Logo Header
  1. Môn Toán
  2. giá trị lượng giác của một góc bất kì từ 0º đến 180º

giá trị lượng giác của một góc bất kì từ 0º đến 180º

Quý độc giả đang tham khảo tài liệu , được biên soạn bám sát chuẩn đề thi toán mới nhất. Nội dung được cấu trúc chặt chẽ, phân tầng từ cơ bản đến nâng cao, hỗ trợ củng cố và mở rộng kiến thức toán học một cách hệ thống. Hãy tận dụng tối đa tài liệu này để nâng cao hiệu quả học tập và chinh phục mọi kỳ kiểm tra, kỳ thi với kết quả xuất sắc.

Bài viết trình bày tóm tắt lý thuyết và hướng dẫn giải một số dạng toán điển hình trong chủ đề giá trị lượng giác của một góc bất kì từ 0º đến 180º.

A. TÓM TẮT LÝ THUYẾT

1. Định nghĩa

Trong mặt phẳng tọa độ \(Oxy.\) Với mỗi góc \(\alpha \) \(\left( {{0^0} \le \alpha \le {{180}^0}} \right)\), ta xác định điểm \(M\) trên nửa đường tròn đơn vị tâm \(O\) sao cho \(\alpha = \widehat {xOM}.\)

Giả sử điểm \(M\) có tọa độ \((x;y).\)

Khi đó:

\(\sin \alpha = y\), \(\cos \alpha = x\), \(\tan \alpha = \frac{y}{x}\) \(\left( {\alpha \ne {{90}^0}} \right)\), \(\cot \alpha = \frac{x}{y}\) \(\left( {\alpha \ne {0^0},\alpha \ne {{180}^0}} \right).\)

Các số \(\sin \alpha \), \(\cos \alpha \), \(\tan \alpha \), \(\cot \beta \) được gọi là giá trị lượng giác của góc \(\alpha .\)

giá trị lượng giác của một góc bất kì từ 0º đến 180º

Chú ý: Từ định nghĩa ta có:

+ Gọi \(P\), \(Q\) lần lượt là hình chiếu của \(M\) lên trục \(Ox\), \(Oy\) khi đó \(M(\overline {OP} ;\overline {OQ} ).\)

+ Với \({0^0} \le \alpha \le {180^0}\) ta có \(0 \le \sin \alpha \le 1\), \( – 1 \le \cos \alpha \le 1.\)

+ Dấu của giá trị lượng giác:

giá trị lượng giác của một góc bất kì từ 0º đến 180º

2. Tính chất

Góc phụ nhau:

\(\sin \left( {{{90}^0} – \alpha } \right) = \cos \alpha .\)

\(\cos \left( {{{90}^0} – \alpha } \right) = \sin \alpha .\)

\(\tan \left( {{{90}^0} – \alpha } \right) = \cot \alpha .\)

\(\cot \left( {{{90}^0} – \alpha } \right) = \tan \alpha .\)

Góc bù nhau:

\(\sin \left( {{{180}^0} – \alpha } \right) = \sin \alpha .\)

\(\cos \left( {{{180}^0} – \alpha } \right) = – \cos \alpha .\)

\(\tan \left( {{{180}^0} – \alpha } \right) = – \tan \alpha .\)

\(\cot \left( {{{180}^0} – \alpha } \right) = – \cot \alpha .\)

3. Giá trị lượng giác của các góc đặc biệt

giá trị lượng giác của một góc bất kì từ 0º đến 180º

4. Các hệ thức lượng giác cơ bản

1) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) \(\left( {\alpha \ne {{90}^0}} \right).\)

2) \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\) \(\left( {\alpha \ne {0^0};{{180}^0}} \right).\)

3) \(\tan \alpha .\cot \alpha = 1\) \(\left( {\alpha \ne {0^0};{{90}^0};{{180}^0}} \right).\)

4) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)

5) \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) \(\left( {\alpha \ne {{90}^0}} \right).\)

6) \(1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}\) \(\left( {\alpha \ne {0^0};{{180}^0}} \right).\)

Chứng minh:

Hệ thức 1, 2 và 3 dễ dàng suy ra từ định nghĩa.

Ta có \(\sin \alpha = \overline {OQ} \), \(\cos \alpha = \overline {OP} .\)

Suy ra \({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = {\overline {OQ} ^2} + {\overline {OP} ^2}\) \( = O{Q^2} + O{P^2}.\)

+ Nếu \(\alpha = {0^0}\), \(\alpha = {90^0}\) hoặc \(\alpha = {180^0}\) thì dễ dàng thấy \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)

+ Nếu \(\alpha \ne {0^0}\), \(\alpha \ne {90^0}\) và \(\alpha \ne {180^0}\) khi đó theo định lý Pitago ta có:

\({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = O{Q^2} + O{P^2}\) \( = O{Q^2} + Q{M^2}\) \( = O{M^2} = 1.\)

Vậy ta có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)

Mặt khác \(1 + {\tan ^2}\alpha \) \( = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}\) \( = \frac{{{{\cos }^2}\alpha + {{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}\) \( = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra được hệ thức 5.

Tương tự \(1 + {\cot ^2}\alpha \) \( = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\) \( = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\) \( = \frac{1}{{{{\sin }^2}\alpha }}\) suy ra được hệ thức 6.

B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI

DẠNG TOÁN 1: XÁC ĐỊNH GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC ĐẶC BIỆT.

1. PHƯƠNG PHÁP GIẢI

+ Sử dụng định nghĩa giá trị lượng giác của một góc.

+ Sử dụng tính chất và bảng giá trị lượng giác đặc biệt.

+ Sử dụng các hệ thức lượng giác cơ bản.

2. CÁC VÍ DỤ

Ví dụ 1: Tính giá trị các biểu thức sau:

a) \(A = {a^2}\sin {90^0} + {b^2}\cos {90^0} + {c^2}\cos {180^0}.\)

b) \(B = 3 – {\sin ^2}{90^0} + 2{\cos ^2}{60^0} – 3{\tan ^2}{45^0}.\)

c) \(C = {\sin ^2}{45^0} – 2{\sin ^2}{50^0}\) \( + 3{\cos ^2}{45^0} – 2{\sin ^2}{40^0}\) \( + 4\tan {55^0}.\tan {35^0}.\)

a) \(A = {a^2}.1 + {b^2}.0 + {c^2}.( – 1)\) \( = {a^2} – {c^2}.\)

b) \(B = 3 – {(1)^2} + 2{\left( {\frac{1}{2}} \right)^2}\) \( – 3{\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = 1.\)

c) \(C = {\sin ^2}{45^0} + 3{\cos ^2}{45^0}\) \( – 2\left( {{{\sin }^2}{{50}^0} + {{\sin }^2}{{40}^0}} \right)\) \( + 4\tan {55^0}.\cot {55^0}.\)

\(C = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + 3{\left( {\frac{{\sqrt 2 }}{2}} \right)^2}\) \( – 2\left( {{{\sin }^2}{{50}^0} + {{\cos }^2}{{40}^0}} \right) + 4\) \( = \frac{1}{2} + \frac{3}{2} – 2 + 4 = 4.\)

Ví dụ 2: Tính giá trị các biểu thức sau:

a) \(A = {\sin ^2}{3^0} + {\sin ^2}{15^0}\) \( + {\sin ^2}{75^0} + {\sin ^2}{87^0}.\)

b) \(B = \cos {0^0} + \cos {20^0} + \cos {40^0}\) \( + \ldots + \cos {160^0} + \cos {180^0}.\)

c) \(C = \tan {5^0}\tan {10^0}\tan {15^0} \ldots \tan {80^0}\tan {85^0}.\)

a) \(A = \left( {{{\sin }^2}{3^0} + {{\sin }^2}{{87}^0}} \right)\) \( + \left( {{{\sin }^2}{{15}^0} + {{\sin }^2}{{75}^0}} \right).\)

\( = \left( {{{\sin }^2}{3^0} + {{\cos }^2}{3^0}} \right)\) \( + \left( {{{\sin }^2}{{15}^0} + {{\cos }^2}{{15}^0}} \right).\)

\( = 1 + 1 = 2.\)

b) \(B = \left( {\cos {0^0} + \cos {{180}^0}} \right)\) \( + \left( {\cos {{20}^0} + \cos {{160}^0}} \right)\) \( + \ldots + \left( {\cos {{80}^0} + \cos {{100}^0}} \right).\)

\( = \left( {\cos {0^0} – \cos {0^0}} \right)\) \( + \left( {\cos {{20}^0} – \cos {{20}^0}} \right)\) \( + \ldots + \left( {\cos {{80}^0} – \cos {{80}^0}} \right).\)

\( = 0.\)

c) \(C = \left( {\tan {5^0}\tan {{85}^0}} \right)\)\(\left( {\tan {{15}^0}\tan {{75}^0}} \right)\)\( \cdots \left( {\tan {{45}^0}\tan {{45}^0}} \right).\)

\( = \left( {\tan {5^0}\cot {5^0}} \right)\)\(\left( {\tan {{15}^0}\cot {{15}^0}} \right)\)\( \ldots \left( {\tan {{45}^0}\cot {{45}^0}} \right).\)

\( = 1.\)

3. BÀI TẬP LUYỆN TẬP

Bài 1
: Tính giá trị các biểu thức sau:

a) \(A = \sin {45^0} + 2\cos {60^0}\) \( – \tan {30^0} + 5\cot {120^0}\) \( + 4\sin {135^0}.\)

b) \(B = 4{a^2}{\sin ^2}{45^0}\) \( – 3{\left( {a\tan {{45}^0}} \right)^2} + {\left( {2a\cos {{45}^0}} \right)^2}.\)

c) \(C = {\sin ^2}{35^0} – 5{\sin ^2}{73^0}\) \( + {\cos ^2}{35^0} – 5{\cos ^2}{73^0}.\)

d) \(D = \frac{{12}}{{1 + {{\tan }^2}{{76}^0}}}\) \( – 5\tan {85^0}\cot {95^0} + 12{\sin ^2}{104^0}.\)

e) \(E = {\sin ^2}{1^0} + {\sin ^2}{2^0}\) \( + \ldots + {\sin ^2}{89^0} + {\sin ^2}{90^0}.\)

f) \(F = {\cos ^3}{1^0} + {\cos ^3}{2^0} + {\cos ^3}{3^0}\) \( + \ldots + {\cos ^3}{179^0} + {\cos ^3}{180^0}.\)

a) \(A = \frac{{\sqrt 2 }}{2} + 2.\frac{1}{2} – \frac{{\sqrt 3 }}{3}\) \( – 5.\frac{{\sqrt 3 }}{3} + 4.\frac{{\sqrt 2 }}{2}\) \( = 1 + \frac{{5\sqrt 2 }}{2} – 2\sqrt 3 .\)

b) \(B = 4{a^2}.{\left( {\frac{{\sqrt 2 }}{2}} \right)^2}\) \( – 3{a^2} + {(\sqrt 2 a)^2} = {a^2}.\)

c) \(C = \left( {{{\sin }^2}{{35}^0} + {{\cos }^2}{{35}^0}} \right)\) \( – 5\left( {{{\sin }^2}{{75}^0} + {{\cos }^2}{{75}^0}} \right)\) \( = 1 – 5 = – 4.\)

d) \(D = 12{\cos ^2}{76^0}\) \( + 5\tan {85^0}.\cot {85^0}\) \( + 12{\sin ^2}{76^0}\) \( = 12 + 5 = 17.\)

e) \(E = \left( {{{\sin }^2}{1^0} + {{\sin }^2}{{89}^0}} \right)\) \( + \left( {{{\sin }^2}{2^0} + {{\sin }^2}{{88}^0}} \right)\) \( + \ldots + \left( {{{\sin }^2}{{44}^0} + {{\sin }^2}{{46}^0}} \right)\) \( + {\sin ^2}{45^0} + {\sin ^2}{90^0}.\)

\(E = \left( {{{\sin }^2}{1^0} + {{\cos }^2}{1^0}} \right)\) \( + \left( {{{\sin }^2}{2^0} + {{\cos }^2}{2^0}} \right)\) \( + \ldots + \left( {{{\sin }^2}{{44}^0} + {{\cos }^2}{{44}^0}} \right)\) \( + \frac{1}{2} + 1.\)

\(E = \underbrace {1 + 1 + \ldots + 1}_{44\:{\rm{số}}} + \frac{1}{2} + 1 = \frac{{91}}{2}.\)

f) \(F = \left( {{{\cos }^3}{1^0} + {{\cos }^3}{{179}^0}} \right)\) \( + \ldots + \left( {{{\cos }^3}{{89}^0} + {{\cos }^3}{{91}^0}} \right)\) \( + {\cos ^3}{90^0} + {\cos ^3}{180^0}.\)

\(F = {\cos ^3}{90^0} + {\cos ^3}{180^0}\) \( = 0 – 1 = – 1.\)

Bài 2: Tính giá trị của biểu thức sau: \(P = \) \(4\tan \left( {x + {4^0}} \right).\sin x.\cot \left( {4x + {{26}^0}} \right)\) \( + \frac{{8{{\tan }^2}\left( {{3^0} – x} \right)}}{{1 + {{\tan }^2}\left( {5x + {3^0}} \right)}}\) \( + 8{\cos ^2}\left( {x – {3^0}} \right)\) khi \(x = {30^0}.\)

Thay vào ta có: \(P = \) \(4\tan {34^0}.\sin {30^0}.\cot {146^0}\) \( + \frac{{8{{\tan }^2}\left( { – {{27}^0}} \right)}}{{1 + {{\tan }^2}{{153}^0}}}\) \( + 8{\cos ^2}{27^0}.\)

\(P = – 4.\tan {34^0}.\frac{1}{2}.\cot {34^0}\) \( + 8{\tan ^2}{27^0}.{\cos ^2}{27^0}\) \( + 8{\cos ^2}{27^0}\) \( = – 2 + 8 = 6.\)

DẠNG TOÁN 2: CHỨNG MINH ĐẲNG THỨC LƯỢNG GIÁC – CHỨNG MINH BIỂU THỨC KHÔNG PHỤ THUỘC \(X\) – ĐƠN GIẢN BIỂU THỨC.

1. PHƯƠNG PHÁP GIẢI

+ Sử dụng các hệ thức lượng giác cơ bản.

+ Sử dụng tính chất của giá trị lượng giác.

+ Sử dụng các hằng đẳng thức đáng nhớ.

2. CÁC VÍ DỤ

Ví dụ 1: Chứng minh các đẳng thức sau (giả sử các biểu thức sau đều có nghĩa).

a) \({\sin ^4}x + {\cos ^4}x\) \( = 1 – 2{\sin ^2}x.{\cos ^2}x.\)

b) \(\frac{{1 + \cot x}}{{1 – \cot x}} = \frac{{\tan x + 1}}{{\tan x – 1}}.\)

c) \(\frac{{\cos x + \sin x}}{{{{\cos }^3}x}}\) \( = {\tan ^3}x + {\tan ^2}x + \tan x + 1.\)

a) \({\sin ^4}x + {\cos ^4}x\) \( = {\sin ^4}x + {\cos ^4}x\) \( + 2{\sin ^2}x{\cos ^2}x\) \( – 2{\sin ^2}x{\cos ^2}x.\)

\( = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2}\) \( – 2{\sin ^2}x{\cos ^2}x.\)

\( = 1 – 2{\sin ^2}x{\cos ^2}x.\)

b) \(\frac{{1 + \cot x}}{{1 – \cot x}}\) \( = \frac{{1 + \frac{1}{{\tan x}}}}{{1 – \frac{1}{{\tan x}}}}\) \( = \frac{{\frac{{\tan x + 1}}{{\tan x}}}}{{\frac{{\tan x – 1}}{{\tan x}}}}\) \( = \frac{{\tan x + 1}}{{\tan x – 1}}.\)

c) \(\frac{{\cos x + \sin x}}{{{{\cos }^3}x}}\) \( = \frac{1}{{{{\cos }^2}x}} + \frac{{\sin x}}{{{{\cos }^3}x}}\) \( = {\tan ^2}x + 1 + \tan x\left( {{{\tan }^2}x + 1} \right).\)

\( = {\tan ^3}x + {\tan ^2}x + \tan x + 1.\)

Ví dụ 2: Cho tam giác \(ABC.\) Chứng minh rằng:

\(\frac{{{{\sin }^3}\frac{B}{2}}}{{\cos \left( {\frac{{A + C}}{2}} \right)}}\) \( + \frac{{{{\cos }^3}\frac{B}{2}}}{{\sin \left( {\frac{{A + C}}{2}} \right)}}\) \( – \frac{{\cos (A + C)}}{{\sin B}}.\tan B = 2.\)

Vì \(A + B + C = {180^0}\) nên:

\(VT = \frac{{{{\sin }^3}\frac{B}{2}}}{{\cos \left( {\frac{{{{180}^0} – B}}{2}} \right)}}\) \( + \frac{{{{\cos }^3}\frac{B}{2}}}{{\sin \left( {\frac{{{{180}^0} – B}}{2}} \right)}}\) \( – \frac{{\cos \left( {{{180}^0} – B} \right)}}{{\sin B}}.\tan B.\)

\( = \frac{{{{\sin }^3}\frac{B}{2}}}{{\sin \frac{B}{2}}} + \frac{{{{\cos }^3}\frac{B}{2}}}{{\cos \frac{B}{2}}}\) \( – \frac{{ – \cos B}}{{\sin B}}.\tan B\) \( = {\sin ^2}\frac{B}{2} + {\cos ^2}\frac{B}{2} + 1\) \( = 2 = VP.\)

Suy ra điều phải chứng minh.

Ví dụ 3: Đơn giản các biểu thức sau (giả sử các biểu thức sau đều có nghĩa):

a) \(A = \sin \left( {{{90}^0} – x} \right)\) \( + \cos \left( {{{180}^0} – x} \right)\) \( + {\sin ^2}x\left( {1 + {{\tan }^2}x} \right)\) \( – {\tan ^2}x.\)

b) \(B = \frac{1}{{\sin x}}.\sqrt {\frac{1}{{1 + \cos x}} + \frac{1}{{1 – \cos x}}} – \sqrt 2 .\)

a) \(A = \cos x – \cos x\) \( + {\sin ^2}x.\frac{1}{{{{\cos }^2}x}}\) \( – {\tan ^2}x = 0.\)

b) \(B = \frac{1}{{\sin x}} \cdot \sqrt {\frac{{1 – \cos x + 1 + \cos x}}{{(1 – \cos x)(1 + \cos x)}}} – \sqrt 2 .\)

\( = \frac{1}{{\sin x}}.\sqrt {\frac{2}{{1 – {{\cos }^2}x}}} – \sqrt 2 \) \( = \frac{1}{{\sin x}}.\sqrt {\frac{2}{{{{\sin }^2}x}}} – \sqrt 2 .\)

\( = \sqrt 2 \left( {\frac{1}{{{{\sin }^2}x}} – 1} \right)\) \( = \sqrt 2 {\cot ^2}x.\)

Ví dụ 4: Chứng minh biểu thức sau không phụ thuộc vào \(x.\)

\(P = \sqrt {{{\sin }^4}x + 6{{\cos }^2}x + 3{{\cos }^4}x} \) \( + \sqrt {{{\cos }^4}x + 6{{\sin }^2}x + 3{{\sin }^4}x} .\)

\(P = \sqrt {{{\left( {1 – {{\cos }^2}x} \right)}^2} + 6{{\cos }^2}x + 3{{\cos }^4}x} \) \( + \sqrt {{{\left( {1 – {{\sin }^2}x} \right)}^2} + 6{{\sin }^2}x + 3{{\sin }^4}x} .\)

\( = \sqrt {4{{\cos }^4}x + 4{{\cos }^2}x + 1} \) \( + \sqrt {4{{\sin }^4}x + 4{{\sin }^2}x + 1} .\)

\( = 2{\cos ^2}x + 1 + 2{\sin ^2}x + 1.\)

\( = 3.\)

Vậy \(P\) không phụ thuộc vào \(x.\)

3. BÀI TẬP LUYỆN TẬP

Bài 1
: Chứng minh các đẳng thức sau (giả sử các biểu thức sau đều có nghĩa):

a) \({\tan ^2}x – {\sin ^2}x = {\tan ^2}x.{\sin ^2}x.\)

b) \({\sin ^6}x + {\cos ^6}x = 1 – 3{\sin ^2}x.{\cos ^2}x.\)

c) \(\frac{{{{\tan }^3}x}}{{{{\sin }^2}x}} – \frac{1}{{\sin x\cos x}} + \frac{{{{\cot }^3}x}}{{{{\cos }^2}x}}\) \( = {\tan ^3}x + {\cot ^3}x.\)

d) \({\sin ^2}x – {\tan ^2}x\) \( = {\tan ^6}x\left( {{{\cos }^2}x – {{\cot }^2}x} \right).\)

e) \(\frac{{{{\tan }^2}a – {{\tan }^2}b}}{{{{\tan }^2}a.{{\tan }^2}b}}\) \( = \frac{{{{\sin }^2}a – {{\sin }^2}b}}{{{{\sin }^2}a.{{\sin }^2}b}}.\)

a) \(VT = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} – {\sin ^2}x\) \( = {\sin ^2}x\left( {1 + {{\tan }^2}x} \right) – {\sin ^2}x\) \( = VP.\)

b) \({\sin ^6}x + {\cos ^6}x\) \( = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3}\) \( – 3{\sin ^2}x.{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\) \( = 1 – 3{\sin ^2}x.{\cos ^2}x.\)

c) \(VT = {\tan ^3}x\left( {{{\cot }^2}x + 1} \right)\) \( – \tan x\left( {{{\cot }^2}x + 1} \right)\) \( + {\cot ^3}x\left( {{{\tan }^2}x + 1} \right)\) \( = \tan x + {\tan ^3}x – \cot x\) \( – \tan x + \cot x + {\cot ^3}x = VP.\)

d) \(VP = {\tan ^6}x{\cos ^2}x – {\tan ^6}x{\cot ^2}x\) \( = {\tan ^4}x{\sin ^2}x – {\tan ^4}x\) \( = {\tan ^4}x.{\cos ^2}x\) \( = {\tan ^2}x.{\sin ^2}x\) \( = {\tan ^2}x – {\sin ^2}x = VT\) (do câu a).

e) \(VT = \frac{1}{{{{\tan }^2}b}} – \frac{1}{{{{\tan }^2}a}}\) \( = {\cot ^2}b – {\cot ^2}a\) \( = \frac{1}{{{{\sin }^2}b}} – \frac{1}{{{{\sin }^2}a}} = VP.\)

Bài 2: Đơn giản các biểu thức sau (giả sử các biểu thức sau đều có nghĩa):

a) \(A = \frac{1}{{{{\cos }^2}x}}\) \( – {\tan ^2}\left( {{{180}^0} – x} \right)\) \( – {\cos ^2}\left( {{{180}^0} – x} \right).\)

b) \(B = \frac{{{{\cos }^2}x – {{\sin }^2}x}}{{{{\cot }^2}x – {{\tan }^2}x}} – {\cos ^2}x.\)

c) \(C = \frac{{{{\sin }^3}a + {{\cos }^3}a}}{{{{\cos }^2}a + \sin a(\sin a – \cos a)}}.\)

d) \(D = \sqrt {\frac{{1 + \sin a}}{{1 – \sin a}}} + \sqrt {\frac{{1 – \sin a}}{{1 + \sin a}}} .\)

a) \(A = {\tan ^2}x + 1\) \( – {\tan ^2}x – {\cos ^2}x\) \( = {\sin ^2}x.\)

b) \(B = \frac{{{{\cos }^2}x – {{\sin }^2}x}}{{\frac{1}{{{{\sin }^2}x}} – 1 – \frac{1}{{{{\cos }^2}x}} + 1}}\) \( – {\cos ^2}x\) \( = {\cos ^2}x{\sin ^2}x – {\cos ^2}x\) \( = – {\cos ^4}x.\)

c) \(C = \) \(\frac{{(\sin a + \cos a)\left( {{{\sin }^2}a – \sin a\cos a + {{\cos }^2}a} \right)}}{{{{\sin }^2}a – \sin a\cos a + {{\cos }^2}a}}\) \( = \sin a + \cos a.\)

d) \({D^2} = \) \(\frac{{1 + \sin a}}{{1 – \sin a}} + \frac{{1 – \sin a}}{{1 + \sin a}} + 2\) \( = \frac{{{{(1 + \sin a)}^2} + {{(1 – \sin a)}^2}}}{{1 – {{\sin }^2}a}} + 2\) \( = \frac{{2 + 2{{\sin }^2}a}}{{{{\cos }^2}a}} + 2\) \( = \frac{4}{{{{\cos }^2}a}}.\)

Suy ra \(D = \frac{2}{{|\cos a|}}.\)

Bài 3: Chứng minh biểu thức sau không phụ thuộc vào \(\alpha \) (giả sử các biểu thức sau đều có nghĩa):

a) \(2\left( {{{\sin }^6}\alpha + {{\cos }^6}\alpha } \right)\) \( – 3\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right).\)

b) \({\cot ^2}{30^0}\left( {{{\sin }^8}\alpha – {{\cos }^8}\alpha } \right)\) \( + 4\cos {60^0}\left( {{{\cos }^6}\alpha – {{\sin }^6}\alpha } \right)\) \( – {\sin ^6}\left( {{{90}^0} – \alpha } \right){\left( {{{\tan }^2}\alpha – 1} \right)^3}.\)

c) \(\left( {{{\sin }^4}x + {{\cos }^4}x – 1} \right)\)\(\left( {{{\tan }^2}x + {{\cot }^2}x + 2} \right).\)

d) \(\frac{{{{\sin }^4}x + 3{{\cos }^4}x – 1}}{{{{\sin }^6}x + {{\cos }^6}x + 3{{\cos }^4}x – 1}}.\)

a) \(2\left( {{{\sin }^6}\alpha + {{\cos }^6}\alpha } \right)\) \( – 3\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right).\)

\( = 2\left( {1 – 3{{\sin }^2}x.{{\cos }^2}x} \right)\) \( – 3\left( {1 – 2{{\sin }^2}x.{{\cos }^2}x} \right) = – 1.\)

b) \({\cot ^2}{30^0}\left( {{{\sin }^8}\alpha – {{\cos }^8}\alpha } \right)\) \( + 4\cos {60^0}\left( {{{\cos }^6}\alpha – {{\sin }^6}\alpha } \right)\) \( – {\sin ^6}\left( {{{90}^0} – \alpha } \right){\left( {{{\tan }^2}\alpha – 1} \right)^3}.\)

\( = 3\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right)\) \( – 2\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)\)\(\left( {{{\sin }^4}\alpha + {{\sin }^2}\alpha {{\cos }^2}\alpha + {{\cos }^4}\alpha } \right)\) \( – {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3}.\)

\( = {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3}\) \( – {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3} = 0.\)

c) \(\left( {{{\sin }^4}x + {{\cos }^4}x – 1} \right)\)\(\left( {{{\tan }^2}x + {{\cot }^2}x + 2} \right)\) \( = – 2.\)

d) \(\frac{{{{\sin }^4}x + 3{{\cos }^4}x – 1}}{{{{\sin }^6}x + {{\cos }^6}x + 3{{\cos }^4}x – 1}}\) \( = \frac{2}{3}.\)

DẠNG TOÁN 3: XÁC ĐỊNH GIÁ TRỊ CỦA MỘT BIỂU THỨC LƯỢNG GIÁC CÓ ĐIỀU KIỆN.

1. PHƯƠNG PHÁP GIẢI

+ Dựa vào các hệ thức lượng giác cơ bản.

+ Dựa vào dấu của giá trị lượng giác.

+ Sử dụng các hằng đẳng thức đáng nhớ.

2. CÁC VÍ DỤ

Ví dụ 1:

a) Cho \(\sin \alpha = \frac{1}{3}\) với \({90^0} < \alpha < {180^0}.\) Tính \(\cos \alpha \) và \(\tan \alpha .\)

b) Cho \(\cos \alpha = – \frac{2}{3}.\) Tính \(\sin \alpha \) và \(\cot \alpha .\)

c) Cho \(\tan \alpha = – 2\sqrt 2 \), tính giá trị lượng giác còn lại.

a) Vì \({90^0} < \alpha < {180^0}\) nên \(\cos \alpha < 0\) mặt khác \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra:

\(\cos \alpha = – \sqrt {1 – {{\sin }^2}\alpha } \) \( = – \sqrt {1 – \frac{1}{9}} \) \( = – \frac{{2\sqrt 2 }}{3}.\)

Do đó: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) \( = \frac{{\frac{1}{3}}}{{ – \frac{{2\sqrt 2 }}{3}}}\) \( = – \frac{1}{{2\sqrt 2 }}.\)

b) Vì \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) nên \(\sin \alpha = \sqrt {1 – {{\cos }^2}\alpha } \) \( = \sqrt {1 – \frac{4}{9}} = \frac{{\sqrt 5 }}{3}\) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\) \( = \frac{{ – \frac{2}{3}}}{{\frac{{\sqrt 5 }}{3}}} = – \frac{2}{{\sqrt 5 }}.\)

c) Vì \(\tan \alpha = – 2\sqrt 2 < 0\) \( \Rightarrow \cos \alpha < 0\) mặt khác \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}.\)

Nên \(\cos \alpha = – \sqrt {\frac{1}{{{{\tan }^2} + 1}}} \) \( = – \sqrt {\frac{1}{{8 + 1}}} = – \frac{1}{3}.\)

Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) \( \Rightarrow \sin \alpha = \tan \alpha .\cos \alpha \) \( = – 2\sqrt 2 .\left( { – \frac{1}{3}} \right) = \frac{{2\sqrt 2 }}{3}.\)

\( \Rightarrow \cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\) \( = \frac{{ – \frac{1}{3}}}{{\frac{{2\sqrt 2 }}{3}}} = – \frac{1}{{2\sqrt 2 }}.\)

Ví dụ 2:

a) Cho \(\cos \alpha = \frac{3}{4}\) với \({0^0} < \alpha < {90^0}\). Tính \(A = \frac{{\tan \alpha + 3\cot \alpha }}{{\tan \alpha + \cot \alpha }}.\)

b) Cho \(\tan \alpha = \sqrt 2 .\) Tính \(B = \frac{{\sin \alpha – \cos \alpha }}{{{{\sin }^3}\alpha + 3{{\cos }^3}\alpha + 2\sin \alpha }}.\)

a) Ta có \(A = \frac{{\tan \alpha + 3\frac{1}{{\tan \alpha }}}}{{\tan \alpha + \frac{1}{{\tan \alpha }}}}\) \( = \frac{{{{\tan }^2}\alpha + 3}}{{{{\tan }^2}\alpha + 1}}\) \( = \frac{{\frac{1}{{{{\cos }^2}\alpha }} + 2}}{{\frac{1}{{{{\cos }^2}\alpha }}}}\) \( = 1 + 2{\cos ^2}\alpha .\)

Suy ra \(A = 1 + 2.\frac{9}{{16}} = \frac{{17}}{8}.\)

b) \(B = \frac{{\frac{{\sin \alpha }}{{{{\cos }^3}\alpha }} – \frac{{\cos \alpha }}{{{{\cos }^3}\alpha }}}}{{\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} + \frac{{3{{\cos }^3}\alpha }}{{{{\cos }^3}\alpha }} + \frac{{2\sin \alpha }}{{{{\cos }^3}\alpha }}}}\) \( = \frac{{\tan \alpha \left( {{{\tan }^2}\alpha + 1} \right) – \left( {{{\tan }^2}\alpha + 1} \right)}}{{{{\tan }^3}\alpha + 3 + 2\tan \alpha \left( {{{\tan }^2}\alpha + 1} \right)}}.\)

Suy ra \(B = \frac{{\sqrt 2 (2 + 1) – (2 + 1)}}{{2\sqrt 2 + 3 + 2\sqrt 2 (2 + 1)}}\) \( = \frac{{3(\sqrt 2 – 1)}}{{3 + 8\sqrt 2 }}.\)

Ví dụ 3: Biết \(\sin x + \cos x = m.\)

a) Tìm \(\sin x\cos x\) và \(\left| {{{\sin }^4}x – {{\cos }^4}x} \right|.\)

b) Chứng minh rằng \(|m| \le \sqrt 2 .\)

a) Ta có \({(\sin x + \cos x)^2}\) \( = {\sin ^2}x + 2\sin x\cos x + {\cos ^2}x\) \( = 1 + 2\sin x\cos x\) \((*).\)

Mặt khác \(\sin x + \cos x = m\) nên \({m^2} = 1 + 2\sin x\cos x.\)

Hay \(\sin x\cos x = \frac{{{m^2} – 1}}{2}.\)

Đặt \(\dot A = \left| {{{\sin }^4}x – {{\cos }^4}x} \right|.\) Ta có:

\(A = \left| {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\left( {{{\sin }^2}x – {{\cos }^2}x} \right)} \right|\) \( = |(\sin x + \cos x)(\sin x – \cos x)|.\)

\( \Rightarrow {A^2} = {(\sin x + \cos x)^2}{(\sin x – \cos x)^2}\) \( = (1 + 2\sin x\cos x)(1 – 2\sin x\cos x).\)

\( \Rightarrow {A^2} = \left( {1 + {m^2} – 1} \right)\left( {1 – {m^2} + 1} \right)\) \( = 2{m^2} – {m^4}.\)

Vậy \(A = \sqrt {2{m^2} – {m^4}} .\)

b) Ta có: \(2\sin x\cos x\) \( \le {\sin ^2}x + {\cos ^2}x = 1\) kết hợp với \((*)\) suy ra:

\({(\sin x + \cos x)^2} \le 2\) \( \Rightarrow |\sin x + \cos x| \le \sqrt 2 .\)

Vậy \(|m| \le \sqrt 2 .\)

3. BÀI TẬP LUYỆN TẬP

Bài 1: Tính các giá trị lượng giác còn lại, biết:

a) \(\sin \alpha = \frac{3}{5}\) với \({0^0} < \alpha < {90^0}.\)

b) \(\cos \alpha = \sqrt {\frac{1}{5}} .\)

c) \(\cot \alpha = – \sqrt 2 .\)

d) \(\tan \alpha + \cot \alpha < 0\) và \(\sin \alpha = \frac{1}{5}.\)

a) \(\cos \alpha = \sqrt {1 – {{\sin }^2}\alpha } = \frac{4}{5}\), \(\tan \alpha = \frac{3}{4}\), \(\cot \alpha = \frac{4}{3}.\)

b) \(\sin \alpha = \sqrt {1 – {{\cos }^2}\alpha } = \frac{2}{{\sqrt 5 }}\), \(\tan \alpha = 2\), \(\cot \alpha = \frac{1}{2}.\)

c) \(\sin \alpha = \frac{1}{{\sqrt 3 }}\), \(\cos \alpha = – \frac{{\sqrt 6 }}{3}\), \(\tan \alpha = – \frac{1}{{\sqrt 2 }}.\)

d) Ta có \(\tan \alpha \cot \alpha = 1 /> 0\) mà \(\tan \alpha + \cot \alpha < 0\) suy ra \(\tan \alpha < 0\), \(\cot \alpha < 0.\)

\(\cot \alpha = – \sqrt {\frac{1}{{{{\sin }^2}\alpha }} – 1} \) \( = – 2\sqrt 6 \) \( \Rightarrow \tan \alpha = – \frac{1}{{2\sqrt 6 }}\), \(\cos \alpha = \cot \alpha .\sin \alpha \) \( = – \frac{{2\sqrt 6 }}{5}.\)

Bài 2:

a) Cho \(\sin a = \frac{1}{3}\) với \({90^0} < a < {180^0}.\) Tính \(B = \frac{{3\cot a + 2\tan a + 1}}{{\cot a + \tan a}}.\)

b) Cho \(\cot a = 5.\) Tính \(D = 2{\cos ^2}a + 5\sin a\cos a + 1.\)

a) Từ giả thiết suy ra:

\(\cos a = – \frac{{2\sqrt 2 }}{3}\), \(\tan a = – \frac{1}{{2\sqrt 2 }}\), \(\cot a = – 2\sqrt 2 \) \( \Rightarrow B = \frac{{26 – 2\sqrt 2 }}{9}.\)

b) \(\frac{D}{{{{\sin }^2}a}}\) \( = 2{\cot ^2}a + 5\cot a + \frac{1}{{{{\sin }^2}a}}\) \( \Rightarrow \left( {{{\cot }^2}a + 1} \right)D\) \( = 3{\cot ^2}a + 5\cot a + 1.\)

Suy ra \(D = \frac{{101}}{{26}}.\)

Bài 3: Biết \(\tan x + \cot x = m.\)

a) Tìm \({\tan ^2}x + {\cot ^2}x.\)

b) \(\frac{{{{\tan }^6}x + {{\cot }^6}x}}{{{{\tan }^4}x + {{\cot }^4}x}}.\)

a) \({\tan ^2}x + {\cot ^2}x = {m^2} – 2.\)

b) \({\tan ^4}x + {\cot ^4}x\) \( = {\left( {{{\tan }^2}x + {{\cot }^2}x} \right)^2} – 2\) \( = {\left( {{m^2} – 2} \right)^2} – 2\) \( = {m^4} – 4{m^2} + 2.\)

\( \Rightarrow \frac{{{{\tan }^6}x + {{\cot }^6}x}}{{{{\tan }^4}x + {{\cot }^4}x}}\) \( = \frac{{\left( {{m^2} – 2} \right)\left( {{m^4} – 4{m^2} + 1} \right)}}{{{m^4} – 4{m^2} + 2}}.\)

Bài 4: Cho \(\sin \alpha \cos \alpha = \frac{{12}}{{25}}.\) Tính \({\sin ^3}\alpha + {\cos ^3}\alpha .\)

\({(\sin \alpha + \cos \alpha )^2} = 1 + \frac{{24}}{{25}}\) \( \Rightarrow \sin \alpha + \cos \alpha = \frac{7}{5}\) (do \(\cos \alpha /> 0\)).

\( \Rightarrow {\sin ^3}\alpha + {\cos ^3}\alpha \) \( = (\sin \alpha + \cos \alpha )\)\(\left( {{{\sin }^2}\alpha – \sin \alpha \cos \alpha + {{\cos }^2}\alpha } \right)\) \( = \frac{{91}}{{125}}.\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ giá trị lượng giác của một góc bất kì từ 0º đến 180º đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải Toán giá trị lượng giác của một góc bất kì từ 0º đến 180º với Đáp Án Mới Nhất

Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề giá trị lượng giác của một góc bất kì từ 0º đến 180º, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.

1. Tổng Quan về Chủ Đề giá trị lượng giác của một góc bất kì từ 0º đến 180º

giá trị lượng giác của một góc bất kì từ 0º đến 180º là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.

2. Các Bài Tập Đặc Trưng trong giá trị lượng giác của một góc bất kì từ 0º đến 180º

  • Bài tập cơ bản: Những bài tập này giúp bạn hiểu rõ định nghĩa, công thức và cách áp dụng kiến thức.
  • Bài tập nâng cao: Dành cho những bạn muốn thử sức với các dạng bài khó hơn, đòi hỏi tư duy sáng tạo và kỹ năng phân tích.
  • Bài tập ôn luyện: Bao gồm các câu hỏi tương tự đề thi thực tế, giúp bạn làm quen với cấu trúc và cách trình bày bài thi.

3. Hướng Dẫn Giải Chi Tiết

Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:

  1. Phân tích đề bài để hiểu yêu cầu.
  2. Áp dụng công thức và phương pháp phù hợp.
  3. Trình bày lời giải rõ ràng và khoa học.

Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.

4. Đáp Án Mới Nhất và Chính Xác

Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.

5. Tài Liệu Ôn Luyện Kèm Theo

Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:

  • Bảng công thức toán học liên quan đến giá trị lượng giác của một góc bất kì từ 0º đến 180º.
  • Các mẹo giải nhanh và cách tránh sai lầm thường gặp.
  • Đề thi thử và bài tập rèn luyện theo cấp độ.

6. Lợi Ích Khi Học Chủ Đề Này

  • Giúp bạn hiểu sâu bản chất của kiến thức thay vì chỉ học thuộc lòng.
  • Tăng khả năng tư duy logic và sáng tạo.
  • Tự tin hơn khi đối mặt với các kỳ thi quan trọng.

Kết Luận

Chủ đề giá trị lượng giác của một góc bất kì từ 0º đến 180º là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!

Chúc các bạn học tốt và đạt kết quả cao! 😊

>> Xem thêm đáp án chi tiết về: giá trị lượng giác của một góc bất kì từ 0º đến 180º.