Bài viết trình bày phương pháp xác định và tính góc giữa hai đường thẳng chéo nhau trong không gian bằng cách sử dụng hình học không gian cổ điển, đây là một nội dung thường gặp trong chương trình Hình học 11 chương 3: Quan hệ vuông góc, kiến thức và các ví dụ trong bài viết được tham khảo từ các tài liệu hình học không gian được chia sẻ trên giaitoan.edu.vn.
Bài toán: Cho hai đường thẳng \(a\) và \(b\) chéo nhau, xác định góc giữa \(2\) đường thẳng \(a\) và \(b.\)
Để xác định góc giữa hai đường thẳng \(a\) và \(b\) chéo nhau, ta sử dụng các cách sau:
Cách 1: Chọn hai đường thẳng cắt nhau \(a’\) và \(b’\) lần lượt song song với \(a\) và \(b\). Khi đó \((\widehat {a,b}) = (\widehat {a’,b’})\).
Cách 2: Chọn một điểm \(A\) bất kỳ thuộc \(a\), rồi từ đó kẻ một đường thẳng \(b’\) qua \(A\) và song song với \(b\). Khi đó \((\widehat {a,b}) = (\widehat {a,b’})\).
Ví dụ 1: Cho hình chóp \(giaitoan.edu.vn\) có đáy là hình thoi cạnh \(a\), \(SA = a\sqrt 3 ,SA \bot BC\). Tính góc giữa hai đường thẳng \(SD\) và \(BC\)?
Ta có: \(BC//AD.\)
Do đó \((SD,BC) = (SD,AD) = \widehat {SDA}.\)
Vì \(\left. \begin{array}{l}
BC||AD\\
SA \bot BC
\end{array} \right\}\) \( \Rightarrow SA \bot AD \Rightarrow \widehat {SAD} = {90^0}.\)
Xét tam giác \(ΔSAD\) vuông tại \(A\) ta có:
\(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \sqrt 3 \) \( \Rightarrow \widehat {SDA} = {60^0}.\)
Vậy góc giữa hai đường thẳng \(SD\) và \(BC\) bằng \(60\) độ.
Ví dụ 2: Cho tứ diện \(ABCD\) có \(AB = CD = 2a\). Gọi \(M, N\) lần lượt là trung điểm của \(BC\) và \(AD\), \(MN = a\sqrt 3 \). Tính góc giữa hai đường thẳng \(AB\) và \(CD\)?
Gọi \(I\) là trung điểm của \(BD.\)
Ta có: \(\left. \begin{array}{l}
IN//AB\\
IM//CD
\end{array} \right\}\) \( \Rightarrow (AB,CD) = (IM,IN).\)
Xét tam giác \(IMN\) có:
\(IM = IN = a,MN = a\sqrt 3 .\)
Do đó \(\cos \widehat {MIN} = \frac{{2{a^2} – 3{a^2}}}{{2{a^2}}} = – \frac{1}{2}\) \( \Rightarrow \widehat {MIN} = {120^0}.\)
Vậy \((\widehat {AB,CD}) = {180^0} – {120^0} = {60^0}\).
Ví dụ 3: Cho hình lăng trụ \(ABC.A’B’C’\) có độ dài cạnh bên bằng \(2a\), đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a,AC = a\sqrt 3\). Hình chiếu vuông góc của \(A’\) lên \(mp(ABC)\) là trung điểm của \(BC\). Tính \(cosin\) của góc giữa hai đường thẳng \(AA’\) và \(B’C’\)?
Gọi \(H\) là trung điểm của \(BC.\)
Ta có: \(\left. \begin{array}{l}
AA’//BB’\\
B’C’//BH
\end{array} \right\}\) \( \Rightarrow (AA’,B’C’) = (BB’,BH).\)
Hay \(\cos (AA’,B’C’) = \cos (BB’,BH)\) \( = \left| {\cos \widehat {HBB’}} \right|.\)
Xét tam giác \(A’B’H\) có:
\(\widehat {A’} = {90^0},A’B’ = a.\)
\(A’H = \sqrt {AA{‘^2} – A{H^2}} \) \( = \sqrt {AA{‘^2} – {{\left( {\frac{{BC}}{2}} \right)}^2}} = a\sqrt 3 .\)
Suy ra \(HB’ = \sqrt {A'{H^2} + A’B{‘^2}} = 2a.\)
Do đó \(\cos \widehat {HBB’} = \frac{{B{H^2} + BB{‘^2} – HB{‘^2}}}{{giaitoan.edu.vn’}} = \frac{1}{4}.\)
Vậy \(\cos (AA’,B’C’) = \left| {\cos \widehat {HBB’}} \right| = \frac{1}{4}\).
Giải Toán xác định góc giữa hai đường thẳng chéo nhau với Đáp Án Mới Nhất
Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề xác định góc giữa hai đường thẳng chéo nhau, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.
xác định góc giữa hai đường thẳng chéo nhau là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.
Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:
Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.
Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.
Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:
Chủ đề xác định góc giữa hai đường thẳng chéo nhau là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!
Chúc các bạn học tốt và đạt kết quả cao! 😊
>> Xem thêm đáp án chi tiết về: xác định góc giữa hai đường thẳng chéo nhau.