Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4

Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4

Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4, được biên soạn theo chuẩn chương trình học mới nhất của Bộ Giáo dục và Đào tạo.

Đề thi này là tài liệu ôn tập lý tưởng giúp học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự đánh giá năng lực của bản thân trước kỳ thi quan trọng.

Đề bài

    Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Tìm nguyên hàm \(F = \int {{\pi ^2}dx} \).

    • A.

      \(F(x) = {\pi ^2}x + C\)

    • B.

      \(F(x) = 2\pi x + C\)

    • C.

      \(F(x) = \frac{{{\pi ^3}}}{3} + C\)

    • D.

      \(F(x) = \frac{{{\pi ^2}{x^2}}}{2} + C\)

    Câu 2 :

    Nguyên hàm của hàm số \(f(x) = {x^{2024}}\), \(x \in \mathbb{R}\) là hàm số nào trong các hàm số dưới đây?

    • A.

      \(F(x) = 2023{x^{2024}} + C\), \(C \in \mathbb{R}\)

    • B.

      \(F(x) = \frac{{{x^{2025}}}}{{2025}} + C\), \(C \in \mathbb{R}\)

    • C.

      \(F(x) = {x^{2025}} + C\), \(C \in \mathbb{R}\)

    • D.

      \(F(x) = 2024{x^{2023}} + C\), \(C \in \mathbb{R}\)

    Câu 3 :

    Tìm nguyên hàm của hàm số \(f(x) = \frac{{1 - {{\sin }^3}x}}{{{{\sin }^2}x}}\).

    • A.

      \(\int {f(x)dx} = - \cot x + \cos x + C\)

    • B.

      \(\int {f(x)dx} = - \tan x + \cos x + C\)

    • C.

      \(\int {f(x)dx} = - \cot x - \cos x + C\)

    • D.

      \(\int {f(x)dx} = - \tan x - \cos x + C\)

    Câu 4 :

    Biết \(\int\limits_1^3 {f(x)dx} = 3\). Giá trị của \(\int\limits_1^3 {2f(x)dx} \) bằng

    • A.

      5

    • B.

      9

    • C.

      6

    • D.

      \(\frac{{15}}{4}\)

    Câu 5 :

    Biết \(F(x) = {x^3}\) là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\). Giá trị của \(\int\limits_1^2 {\left( {2 + f(x)} \right)dx} \) bằng

    • A.

      \(\frac{{23}}{4}\)

    • B.

      7

    • C.

      9

    • D.

      \(\frac{{15}}{4}\)

    Câu 6 :

    Cho hàm số f(x) liên tục trên [a;b] và thỏa mãn \(\int\limits_a^0 {f(x)dx} = m\), \(\int\limits_0^b {f(x)dx} = n\). Diện tích hình phẳng trong hình vẽ bên bằng

    Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 0 1

    • A.

      m.n

    • B.

      m – n

    • C.

      m + n

    • D.

      n – m

    Câu 7 :

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + y – z + 3 = 0. Vecto nào sau đây là vecto pháp tuyến của mặt phẳng (P)?

    • A.

      \(\overrightarrow {{n_1}} = (1; - 1;3)\)

    • B.

      \(\overrightarrow {{n_2}} = (2; - 1;3)\)

    • C.

      \(\overrightarrow {{n_3}} = (2;1; - 1)\)

    • D.

      \(\overrightarrow {{n_4}} = (2;1;3)\)

    Câu 8 :

    Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm A(1;0;−1) và song song với mặt phẳng x − y + z + 2 = 0 là

    • A.

      \(x - y + z + 1 = 0\)

    • B.

      \(x - y + z + 2 = 0\)

    • C.

      \(x - y + z - 1 = 0\)

    • D.

      \(x - y + z = 0\)

    Câu 9 :

    Trong không gian Oxyz, điểm nào dưới đây thuộc mặt phẳng (P): x – 2y + 3z – 2 = 0?

    • A.

      P(1;-2;1)

    • B.

      M(1;-2;3)

    • C.

      Q(-1;2;1)

    • D.

      N(1;2;-1)

    Câu 10 :

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M(0;-1;14) và nhận vecto \(\overrightarrow u = (3; - 1;5)\) làm vecto chỉ phương. Phương trình tham số của d là

    • A.

      \(\left\{ \begin{array}{l}x = 3t\\y = 1 - t\\z = 4 + 5t\end{array} \right.\) \((t \in \mathbb{R})\)

    • B.

      \(\left\{ \begin{array}{l}x = 3\\y = - 1 - t\\z = 5 + 4t\end{array} \right.\) \((t \in \mathbb{R})\)

    • C.

      \(\left\{ \begin{array}{l}x = 3t\\y = - 1 - t\\z = 4 + 5t\end{array} \right.\) \((t \in \mathbb{R})\)

    • D.

      \(\left\{ \begin{array}{l}x = 3t\\y = - 1 - t\\z = - 4 + 5t\end{array} \right.\) \((t \in \mathbb{R})\)

    Câu 11 :

    Trong không gian Oxyz, khoảng cách từ điểm A(4;1;5) đến (P): 5x – 10y + 10z – 5 = 0 bằng

    • A.

      10

    • B.

      \(\frac{{29}}{{100}}\)

    • C.

      \(\frac{{11}}{3}\)

    • D.

      \(\frac{{29\sqrt {10} }}{{10}}\)

    Câu 12 :

    Trong không gian Oxyz, cho mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 4\). Tìm tọa độ tâm I và bán kính R của mặt cầu đó.

    • A.

      I(-1;2;-3); R = 2

    • B.

      I(-1;2;-3); R = 4

    • C.

      I(1;-2;3); R = 2

    • D.

      I(1;-2;3); R = 4

    Phần II: Câu trắc nghiệm đúng sai.
    Thí sinh trả lời câu 1, câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Cho hình phẳng (H) giới hạn bởi đồ thị hàm số \(y = f(x) = \frac{{x + 1}}{x}\), trục hoành và hai đường thẳng x = 2, x = 6.

    a) Diện tích hình phẳng (H) là S = 4 + ln3.

    Đúng
    Sai

    b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) – 1, trục hoành và hai đường thẳng x = 2, x = 6 là S = 2ln3.

    Đúng
    Sai

    c) Thể tích vật thể tròn xoay được tạo thành khi quay (H) quanh trục Ox là \(V = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3}\).

    Đúng
    Sai

    d) Thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và các đường thẳng y = 1, x = 2, x = 6 quanh trục Ox là \(V = \frac{{1 + 6\ln 3}}{3}\).

    Đúng
    Sai
    Câu 2 :

    Trong không gian Oxyz cho mặt phẳng \(\left( \alpha \right)\): x + 2y + 2z – 3 = 0.

    a) Phương trình \(\left( \beta \right)\) đi qua M(2;-3;1) và song song với \(\left( \alpha \right)\) là x + 2y + 2z + 2 = 0.

    Đúng
    Sai

    b) Phương trình đường thẳng \(\Delta \) đi qua điểm A(1;-2;3) và vuông góc với \(\left( \alpha \right)\) là \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 2t\\z = 3 + 2t\end{array} \right.\) \((t \in \mathbb{R})\).

    Đúng
    Sai

    c) Phương trình mặt cầu tâm I(1;1;-3) và tiếp xúc với \(\left( \alpha \right)\) là \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 2\).

    Đúng
    Sai

    d) Phương trình mặt cầu (S): \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 25\) cắt \(\left( \alpha \right)\) theo giao tuyến là một đường tròn có bán kính bằng 4.

    Đúng
    Sai
    Phần III: Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 4.
    Câu 1 :

    Bạn Huyền chạy thể dục buổi sáng với \(a(t) = - \frac{1}{{24}}{t^3} + \frac{5}{{16}}{t^2}\) m/s, trong đó t giây là khoảng thời gian tính từ lúc xuất phát. Vào thời điểm t = 5 (s) sau khi xuất phát thì vận tốc của bạn Huyền đạt được bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án:

    Câu 2 :

    Cho hàm số y = f(x). Đồ thị hàm số y = f′(x) là đường cong trong hình dưới. Biết rằng diện tích của các phần hình phẳng A và B lần lượt là SA = 4 và SB = 10. Tính giá trị của f(3), biết giá trị của f(0) = 2.

    Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 0 2

    Đáp án:

    Câu 3 :

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(0;2;0), C(0;0;m). Để mặt phẳng (ABC) hợp với mặt phẳng (Oxy) một góc \({60^o}\) thì tổng các giá trị của m là bao nhiêu?

    Đáp án:

    Câu 4 :

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3;1;7), B(5;5;1) và mặt phẳng (P): 2x − y − z + 4 = 0. Điểm M thuộc (P ) sao cho MA = MB = \(\sqrt {35} \). Biết M có hoành độ nguyên, tính OM (làm tròn đến chữ số hàng phần trăm)?

    Đáp án:

    Phần IV: Tự luận.
    Thí sinh trình bày lời giải từ câu 1 đến câu 3.
    Câu 1 :

    Cho \(I = \int\limits_0^1 {\left( {4x - 2{m^2}} \right)dx} \). Có bao nhiêu giá trị nguyên của m để I + 6 > 0?

    Câu 2 :

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x \((0 \le x \le 3)\), ta được mặt cắt là một hình vuông có cạnh là \(\sqrt {9 - {x^2}} \) (xem hình dưới). Tính thể tích của vật thể đã cho.

    Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 0 3

    Câu 3 :

    Một viên gạch hoa hình vuông cạnh 40 cm. Người ta đã dùng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (phần tô đậm như hình vẽ). Tính diện tích của mỗi cánh hoa đó (làm tròn kết quả đến hàng đơn vị).

    Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 0 4

    Lời giải và đáp án

      Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Tìm nguyên hàm \(F = \int {{\pi ^2}dx} \).

      • A.

        \(F(x) = {\pi ^2}x + C\)

      • B.

        \(F(x) = 2\pi x + C\)

      • C.

        \(F(x) = \frac{{{\pi ^3}}}{3} + C\)

      • D.

        \(F(x) = \frac{{{\pi ^2}{x^2}}}{2} + C\)

      Đáp án : A

      Phương pháp giải :

      Áp dụng công thức nguyên hàm của hàm hằng: \(\int {cdx} = cx + C\).

      Lời giải chi tiết :

      \(F = \int {{\pi ^2}dx} = {\pi ^2}x + C\).

      Câu 2 :

      Nguyên hàm của hàm số \(f(x) = {x^{2024}}\), \(x \in \mathbb{R}\) là hàm số nào trong các hàm số dưới đây?

      • A.

        \(F(x) = 2023{x^{2024}} + C\), \(C \in \mathbb{R}\)

      • B.

        \(F(x) = \frac{{{x^{2025}}}}{{2025}} + C\), \(C \in \mathbb{R}\)

      • C.

        \(F(x) = {x^{2025}} + C\), \(C \in \mathbb{R}\)

      • D.

        \(F(x) = 2024{x^{2023}} + C\), \(C \in \mathbb{R}\)

      Đáp án : B

      Phương pháp giải :

      Áp dụng công thức nguyên hàm của hàm số lũy thừa: \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).

      Lời giải chi tiết :

      \(\int {f(x)dx} = \int {{x^{2024}}dx} = \frac{{{x^{2025}}}}{{2025}} + C\).

      Câu 3 :

      Tìm nguyên hàm của hàm số \(f(x) = \frac{{1 - {{\sin }^3}x}}{{{{\sin }^2}x}}\).

      • A.

        \(\int {f(x)dx} = - \cot x + \cos x + C\)

      • B.

        \(\int {f(x)dx} = - \tan x + \cos x + C\)

      • C.

        \(\int {f(x)dx} = - \cot x - \cos x + C\)

      • D.

        \(\int {f(x)dx} = - \tan x - \cos x + C\)

      Đáp án : A

      Phương pháp giải :

      Áp dụng công thức nguyên hàm của hàm số lượng giác:

      \(\int {\frac{1}{{{{\sin }^2}x}}dx} = - \cot x + C\); \(\int {\sin xdx} = - \cos x + C\).

      Lời giải chi tiết :

      \(\int {\frac{{1 - {{\sin }^3}x}}{{{{\sin }^2}x}}dx} = \int {\left( {\frac{1}{{{{\sin }^2}x}} - \sin x} \right)dx} = - \cot x + \cos x + C\).

      Câu 4 :

      Biết \(\int\limits_1^3 {f(x)dx} = 3\). Giá trị của \(\int\limits_1^3 {2f(x)dx} \) bằng

      • A.

        5

      • B.

        9

      • C.

        6

      • D.

        \(\frac{{15}}{4}\)

      Đáp án : C

      Phương pháp giải :

      Áp dụng tính chất tích phân \(\int\limits_a^b {kf(x)dx} = k\int\limits_a^b {f(x)dx} \).

      Lời giải chi tiết :

      \(\int\limits_1^3 {2f(x)dx} = 2\int\limits_1^3 {f(x)dx} = 2.3 = 6\).

      Câu 5 :

      Biết \(F(x) = {x^3}\) là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\). Giá trị của \(\int\limits_1^2 {\left( {2 + f(x)} \right)dx} \) bằng

      • A.

        \(\frac{{23}}{4}\)

      • B.

        7

      • C.

        9

      • D.

        \(\frac{{15}}{4}\)

      Đáp án : C

      Phương pháp giải :

      Áp dụng công thức nguyên hàm của hàm số lũy thừa \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).

      Áp dụng tính chất tích phân \(\int\limits_a^b {kf(x)dx} = k\int\limits_a^b {f(x)dx} \); \(\int\limits_a^b {\left[ {f(x) + g(x)} \right]dx} = \int\limits_a^b {f(x)dx} + \int\limits_a^b {g(x)dx} \).

      Lời giải chi tiết :

      \(F(x) = {x^3}\) là một nguyên hàm của hàm số f(x) nên \(\int\limits_1^2 {f(x)dx} = {x^3}\left| {\begin{array}{*{20}{c}}{^2}\\{_1}\end{array}} \right. = 7\).

      \(\int\limits_1^2 {\left( {2 + f(x)} \right)dx} = \int\limits_1^2 {2dx} + \int\limits_1^2 {f(x)dx} = 2x\left| {\begin{array}{*{20}{c}}{^2}\\{_1}\end{array}} \right. + {x^3}\left| {\begin{array}{*{20}{c}}{^2}\\{_1}\end{array}} \right. = 9\).

      Câu 6 :

      Cho hàm số f(x) liên tục trên [a;b] và thỏa mãn \(\int\limits_a^0 {f(x)dx} = m\), \(\int\limits_0^b {f(x)dx} = n\). Diện tích hình phẳng trong hình vẽ bên bằng

      Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 1 1

      • A.

        m.n

      • B.

        m – n

      • C.

        m + n

      • D.

        n – m

      Đáp án : B

      Phương pháp giải :

      Áp dụng công thức tính diện tích diện tích hình phẳng \(S = \int\limits_a^b {\left| {f(x)} \right|dx} \). Dựa vào đồ thị, xét dấu của f(x), từ đó phá dấu trị tuyệt đối.

      Lời giải chi tiết :

      Quan sát đồ thị, trên khoảng (a;0) thấy đồ thị f(x) nằm phía trên trục hoành nên f(x) > 0, hay |f(x)| = f(x). Mặt khác, trên khoảng (0;b) thấy đồ thị f(x) nằm phía dưới trục hoành nên f(x) < 0, hay |f(x)| = -f(x).

      Diện tích hình phẳng là \(S = \int\limits_a^b {\left| {f(x)} \right|dx} = \int\limits_a^0 {\left| {f(x)} \right|dx} + \int\limits_0^b {\left| {f(x)} \right|dx} = \int\limits_a^0 {f(x)dx} + \int\limits_0^b { - f(x)dx} = m - n\).

      Câu 7 :

      Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + y – z + 3 = 0. Vecto nào sau đây là vecto pháp tuyến của mặt phẳng (P)?

      • A.

        \(\overrightarrow {{n_1}} = (1; - 1;3)\)

      • B.

        \(\overrightarrow {{n_2}} = (2; - 1;3)\)

      • C.

        \(\overrightarrow {{n_3}} = (2;1; - 1)\)

      • D.

        \(\overrightarrow {{n_4}} = (2;1;3)\)

      Đáp án : C

      Phương pháp giải :

      Mặt phẳng (P): Ax + By + Cz + D = 0 có vecto pháp tuyến là \(\overrightarrow n = (A;B;C)\).

      Lời giải chi tiết :

      Vecto pháp tuyến của mặt phẳng (P) là \(\overrightarrow {{n_3}} = (2;1; - 1)\).

      Câu 8 :

      Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm A(1;0;−1) và song song với mặt phẳng x − y + z + 2 = 0 là

      • A.

        \(x - y + z + 1 = 0\)

      • B.

        \(x - y + z + 2 = 0\)

      • C.

        \(x - y + z - 1 = 0\)

      • D.

        \(x - y + z = 0\)

      Đáp án : D

      Phương pháp giải :

      Hai mặt phẳng song song có cùng vecto pháp tuyến.

      Lời giải chi tiết :

      Mặt phẳng qua A(1;0;-1) và vuông góc với đường thẳng AB nhận \(\overrightarrow n = (2;1; - 1)\) làm vecto pháp tuyến có phương trình là:

      \(1(x - 1) - 1(y - 0) + 1(z + 1) = 0 \Leftrightarrow x - y + z = 0\).

      Câu 9 :

      Trong không gian Oxyz, điểm nào dưới đây thuộc mặt phẳng (P): x – 2y + 3z – 2 = 0?

      • A.

        P(1;-2;1)

      • B.

        M(1;-2;3)

      • C.

        Q(-1;2;1)

      • D.

        N(1;2;-1)

      Đáp án : D

      Phương pháp giải :

      Thay tọa độ các điểm vào phương trình, nếu thỏa mãn thì điểm đó thuộc mặt phẳng.

      Lời giải chi tiết :

      Thay tọa độ các điểm vào phương trình mặt phẳng, thấy chỉ có tọa độ điểm N(1;-2;-1) thỏa mãn phương trình mặt phẳng, do: 1 – 2.(-2) + 3.(-1) – 2 = 0.

      Vậy N(1;-2;-1) thuộc (P).

      Câu 10 :

      Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M(0;-1;14) và nhận vecto \(\overrightarrow u = (3; - 1;5)\) làm vecto chỉ phương. Phương trình tham số của d là

      • A.

        \(\left\{ \begin{array}{l}x = 3t\\y = 1 - t\\z = 4 + 5t\end{array} \right.\) \((t \in \mathbb{R})\)

      • B.

        \(\left\{ \begin{array}{l}x = 3\\y = - 1 - t\\z = 5 + 4t\end{array} \right.\) \((t \in \mathbb{R})\)

      • C.

        \(\left\{ \begin{array}{l}x = 3t\\y = - 1 - t\\z = 4 + 5t\end{array} \right.\) \((t \in \mathbb{R})\)

      • D.

        \(\left\{ \begin{array}{l}x = 3t\\y = - 1 - t\\z = - 4 + 5t\end{array} \right.\) \((t \in \mathbb{R})\)

      Đáp án : C

      Phương pháp giải :

      Đường thẳng đi qua điểm \(M({x_0};{y_0};{z_0})\) có vecto chỉ phương \(\overrightarrow u = (a;b;c)\) có phương trình là \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) \((t \in \mathbb{R})\).

      Lời giải chi tiết :

      d đi qua điểm M(0;-1;4) có vecto chỉ phương \(\overrightarrow u = (3; - 1;5)\) có phương trình là \(\left\{ \begin{array}{l}x = 3t\\y = - 1 - t\\z = 4 + 5t\end{array} \right.\) \((t \in \mathbb{R})\).

      Câu 11 :

      Trong không gian Oxyz, khoảng cách từ điểm A(4;1;5) đến (P): 5x – 10y + 10z – 5 = 0 bằng

      • A.

        10

      • B.

        \(\frac{{29}}{{100}}\)

      • C.

        \(\frac{{11}}{3}\)

      • D.

        \(\frac{{29\sqrt {10} }}{{10}}\)

      Đáp án : C

      Phương pháp giải :

      Áp dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.

      Lời giải chi tiết :

      \(d\left( {A,(P)} \right) = \frac{{\left| {5.4 - 10.1 + 10.5 - 5} \right|}}{{\sqrt {{5^2} + {{( - 10)}^2} + {{10}^2}} }} = \frac{{11}}{3}\).

      Câu 12 :

      Trong không gian Oxyz, cho mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 4\). Tìm tọa độ tâm I và bán kính R của mặt cầu đó.

      • A.

        I(-1;2;-3); R = 2

      • B.

        I(-1;2;-3); R = 4

      • C.

        I(1;-2;3); R = 2

      • D.

        I(1;-2;3); R = 4

      Đáp án : C

      Phương pháp giải :

      Mặt cầu phương trình \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm I(a;b;c), bán kính R.

      Lời giải chi tiết :

      Mặt cầu phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 4\) có tâm I(1;-2;3), bán kính R = 2.

      Phần II: Câu trắc nghiệm đúng sai.
      Thí sinh trả lời câu 1, câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Cho hình phẳng (H) giới hạn bởi đồ thị hàm số \(y = f(x) = \frac{{x + 1}}{x}\), trục hoành và hai đường thẳng x = 2, x = 6.

      a) Diện tích hình phẳng (H) là S = 4 + ln3.

      Đúng
      Sai

      b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) – 1, trục hoành và hai đường thẳng x = 2, x = 6 là S = 2ln3.

      Đúng
      Sai

      c) Thể tích vật thể tròn xoay được tạo thành khi quay (H) quanh trục Ox là \(V = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3}\).

      Đúng
      Sai

      d) Thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và các đường thẳng y = 1, x = 2, x = 6 quanh trục Ox là \(V = \frac{{1 + 6\ln 3}}{3}\).

      Đúng
      Sai
      Đáp án

      a) Diện tích hình phẳng (H) là S = 4 + ln3.

      Đúng
      Sai

      b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) – 1, trục hoành và hai đường thẳng x = 2, x = 6 là S = 2ln3.

      Đúng
      Sai

      c) Thể tích vật thể tròn xoay được tạo thành khi quay (H) quanh trục Ox là \(V = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3}\).

      Đúng
      Sai

      d) Thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và các đường thẳng y = 1, x = 2, x = 6 quanh trục Ox là \(V = \frac{{1 + 6\ln 3}}{3}\).

      Đúng
      Sai
      Phương pháp giải :

      a, b) Áp dụng công thức tính diện tích của hình phẳng \(S = \int\limits_a^b {\left| {f(x)} \right|dx} \).

      c) Áp dụng công thức tính thể tích khối tròn xoay \(V = \pi \int\limits_a^b {{f^2}(x)dx} \).

      d) Áp dụng công thức tính thể tích khối tròn xoay \(V = \pi \int\limits_a^b {\left| {{f^2}(x) - {g^2}(x)} \right|dx} \).

      Lời giải chi tiết :

      a)Đúng. Trên đoạn [1;6], \(f(x) = \frac{{x + 1}}{x} > 0\), khi đó \(\left| {f(x)} \right| = \left| {\frac{{x + 1}}{x}} \right| = \frac{{x + 1}}{x}\).

      Diện tích hình phẳng (H) là \(S = \int\limits_2^6 {\left| {f(x)} \right|dx} = \int\limits_2^6 {\left| {\frac{{x + 1}}{x}} \right|dx} = \int\limits_2^6 {\frac{{x + 1}}{x}dx} = \int\limits_2^6 {\left( {1 + \frac{1}{x}} \right)dx} = x\left| {\begin{array}{*{20}{c}}{^6}\\{_2}\end{array}} \right. + \ln \left| x \right|\left| {\begin{array}{*{20}{c}}{^6}\\{_2}\end{array}} \right.\)

      \( = 6 - 2 + \ln 6 - \ln 2 = 4 + \ln \frac{6}{2} = 4 + \ln 3\).

      b) Sai. Diện tích hình phẳng đó là:

      \(S = \int\limits_2^6 {\left| {f(x) - 1} \right|dx} = \int\limits_2^6 {\left| {\frac{{x + 1}}{x} - 1} \right|dx} = \int\limits_2^6 {\frac{{x + 1}}{x}dx} = \int\limits_2^6 {\frac{1}{x}dx} = \ln \left| x \right|\left| {\begin{array}{*{20}{c}}{^6}\\{_2}\end{array}} \right. = \ln 6 - \ln 2 = \ln \frac{6}{2} = \ln 3\).

      c) Đúng. \({V_1} = \pi \int\limits_2^6 {{{\left( {\frac{{x + 1}}{x}} \right)}^2}dx} = \pi \int\limits_2^6 {{{\left( {1 + \frac{2}{x} + \frac{1}{{{x^2}}}} \right)}^2}dx} = \pi \left( {x + 2\ln x - \frac{1}{x}} \right)\left| {\begin{array}{*{20}{c}}{^6}\\{_2}\end{array}} \right.\)

      \( = \pi \left( {6 + 2\ln 6 - \frac{1}{6} - 2 - 2\ln 2 + \frac{1}{2}} \right) = \pi \left( {4 + 2\ln 3 + \frac{1}{3}} \right) = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3}\).

      d) Sai. \({V_2} = \pi \int\limits_2^6 {\left[ {{f^2}(x) - {1^2}} \right]dx} = \pi \int\limits_2^6 {\left[ {{{\left( {\frac{{x + 1}}{x}} \right)}^2} - 1} \right]dx} = \pi \int\limits_2^6 {{{\left( {\frac{{x + 1}}{x}} \right)}^2}dx} - \pi \int\limits_2^6 {1dx} \)

      \( = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3} - \pi x\left| {\begin{array}{*{20}{c}}{^6}\\{_2}\end{array} = } \right.\frac{{\left( {13 + 6\ln 3} \right)\pi }}{3} - 4\pi = \frac{{\left( {1 + 6\ln 3} \right)\pi }}{3}\).

      Câu 2 :

      Trong không gian Oxyz cho mặt phẳng \(\left( \alpha \right)\): x + 2y + 2z – 3 = 0.

      a) Phương trình \(\left( \beta \right)\) đi qua M(2;-3;1) và song song với \(\left( \alpha \right)\) là x + 2y + 2z + 2 = 0.

      Đúng
      Sai

      b) Phương trình đường thẳng \(\Delta \) đi qua điểm A(1;-2;3) và vuông góc với \(\left( \alpha \right)\) là \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 2t\\z = 3 + 2t\end{array} \right.\) \((t \in \mathbb{R})\).

      Đúng
      Sai

      c) Phương trình mặt cầu tâm I(1;1;-3) và tiếp xúc với \(\left( \alpha \right)\) là \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 2\).

      Đúng
      Sai

      d) Phương trình mặt cầu (S): \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 25\) cắt \(\left( \alpha \right)\) theo giao tuyến là một đường tròn có bán kính bằng 4.

      Đúng
      Sai
      Đáp án

      a) Phương trình \(\left( \beta \right)\) đi qua M(2;-3;1) và song song với \(\left( \alpha \right)\) là x + 2y + 2z + 2 = 0.

      Đúng
      Sai

      b) Phương trình đường thẳng \(\Delta \) đi qua điểm A(1;-2;3) và vuông góc với \(\left( \alpha \right)\) là \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 2t\\z = 3 + 2t\end{array} \right.\) \((t \in \mathbb{R})\).

      Đúng
      Sai

      c) Phương trình mặt cầu tâm I(1;1;-3) và tiếp xúc với \(\left( \alpha \right)\) là \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 2\).

      Đúng
      Sai

      d) Phương trình mặt cầu (S): \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 25\) cắt \(\left( \alpha \right)\) theo giao tuyến là một đường tròn có bán kính bằng 4.

      Đúng
      Sai
      Phương pháp giải :

      a) \(\left( \beta \right)\) song song với \(\left( \alpha \right)\) nên có cùng VTPT .

      b) \(\Delta \) có VTCP là VTPT của \(\left( \alpha \right)\).

      c) Bán kính mặt cầu là khoảng cách từ I đến \(\left( \alpha \right)\).

      d) Tính khoảng cách từ tâm mặt cầu (S) đến \(\left( \alpha \right)\), sau đó áp dụng định lý Pythagore để tìm bán kính đường tròn giao tuyến.

      Lời giải chi tiết :

      a)Đúng. \(\left( \beta \right)\) song song với \(\left( \alpha \right)\) nên có cùng VTPT là \(\overrightarrow n = (1;2;2)\).

      \(\left( \beta \right)\): \(1(x - 2) + 2(y + 3) + 2(z - 1) = 0 \Leftrightarrow x + 2y + 2z + 2 = 0\).

      b) Sai. Đường thẳng \(\Delta \) có VTCP là VTPT của \(\left( \alpha \right)\).

      \(\Delta \): \(\left\{ \begin{array}{l}x = 1 + t\\y = - 2 + 2t\\x = 3 + 2t\end{array} \right.\), \(t \in \mathbb{R}\).

      c) Sai. Bán kính mặt cầu là khoảng cách từ I đến \(\left( \alpha \right)\).

      \(d\left( {I,(\alpha )} \right) = \frac{{\left| {1.1 + 2.1 + 2.( - 3) - 3} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} = 2\).

      Phương trình mặt cầu tâm I(1;1;-3) và tiếp xúc với \(\left( \alpha \right)\) là \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 4\).

      d) Đúng. Mặt cầu (S) có tâm J(-2;1;-3), bán kính R = 5.

      Khoảng cách từ tâm J đến \(\left( \alpha \right)\) là \(d\left( {J,(\alpha )} \right) = \frac{{\left| {1.( - 2) + 2.1 + 2.( - 3) - 3} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} = 3\).

      Giao tuyến của (S) và \(\left( \alpha \right)\) là đường tròn có bán kính \(\sqrt {{5^2} - {3^2}} = 4\).

      Phần III: Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 4.
      Câu 1 :

      Bạn Huyền chạy thể dục buổi sáng với \(a(t) = - \frac{1}{{24}}{t^3} + \frac{5}{{16}}{t^2}\) m/s, trong đó t giây là khoảng thời gian tính từ lúc xuất phát. Vào thời điểm t = 5 (s) sau khi xuất phát thì vận tốc của bạn Huyền đạt được bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tính \(\int\limits_0^5 {a(t)dt} \).

      Lời giải chi tiết :

      \(v(5) = \int\limits_0^5 {a(t)dt} = \int\limits_0^5 {\left( { - \frac{1}{{24}}{t^3} + \frac{5}{{16}}{t^2}} \right)dt} = \left( { - \frac{1}{{24}}.\frac{{{t^4}}}{4} + \frac{5}{{16}}.\frac{{{t^3}}}{3}} \right)\left| {\begin{array}{*{20}{c}}{^5}\\{_0}\end{array}} \right. = \left( { - \frac{{{t^4}}}{{96}} + \frac{{5{t^3}}}{{48}}} \right)\left| {\begin{array}{*{20}{c}}{^5}\\{_0}\end{array}} \right. = - \frac{{{5^4}}}{{96}} + \frac{{{{5.5}^3}}}{{48}} \approx 6,51\) (m/s).

      Câu 2 :

      Cho hàm số y = f(x). Đồ thị hàm số y = f′(x) là đường cong trong hình dưới. Biết rằng diện tích của các phần hình phẳng A và B lần lượt là SA = 4 và SB = 10. Tính giá trị của f(3), biết giá trị của f(0) = 2.

      Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 1 2

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Áp dụng công thức tính diện tích hình phẳng: \(S = \int\limits_a^b {\left| {f(x)} \right|dx} \).

      Lời giải chi tiết :

      Quan sát đồ thị, trên đoạn [0;1] thấy f’(x) > 0, trên đoạn [1;3] thấy f’(x) < 0.

      \({S_A} = \int_0^1 {\left| {f'(x)} \right|dx} = \int_0^1 {f'(x)dx} = f(x)\left| {\begin{array}{*{20}{c}}{^1}\\{_0}\end{array}} \right. = f(1) - f(0) = f(1) - 2 = 4 \Rightarrow f(1) = 6\).

      \({S_B} = \int_1^3 {\left| {f'(x)} \right|dx} = - \int_1^3 {f'(x)dx} = f(x)\left| {\begin{array}{*{20}{c}}{^1}\\{_3}\end{array}} \right. = f(1) - f(3) = 6 - f(3) = 10 \Rightarrow f(3) = - 4\).

      Câu 3 :

      Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(0;2;0), C(0;0;m). Để mặt phẳng (ABC) hợp với mặt phẳng (Oxy) một góc \({60^o}\) thì tổng các giá trị của m là bao nhiêu?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Lập phương trình mặt phẳng (Oxy) và (ABC) theo m. Áp dụng công thức tính góc giữa hai mặt phẳng để tìm m.

      Lời giải chi tiết :

      Mặt phẳng (Oxy) có phương trình là z = 0.

      Mặt phẳng (ABC) cắt các trục Ox, Oy, Oz lần lượt tại các điểm A(1;0;0), B(0;2;0) và C(0;0;m).

      Ta có \(\frac{x}{1} + \frac{y}{2} + \frac{z}{m} = 1 \Leftrightarrow 2mx + my + 2z - 2m = 0\).

      \(\cos {60^o} = \frac{{\left| {2m.0 + m.0 + 2.1} \right|}}{{\sqrt {{{\left( {2m} \right)}^2} + {m^2} + {2^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} \Leftrightarrow \frac{1}{2} = \frac{2}{{\sqrt {5{m^2} + 4} }} \Leftrightarrow \sqrt {5{m^2} + 4} = 4\)

      \(5{m^2} + 4 = 16 \Leftrightarrow {m^2} = \frac{{12}}{5} \Leftrightarrow m = \pm \frac{{2\sqrt {15} }}{5}\).

      Vậy tổng các giá trị m thỏa mãn là \(\frac{{2\sqrt {15} }}{5} + \left( { - \frac{{2\sqrt {15} }}{5}} \right) = 0\).

      Câu 4 :

      Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3;1;7), B(5;5;1) và mặt phẳng (P): 2x − y − z + 4 = 0. Điểm M thuộc (P ) sao cho MA = MB = \(\sqrt {35} \). Biết M có hoành độ nguyên, tính OM (làm tròn đến chữ số hàng phần trăm)?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Chọn hệ trục tọa độ phù hợp. Lập phương trình mặt phẳng (ABCD) và (MNP) rồi áp dụng công thức tính góc giữa hai mặt phẳng.

      Lời giải chi tiết :

      Giả sử M(a;b;c).

      Ta có \(\left\{ \begin{array}{l}M \in (P)\\MA = MB\\MA = \sqrt {35} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a - b - c + 4 = 0\\{(a - 3)^2} + {(b - 5)^2} + {(c - 7)^2} = {(a - 5)^2} + {(b - 5)^2} + {(c - 1)^2}\\{(a - 3)^2} + {(b - 5)^2} + {(c - 7)^2} = 35\end{array} \right.\)

      \( \Leftrightarrow \left\{ \begin{array}{l}b = c\\c = a + 2\\{(a - 3)^2} + {(b - 1)^2} + {(c - 7)^2} = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = a + 2\\c = a + 2\\3{a^2} - 14 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 2\\c = 2\end{array} \right.\) (do \(a \in \mathbb{Z}\)).

      Suy ra M(2;2;0). \(OM = \sqrt {{2^2} + {2^2} + {0^2}} = 2\sqrt 2 \approx 2,83\).

      Phần IV: Tự luận.
      Thí sinh trình bày lời giải từ câu 1 đến câu 3.
      Câu 1 :

      Cho \(I = \int\limits_0^1 {\left( {4x - 2{m^2}} \right)dx} \). Có bao nhiêu giá trị nguyên của m để I + 6 > 0?

      Phương pháp giải :

      Áp dụng công thức nguyên hàm của hàm số lũy thừa: \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).

      Lời giải chi tiết :

      \(I = \int\limits_0^1 {\left( {4x - 2{m^2}} \right)dx} = \left( {2{x^2} - 2{m^2}x} \right)\left| {\begin{array}{*{20}{c}}{^1}\\{_0}\end{array}} \right. = {2.1^2} - 2{m^2}.1 = 2 - 2{m^2}\).

      \(I + 6 > 0 \Leftrightarrow 2 - 2{m^2} + 6 > 0 \Leftrightarrow - 2{m^2} > - 8 \Leftrightarrow {m^2} < 4 \Leftrightarrow - 2 < m < 2\).

      Mà m là số nguyên nên có 3 giá trị thỏa mãn là m = -1; m = 0; m = 1.

      Câu 2 :

      Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x \((0 \le x \le 3)\), ta được mặt cắt là một hình vuông có cạnh là \(\sqrt {9 - {x^2}} \) (xem hình dưới). Tính thể tích của vật thể đã cho.

      Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 1 3

      Phương pháp giải :

      Áp dụng công thức tính thể tích vật thể \(V = \int\limits_a^b {S(x)dx} \).

      Lời giải chi tiết :

      Diện tích mặt cắt là \(S(x) = {\left( {\sqrt {9 - {x^2}} } \right)^2} = 9 - {x^2}\).

      Thể tích vật thể là \(V = \int\limits_0^3 {S(x)dx} = \int\limits_0^3 {\left( {9 - {x^2}} \right)dx} = \left( {9x - \frac{{{x^3}}}{3}} \right)\left| {\begin{array}{*{20}{c}}{^3}\\{_0}\end{array}} \right. = 9.3 - \frac{{{3^3}}}{3} = 18\).

      Câu 3 :

      Một viên gạch hoa hình vuông cạnh 40 cm. Người ta đã dùng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (phần tô đậm như hình vẽ). Tính diện tích của mỗi cánh hoa đó (làm tròn kết quả đến hàng đơn vị).

      Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 1 4

      Phương pháp giải :

      Lập phương trình đường thẳng đi qua A và vuông góc với (P).

      H là giao điểm của d và (P).

      Lời giải chi tiết :

      Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 1 5

      Chọn hệ trục tọa độ như hình vẽ.

      Giả sử parabol có bề lõm hướng xuống dưới có phương trình \(f(x) = a{x^2} + bx + c\) (a < 0).

      Parabol đó đi qua các điểm có tọa độ (20;0), (-20;0) và (0;20) nên ta có:

      \(\left\{ \begin{array}{l}0 = a{.20^2} + b.20 + c\\0 = a.{( - 20)^2} + b.( - 20) + c\\20 = a{.0^2} + b.0 + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}400a + 20b = - 20\\400a - 20b = - 20\\c = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{{20}}\\b = 0\end{array} \right.\).

      Suy ra \(f(x) = - \frac{1}{{20}}{x^2} + 20\).

      Giả sử đường chéo hướng xuống dưới từ trái sang của viên gạch có phương trình y = mx + n, đi qua các điểm có tọa độ (-20;40) và (20;0) nên ta có:

      \(\left\{ \begin{array}{l}40 = m.( - 20) + n\\0 = m.20 + n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = - 1\\n = 20\end{array} \right. \Rightarrow y = - x + 20\).

      Đồ thị của parabol vừa tìm cắt đường chéo tại hai điểm có hoành độ x = 0 và x = 20. Trên đoạn [0;20], ta thấy parabol nằm phía trên đường thẳng nên f(x) > -x + 20.

      Diện tích một nửa cánh hoa là \(I = \int\limits_0^{20} {\left| { - \frac{1}{{20}}{x^2} + 20 + x - 20} \right|dx} = I = \int\limits_0^{20} {\left( { - \frac{1}{{20}}{x^2} + 20 + x - 20} \right)dx} = \frac{{200}}{3}\).

      Diện tích một cánh hoa là \(S = 2I = 2.\frac{{200}}{3} = \frac{{400}}{3} \approx 133\) \(\left( {c{m^2}} \right)\).

      Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

      Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4: Phân tích chi tiết và hướng dẫn giải

      Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức và kỹ năng giải toán của học sinh sau nửa học kỳ. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như giải tích, hình học và xác suất thống kê.

      Cấu trúc đề thi

      Đề thi thường được chia thành các phần sau:

      • Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      • Phần tự luận: Đòi hỏi học sinh trình bày chi tiết các bước giải và chứng minh.

      Nội dung đề thi

      Các chủ đề thường xuất hiện trong đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 bao gồm:

      1. Giải tích: Đạo hàm, tích phân, ứng dụng đạo hàm và tích phân.
      2. Hình học: Đường thẳng và mặt phẳng trong không gian, khối đa diện, khối tròn xoay.
      3. Xác suất thống kê: Các khái niệm cơ bản về xác suất, biến ngẫu nhiên, phân phối xác suất.

      Hướng dẫn giải chi tiết

      Để giúp học sinh ôn tập hiệu quả, giaitoan.edu.vn cung cấp hướng dẫn giải chi tiết cho từng câu hỏi trong đề thi. Các bước giải được trình bày rõ ràng, dễ hiểu, kèm theo các lưu ý quan trọng.

      Ví dụ minh họa

      Câu 1: Tính đạo hàm của hàm số y = x3 - 2x2 + 1.

      Giải:

      y' = 3x2 - 4x

      Mẹo làm bài hiệu quả

      Để đạt kết quả tốt trong kỳ thi giữa kì 2 Toán 12 Cánh diều - Đề số 4, học sinh cần:

      • Nắm vững kiến thức cơ bản và các công thức toán học.
      • Luyện tập thường xuyên với các bài tập khác nhau.
      • Đọc kỹ đề bài và xác định đúng dạng bài tập.
      • Trình bày bài giải rõ ràng, logic và chính xác.
      • Kiểm tra lại kết quả trước khi nộp bài.

      Tài liệu tham khảo

      Ngoài đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4, học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách giáo khoa Toán 12 Cánh diều.
      • Sách bài tập Toán 12 Cánh diều.
      • Các đề thi thử Toán 12.
      • Các bài giảng trực tuyến về Toán 12.

      Lợi ích của việc luyện đề thi

      Luyện đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 mang lại nhiều lợi ích cho học sinh:

      • Giúp học sinh làm quen với cấu trúc đề thi và các dạng bài tập thường gặp.
      • Rèn luyện kỹ năng giải toán và tư duy logic.
      • Tăng cường sự tự tin và giảm căng thẳng trước kỳ thi.
      • Đánh giá năng lực của bản thân và xác định các kiến thức còn yếu để bổ sung.

      Kết luận

      Đề thi giữa kì 2 Toán 12 Cánh diều - Đề số 4 là một công cụ hữu ích giúp học sinh ôn tập và chuẩn bị tốt nhất cho kỳ thi. Hãy luyện tập chăm chỉ và áp dụng các mẹo làm bài hiệu quả để đạt kết quả cao nhất.

      Chủ đềMức độ quan trọng
      Giải tíchCao
      Hình họcTrung bình
      Xác suất thống kêTrung bình
      Nguồn: giaitoan.edu.vn

      Tài liệu, đề thi và đáp án Toán 12