ đồ Ven: Gồm 3 bước:

+ Bước 1: Chuyển bài toán về ngôn ngữ tập hợp.

+ Bước 2: Sử dụng sơ đồ Ven để minh họa các tập hợp.

+ Bước 3: Dựa vào sơ đồ Ven ta thiết lập được đẳng thức hoặc phương trình, hệ phương trình, từ đó tìm được kết quả bài toán.

Ví dụ minh họa

Ví dụ 1
: Mỗi học sinh của lớp 10A đều biết chơi cờ tướng hoặc cờ vua, biết rằng có \(25\) em biết chơi cờ tướng, \(30\) em biết chơi cờ vua, \(15\) em biết chơi cả hai. Hỏi lớp 10A có bao nhiêu em chỉ biết chơi cờ tướng? Bao nhiêu em chỉ biết chơi cờ vua? Sĩ số lớp là bao nhiêu?

giải toán bằng sơ đồ ven

Dựa vào sơ đồ Ven ta suy ra số học sinh chỉ biết chơi cờ tướng là \(25-15=10\).

Số học sinh chỉ biết chơi cờ vua là \(30-15=15\).

Do đó ta có sĩ số học sinh của lớp 10A là \(10+15+15=40\).

Ví dụ 2: Lớp 10B có \(45\) học sinh, trong đó có \(25\) em thích môn Văn, \(20\) em thích môn Toán, \(18\) em thích môn Sử, \(6\) em không thích môn nào, \(5\) em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

giải toán bằng sơ đồ ven

Gọi:

\(a,b,c\) theo thứ tự là số học sinh chỉ thích môn Văn, Sử, Toán.

\(x\) là số học sịnh chỉ thích hai môn là Văn và Toán.

\(y\) là số học sịnh chỉ thích hai môn là Sử và Toán.

\(z\) là số học sịnh chỉ thích hai môn là Văn và Sử.

Ta có số em thích ít nhất một môn là \(45-6=39\).

Dựa vào sơ đồ Ven ta có hệ phương trình: \(\left\{ \begin{array}{l}

a + x + z + 5 = 25(1)\\

b + y + z + 5 = 18(2)\\

c + x + y + 5 = 20(3)\\

x + y + z + a + b + c + 5 = 39(4)

\end{array} \right.\)

Cộng vế với vế \((1)\), \((2)\), \((3)\) ta có: \(a+b+c+2\left( x+y+z \right)+15=63\) \((5).\)

Từ \((4)\) và \((5)\) ta có: \(a+b+c\) \(+2\left( 39-5-a-b-c \right)+15=63\) \(\Leftrightarrow a+b+c=20.\)

Vậy chỉ có \(20\) em thích chỉ một môn trong ba môn trên.

Ví dụ 3: Trong lớp 10C có \(16\) học sinh giỏi môn Toán, \(15\) học sinh giỏi môn Lý và \(11\) học sinh giỏi môn Hóa. Biết rằng có \(9\) học sinh vừa giỏi Toán và Lý, \(6\) học sinh vừa giỏi Lý và Hóa, \(8\) học sinh vừa giỏi Hóa và Toán, trong đó chỉ có \(11\) học sinh giỏi đúng hai môn. Hỏi có bao nhiêu học sinh của lớp:

a. Giỏi cả ba môn Toán, Lý, Hóa.

b. Giỏi đúng một môn Toán, Lý hoặc Hóa.

giải toán bằng sơ đồ ven

Gọi:

\(T,L,H\) lần lượt là tập hợp các học sinh giỏi môn Toán, Lý, Hóa.

\(B\) là tập hợp học sinh giỏi đúng hai môn.

Theo giả thiết ta có: \(n\left( T \right) = 16\), \(n\left( L \right) = 15\), \(n\left( H \right) = 11\), \(n\left( B \right) = 11\), \(n\left( {T \cap L} \right) = 9\), \(n\left( {L \cap H} \right) = 6\), \(n\left( {H \cap T} \right) = 8.\)

a. Xét tổng \(n(T \cap L)\) \( + n(L \cap H)\) \( + n(H \cap T)\) thì mỗi phần tử của tập hợp \(T \cap L \cap H\) được tính ba lần do đó ta có: \(n(T \cap L)\) \( + n(L \cap H)\) \( + n(H \cap T)\) \( – 3n\left( {T \cap L \cap H} \right)\) \( = n\left( B \right).\)

Hay \(n\left( {T \cap L \cap H} \right)\) \( = \frac{1}{3}\left[ {n(T \cap L) + n(L \cap H)} \right.\) \(\left. { + n(H \cap T) – n\left( B \right)} \right] = 4.\)

Suy ra có \(4\) học sinh giỏi cả ba môn Toán, Lý, Hóa.

b. Xét \(n\left( {T \cap L} \right) + n\left( {L \cap T} \right)\) thì mỗi phần tử của tập hợp \(T \cap L \cap H\) được tính hai lần do đó số học sinh chỉ giỏi đúng môn Toán là: \(n\left( T \right)\) \( – \left[ {n\left( {T \cap L} \right) + n\left( {H \cap T} \right) – n\left( {T \cap L \cap H} \right)} \right]\) \( = 16 – \left( {9 + 8 – 4} \right) = 3.\)

Tương tự, ta có:

Số học sinh chỉ giỏi đúng môn Lý: \(n\left( L \right)\) \( – \left[ {n\left( {T \cap L} \right) + n\left( {L \cap H} \right) – n\left( {T \cap L \cap H} \right)} \right]\) \( = 15 – \left( {9 + 6 – 4} \right) = 4.\)

Số học sinh chỉ giỏi đúng môn Hóa: \(n\left( H \right)\) \( – \left[ {n\left( {H \cap T} \right) + n\left( {L \cap H} \right) – n\left( {T \cap L \cap H} \right)} \right]\) \( = 11 – \left( {8 + 6 – 4} \right) = 1.\)

Suy ra số học sinh giỏi đúng một môn Toán, Lý hoặc Hóa là: \(3 + 4 + 1 = 8.\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ giải toán bằng sơ đồ ven đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải Toán giải toán bằng sơ đồ ven với Đáp Án Mới Nhất

Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề giải toán bằng sơ đồ ven, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.

1. Tổng Quan về Chủ Đề giải toán bằng sơ đồ ven

giải toán bằng sơ đồ ven là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.

2. Các Bài Tập Đặc Trưng trong giải toán bằng sơ đồ ven

  • Bài tập cơ bản: Những bài tập này giúp bạn hiểu rõ định nghĩa, công thức và cách áp dụng kiến thức.
  • Bài tập nâng cao: Dành cho những bạn muốn thử sức với các dạng bài khó hơn, đòi hỏi tư duy sáng tạo và kỹ năng phân tích.
  • Bài tập ôn luyện: Bao gồm các câu hỏi tương tự đề thi thực tế, giúp bạn làm quen với cấu trúc và cách trình bày bài thi.

3. Hướng Dẫn Giải Chi Tiết

Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:

  1. Phân tích đề bài để hiểu yêu cầu.
  2. Áp dụng công thức và phương pháp phù hợp.
  3. Trình bày lời giải rõ ràng và khoa học.

Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.

4. Đáp Án Mới Nhất và Chính Xác

Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.

5. Tài Liệu Ôn Luyện Kèm Theo

Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:

  • Bảng công thức toán học liên quan đến giải toán bằng sơ đồ ven.
  • Các mẹo giải nhanh và cách tránh sai lầm thường gặp.
  • Đề thi thử và bài tập rèn luyện theo cấp độ.

6. Lợi Ích Khi Học Chủ Đề Này

  • Giúp bạn hiểu sâu bản chất của kiến thức thay vì chỉ học thuộc lòng.
  • Tăng khả năng tư duy logic và sáng tạo.
  • Tự tin hơn khi đối mặt với các kỳ thi quan trọng.

Kết Luận

Chủ đề giải toán bằng sơ đồ ven là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!

Chúc các bạn học tốt và đạt kết quả cao! 😊

>> Xem thêm đáp án chi tiết về: giải toán bằng sơ đồ ven.