Logo Header
  1. Môn Toán
  2. phương pháp tính góc giữa hai mặt phẳng cắt nhau

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Quý độc giả đang tham khảo tài liệu , được biên soạn bám sát chuẩn toán math mới nhất. Nội dung được cấu trúc chặt chẽ, phân tầng từ cơ bản đến nâng cao, hỗ trợ củng cố và mở rộng kiến thức toán học một cách hệ thống. Hãy tận dụng tối đa tài liệu này để nâng cao hiệu quả học tập và chinh phục mọi kỳ kiểm tra, kỳ thi với kết quả xuất sắc.

Tài liệu hướng dẫn phương pháp tính góc giữa hai mặt phẳng cắt nhau trong không gian, đây là một nội dung rất quan trọng trong chương trình Hình học 11 chương 3. Kiến thức và các ví dụ minh họa trong bài viết được tham khảo từ các tài liệu hình học không gian được chia sẻ trên giaitoan.edu.vn.

Bài toán: Cho hai mặt phẳng \((α)\) và \((β)\) cắt nhau, tính góc giữa hai mặt phẳng \((α)\) và \((β).\)

Ta áp dụng một trong các phương pháp sau đây:

Phương pháp 1

Dựng hai đường thẳng \(a\), \(b\) lần lượt vuông góc với hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\). Khi đó, góc giữa hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) là \(\left( {\widehat {\left( \alpha \right),\left( \beta \right)}} \right) = \left( {\widehat {a,b}} \right).\) Tính góc \(\left( {\widehat {a,b}} \right).\)

Phương pháp 2

+ Xác định giao tuyến \(c\) của hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right).\)

+ Dựng hai đường thẳng \(a\), \(b\) lần lượt nằm trong hai mặt phẳng và cùng vuông góc với giao tuyến \(c\) tại một điểm trên \(c.\) Khi đó: \(\left( {\widehat {\left( \alpha \right),\left( \beta \right)}} \right) = \left( {\widehat {a,b}} \right).\)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Hiểu cách khác: Ta xác định mặt phẳng phụ \(\left( \gamma \right)\) vuông góc với giao tuyến \(c\) mà \(\left( \alpha \right) \cap \left( \gamma \right) = a\), \(\left( \beta \right) \cap \left( \gamma \right) = b.\) Suy ra \(\left( {\widehat {\left( \alpha \right),\left( \beta \right)}} \right) = \left( {\widehat {a,b}} \right).\)

Phương pháp 3 (trường hợp đặc biệt)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Nếu có một đoạn thẳng nối hai điểm \(A\), \(B\) \(\left( {A \in \left( \alpha \right), B \in \left( \beta \right)} \right)\) mà \(AB \bot \left( \beta \right)\) thì qua \(A\) hoặc \(B\) ta dựng đường thẳng vuông góc với giao tuyến \(c\) của hai mặt phẳng tại \(H.\) Khi đó \(\left( {\widehat {\left( \alpha \right),\left( \beta \right)}} \right) = \widehat {AHB}.\)

Ví dụ 1Cho hình chóp tứ giác đều \(giaitoan.edu.vn\) cạnh đáy \(ABCD\) bằng \(a\) và \(SA = SB = SC = SD = a.\) Tính \(cosin\) góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right).\)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Gọi \(I\) là trung điểm \(SA.\) Do tam giác \(SAD\) và \(SAB\) đều nên:

\(\left\{ \begin{array}{l}

BI \bot SA\\

DI \bot SA

\end{array} \right.\) \( \Rightarrow \left( {\widehat {\left( {SAB} \right),\left( {SAD} \right)}} \right) = \left( {\widehat {BI,DI}} \right).\)

Áp dụng định lý \(cosin\) cho tam giác \(BID\) ta có:

\(\cos \widehat {BID} = \frac{{I{B^2} + I{D^2} – B{D^2}}}{{giaitoan.edu.vn}}\) \( = \frac{{{{\left( {\frac{{\sqrt 3 }}{2}a} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}a} \right)}^2} – {{\left( {a\sqrt 2 } \right)}^2}}}{{2.\frac{{\sqrt 3 }}{2}a.\frac{{\sqrt 3 }}{2}a}}\) \( = – \frac{1}{3}.\)

Vậy \(\cos \left( {\widehat {\left( {SAB} \right),\left( {SAD} \right)}} \right) = \frac{1}{3}.\)

Ví dụ 2. Cho hình chóp \(giaitoan.edu.vn\) có đáy \(ABCD\) là nửa lục giác đều nội tiếp đường tròn đường kính \(AB = 2a\), \(SA\) vuông góc với \(\left( {ABCD} \right)\) và \(SA = a\sqrt 3 .\) Tính góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SCD} \right).\)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Vì \(ABCD\) là nửa lục giác đều nên \(AD = DC = CB = a.\)

Dựng đường thẳng đi qua \(A\) và vuông góc với \(\left( {SCD} \right).\)

Trong mặt phẳng \(\left( {ABCD} \right)\) dựng \(AH \bot CD\) tại \(H\) \( \Rightarrow CD \bot \left( {SAH} \right).\)

Trong mặt phẳng \(\left( {SAH} \right)\) dựng \(AP \bot SH\) \( \Rightarrow CD \bot AP\) \( \Rightarrow AP \bot \left( {SCD} \right).\)

Dựng đường thẳng đi qua \(A\) và vuông góc với \(\left( {SBC} \right).\)

Trong mặt phẳng \(\left( {SAC} \right)\) dựng \(AQ \bot SC.\)

Lại có \(AQ \bot BC\) vì \(\left\{ \begin{array}{l}

BC \bot AC\\

BC \bot SA

\end{array} \right.\) \( \Rightarrow BC \bot \left( {SAC} \right)\) \( \Rightarrow BC \bot AQ.\)

Vậy \(AQ \bot \left( {SBC} \right).\)

Suy ra góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SCD} \right)\) là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng ấy là \(AP\) và \(AQ.\)

Ta tính góc \(\widehat {PAQ}\), có \(AH = \sqrt {A{D^2} – H{D^2}} \) \( = \sqrt {{a^2} – \frac{{{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}.\)

\( \Rightarrow \frac{1}{{A{P^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{H^2}}}\) \( \Rightarrow AP = \frac{{a\sqrt 3 }}{{\sqrt 5 }}.\)

Tam giác \(SAC\) vuông cân tại \(A\) \( \Rightarrow AQ = \frac{{SC}}{2} = \frac{{a\sqrt 6 }}{2}.\)

\(\Delta APQ\) vuông tại \(P\) \( \Rightarrow \cos \widehat {PAQ} = \frac{{AP}}{{AQ}} = \frac{{\sqrt {10} }}{5}\) \( \Rightarrow \widehat {PAQ}\) \( = \arccos \frac{{\sqrt {10} }}{5}.\)

Ví dụ 3. Cho hình chóp \(giaitoan.edu.vn\) có đáy \(ABC\) là tam giác vuông cân với \(BA = BC = a\), \(SA \bot \left( {ABC} \right)\), \(SA = a.\) Gọi \(E, F\) lần lượt là trung điểm của các cạnh \(AB, AC.\) Tính \(cosin\) góc giữa hai mặt phẳng \(\left( {SEF} \right)\) và \(\left( {SBC} \right).\)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Nhận xét: Giao tuyến của hai mặt phẳng \(\left( {SEF} \right)\) và \(\left( {SBC} \right)\) là đường thẳng \(St\) đi qua \(S\) và song song với \(EF\) và \(BC\) nên ta xác định hai đường thẳng qua \(S\) và lần lượt nằm trong hai mặt phẳng \(\left( {SEF} \right)\) và \(\left( {SBC} \right)\) và cùng vuông góc với \(St\) (ta đi chứng minh hai đường thẳng đó là \(SE\) và \(SB\)).

Vì \(\left\{ \begin{array}{l}

EF \subset \left( {SEF} \right)\\

BC \subset \left( {SBC} \right)\\

EF {\rm{//}} BC

\end{array} \right. \) \(⇒\) giao tuyến của \(\left( {SEF} \right)\) và \(\left( {SBC} \right)\) là đường thẳng qua \(S\), song song với \(BC\), là \(St.\)

Ta có \(\left\{ \begin{array}{l}

BC \bot AB\\

BC \bot SA\left( {vì SA \bot \left( {ABC} \right)} \right)

\end{array} \right. \) \( \Rightarrow BC \bot \left( {SAB} \right)\) \( \Rightarrow BC \bot SB\) hay \(St \bot SB.\)

Tương tự \(EF \bot \left( {SAE} \right)\) \( \Rightarrow EF \bot SE\) mà \(EF {\rm{//}} St\) \( \Rightarrow St \bot SE.\)

Vậy \(SB\) và \(SE\) cùng đi qua \(S\) và cùng vuông góc với \(St\) nên góc giữa hai mặt phẳng \(\left( {SEF} \right)\) và \(\left( {SBC} \right)\) bằng góc giữa hai đường thẳng \(SB\) và \(SE.\)

Ta tính góc \(\widehat {BSE}.\)

Có \(SE = \sqrt {S{A^2} + A{E^2}} = \frac{{a\sqrt 5 }}{2}\); \(SB = \sqrt {S{A^2} + A{B^2}} = a\sqrt 2 \); \(BE = \frac{a}{2}.\)

Theo định lí \(cosin\) ta có: \(\cos \widehat {BSE} = \frac{{S{E^2} + S{B^2} – B{E^2}}}{{giaitoan.edu.vn}}\) \( = \frac{3}{{\sqrt {10} }}\) \( \Rightarrow \widehat {BSE} = \arccos \frac{3}{{\sqrt {10} }}.\)

Ví dụ 4. Cho hình chóp \(giaitoan.edu.vn\) có đáy \(ABC\) là tam giác vuông cân tại \(B\), \(SA = a\) và \(SA \bot \left( {ABC} \right)\), \(AB = BC = a.\) Tính góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBC} \right).\)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Nhận xét: Ta áp dụng phương pháp 3 (trường hợp đặc biệt).

Ta có \(\left( {SAC} \right) \cap \left( {SBC} \right) = SC.\)

Gọi \(F\) là trung điểm \(AC\) \( \Rightarrow BF \bot \left( {SAC} \right).\)

Dựng \(BK \bot SC\) tại \(K\) \( \Rightarrow SC \bot \left( {BKF} \right)\) \( \Rightarrow \widehat {\left( {\left( {SAC} \right),\left( {SBC} \right)} \right)}\) \( = \widehat {\left( {KB,KF} \right)} = \widehat {BKF}.\)

\(\Delta CFK \sim \Delta CSA \Rightarrow \frac{{FK}}{{FC}} = \frac{{SA}}{{SC}}\) \( \Rightarrow FK = \frac{{giaitoan.edu.vn}}{{SC}}\) \( = \frac{{\frac{{a\sqrt 2 }}{2}.a}}{{a\sqrt 3 }} = \frac{a}{{\sqrt 6 }}.\)

\(\Delta BFK\) vuông tại \(F\) \( \Rightarrow \tan \widehat {BKF} = \frac{{FB}}{{FK}}\) \( = \frac{{\frac{{a\sqrt 2 }}{2}}}{{\frac{a}{{\sqrt 6 }}}} = \sqrt 3 \) \( \Rightarrow \widehat {BKF} = 60^\circ \) \( = \widehat {\left( {\left( {SAC} \right),\left( {SBC} \right)} \right)}.\)

Ví dụ 5. Cho hình chóp \(giaitoan.edu.vn\) có đáy \(ABCD\) là nửa lục giác đều nội tiếp đường tròn đường kính \(AB = 2a\), \(SA\) vuông góc với \(\left( {ABCD} \right)\) và \(SA = a\sqrt 3 .\) Tính \(tan\) của góc giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right).\)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Gọi \(I = AD \cap BC\), \(ABCD\) là nửa lục giác đều nên \(AD = DC = CB = a\), \(AI = IB = a.\)

\(\left( {SAD} \right) \cap \left( {SBC} \right) = SI\) \( \Rightarrow \left\{ \begin{array}{l}

BD \bot SA\\

BD \bot AD

\end{array} \right.\) \( \Rightarrow BD \bot \left( {SAD} \right) \Rightarrow BD \bot SI.\)

Vì vậy theo trường hợp đặc biệt ta chỉ cần dựng \(DE \bot SI\) với \(E \in SI.\)

Khi đó, \(SI \bot \left( {BED} \right)\) \( \Rightarrow \left( {\widehat {\left( {SAD} \right),\left( {SSBC} \right)}} \right) = \left( {\widehat {EB,ED}} \right)\) \( = \widehat {BED}\) (Vì \(\Delta BED\) vuông tại \(D\)).

\(\Delta AIB\) đều nên \(BD = a\sqrt 3 .\)

\(SI = \sqrt {S{A^2} + A{I^2}} = a\sqrt 7 .\)

Hai tam giác vuông \(SAI\) và \(DEI\) đồng dạng nên: \(\frac{{DE}}{{SA}} = \frac{{DI}}{{SI}} \Rightarrow DE = \frac{{a\sqrt 3 }}{{\sqrt 7 }}.\)

\(\Delta BDE\) vuông tại \(D\) \( \Rightarrow \tan \widehat {BED} = \frac{{BD}}{{DE}} = \sqrt 7 .\)

Ví dụ 6. Cho tam giác \(ABC\) vuông cân tại \(A\) có \(AB = a\), trên đường thẳng \(d\) vuông góc với \(\left( {ABC} \right)\) tại điểm \(A\) ta lấy một điểm \(D.\) Tính góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {DBC} \right)\), trong trường hợp \(\left( {DBC} \right)\) là tam giác đều.

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {DBC} \right).\)

Theo công thức diện tích hình chiếu của đa giác, ta có: \({S_{\Delta ABC}} = {S_{\Delta DBC}}.cos\varphi .\)

Mà: \({S_{ΔDBC}} = \frac{1}{2}giaitoan.edu.vn.\sin {60^0}\) \( = \frac{1}{2}a\sqrt 2 .a\sqrt 2 .\frac{{\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{2}.\)

Mặt khác: \({S_{ΔABC}} = \frac{1}{2}giaitoan.edu.vn = \frac{1}{2}{a^2}.\)

\( \Rightarrow \cos \varphi = \frac{{{S_{ΔABC}}}}{{{S_{ΔDBC}}}} = \frac{{\sqrt 3 }}{3}\) \( \Rightarrow \varphi = \arccos \frac{{\sqrt 3 }}{3}.\)

Ví dụ 7. Cho lăng trụ đứng \(OAB.O’A’B’\) có các đáy là các tam giác vuông cân \(OA = OB = a, AA’ = a\sqrt 2 .\) Gọi \(M, P\) lần lượt là trung điểm các cạnh \(OA, AA’.\) Tính diện tích thiết diện khi cắt lăng trụ bởi \(\left( {B’MP} \right).\)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Gọi \(R\) là giao điểm của \(MP\) và \(OO’\), \(Q\) là giao điểm của \(B’R\) với \(OB.\)

Thiết diện là tứ giác \(MPB’Q\), ta có: \(\frac{{OQ}}{{O’B’}} = \frac{{RO}}{{RO’}} = \frac{1}{3}\) \( \Rightarrow OQ = \frac{a}{3}.\)

Tứ giác \(AMQB\) là hình chiếu vuông góc của tứ giác \(PMQB’\) trên mặt phẳng \(\left( {OAB} \right)\) nên: \({S_{PMQB’}} = \frac{{{S_{AMQB}}}}{{\cos \varphi }}.\)

Với \(\varphi \) là góc tạo bởi hai mặt phẳng \(\left( {OAB} \right)\) và \(\left( {MPB’Q} \right).\)

Ta có: \({S_{AMQB}} = {S_{OAB}} – {S_{OMQ}}\) \( = \frac{1}{2}{a^2} – \frac{1}{{12}}{a^2} = \frac{5}{{12}}{a^2}.\)

Hạ \(OH \bot MQ\), ta có: \(\left\{ \begin{array}{l}

MQ \bot OH\\

MQ \bot OR

\end{array} \right. \Rightarrow MQ \bot \left( {OHR} \right).\)

Vậy: \(\varphi = \widehat {OHR}\) (\(\widehat {OHR}\) nhọn).

Ta có: \(\cos \varphi = cos\widehat {OHR} = \frac{{OH}}{{RH}}\) \( = \frac{{OH}}{{\sqrt {O{H^2} + O{R^2}} }}\) \( = \frac{{\frac{a}{{\sqrt {13} }}}}{{\sqrt {\frac{{{a^2}}}{{13}} + \frac{{{a^2}}}{2}} }} = \frac{{\sqrt 2 }}{{\sqrt {15} }}.\)

Vậy: \({S_{PMQB’}} = \frac{{5{a^2}\sqrt {15} }}{{12\sqrt 2 }}.\)

Ví dụ 8. Cho lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là một tam giác cân với \(AB = AC = a,\widehat {BAC} = {120^0},\) cạnh bên \(BB’ = a.\) Gọi \(I\) là trung điểm \(CC’.\) Chứng minh rằng tam giác \(AB’I\) vuông ở \(A\). Tính \(cosin\) của góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB’I} \right).\)

phương pháp tính góc giữa hai mặt phẳng cắt nhau

Áp dụng định lý \(cosin\) cho \(\Delta ABC\) ta có: \(B{C^2} = {a^2} + {a^2} – 2{a^2}{\rm{cos}}{120^0}\) \( = 3{a^2}.\)

Áp dụng định lý Py-ta-go cho các tam giác:

\(\Delta B’BA\): \(B'{A^2} = 2{a^2}.\)

\(\Delta ICA\): \(A{I^2} = {a^2} + {\left( {\frac{1}{2}} \right)^2} = \frac{{5{a^2}}}{4}.\)

\(\Delta B’C’I\): \(B'{I^2} = 3{a^2} + \frac{{{a^2}}}{4} = \frac{{13{a^2}}}{4}.\)

Ta có: \(B'{A^2} + A{I^2} = 2{a^2} + \frac{{5{a^2}}}{4}\) \( = \frac{{13{a^2}}}{4} = B'{I^2} \Rightarrow \Delta AB’I\) vuông ở \(A.\)

Ta có: \({S_{\Delta AB’I}} = \frac{1}{2}giaitoan.edu.vn’\) \( = \frac{1}{2}.\frac{{a\sqrt 5 }}{2}.a\sqrt 2 = \frac{{{a^2}\sqrt {10} }}{4}.\)

\({S_{\Delta ABC}} = \frac{1}{2}{a^2}\sin {120^0} = \frac{{{a^2}\sqrt 3 }}{4}.\)

Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB’I} \right).\) Khi đó:

\(cos\varphi = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABI’}}}}\) \( = \frac{{\frac{{{a^2}\sqrt 3 }}{4}}}{{\frac{{{a^2}\sqrt {10} }}{4}}} = \frac{{\sqrt 3 }}{{\sqrt {10} }} = \frac{{\sqrt {30} }}{{10}}.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay phương pháp tính góc giữa hai mặt phẳng cắt nhau – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng toán math. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải Toán phương pháp tính góc giữa hai mặt phẳng cắt nhau với Đáp Án Mới Nhất

Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề phương pháp tính góc giữa hai mặt phẳng cắt nhau, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.

1. Tổng Quan về Chủ Đề phương pháp tính góc giữa hai mặt phẳng cắt nhau

phương pháp tính góc giữa hai mặt phẳng cắt nhau là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.

2. Các Bài Tập Đặc Trưng trong phương pháp tính góc giữa hai mặt phẳng cắt nhau

  • Bài tập cơ bản: Những bài tập này giúp bạn hiểu rõ định nghĩa, công thức và cách áp dụng kiến thức.
  • Bài tập nâng cao: Dành cho những bạn muốn thử sức với các dạng bài khó hơn, đòi hỏi tư duy sáng tạo và kỹ năng phân tích.
  • Bài tập ôn luyện: Bao gồm các câu hỏi tương tự đề thi thực tế, giúp bạn làm quen với cấu trúc và cách trình bày bài thi.

3. Hướng Dẫn Giải Chi Tiết

Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:

  1. Phân tích đề bài để hiểu yêu cầu.
  2. Áp dụng công thức và phương pháp phù hợp.
  3. Trình bày lời giải rõ ràng và khoa học.

Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.

4. Đáp Án Mới Nhất và Chính Xác

Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.

5. Tài Liệu Ôn Luyện Kèm Theo

Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:

  • Bảng công thức toán học liên quan đến phương pháp tính góc giữa hai mặt phẳng cắt nhau.
  • Các mẹo giải nhanh và cách tránh sai lầm thường gặp.
  • Đề thi thử và bài tập rèn luyện theo cấp độ.

6. Lợi Ích Khi Học Chủ Đề Này

  • Giúp bạn hiểu sâu bản chất của kiến thức thay vì chỉ học thuộc lòng.
  • Tăng khả năng tư duy logic và sáng tạo.
  • Tự tin hơn khi đối mặt với các kỳ thi quan trọng.

Kết Luận

Chủ đề phương pháp tính góc giữa hai mặt phẳng cắt nhau là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!

Chúc các bạn học tốt và đạt kết quả cao! 😊

>> Xem thêm đáp án chi tiết về: phương pháp tính góc giữa hai mặt phẳng cắt nhau.