Bài viết hướng dẫn phương pháp giải bài toán tìm hệ số hoặc số hạng chứa \({x^h}\) trong khai triển chứa điều kiện, đây là dạng toán thường gặp trong chương trình Đại số và Giải tích 11: Tổ hợp và xác suất.
1. PHƯƠNG PHÁP GIẢI TOÁN
Các bài toán loại này thường chưa biết \(n\) trong khai triển, do đó ta thực hiện các bước:
+ Từ điều kiện bài toán tìm \(n\) (hoặc các ẩn liên quan).
+ Sau đó thực hiện tương tự bài toán tìm hệ số của số hạng chứa \({x^h}\) trong khai triển biết \(n\) đã được đề cập trước đó trên giaitoan.edu.vn.
2. BÀI TẬP ÁP DỤNG
Bài 1: Cho \(n\) là số nguyên dương thỏa mãn: \(5C_n^{n – 1} = C_n^3.\) Tìm số hạng chứa \({x^5}\) trong khai triển nhị thức Niu-tơn của \({\left( {\frac{{n{x^2}}}{{14}} – \frac{1}{x}} \right)^n}\) với \(x \ne 0.\)
Lời giải:
Xét phương trình \(5C_n^{n – 1} = C_n^3.\)
Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}
{n \ge 3}\\
{n \in Z}
\end{array}} \right..\)
Phương trình \( \Leftrightarrow 5.\frac{{n!}}{{(n – 1)!}} = \frac{{n!}}{{3!(n – 3)!}}\) \( \Leftrightarrow 5n = \frac{{n(n – 1)(n – 2)}}{6}.\)
\( \Leftrightarrow 30 = {n^2} – 3n + 2\) \( \Leftrightarrow {n^2} – 3n – 28 = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{n = 7}\\
{n = – 4\,\,{\rm{(loại)}}}
\end{array}} \right..\)
Khi đó: \({\left( {\frac{{n{x^2}}}{{14}} – \frac{1}{x}} \right)^n}\) \( = {\left( {\frac{{{x^2}}}{2} – \frac{1}{x}} \right)^7}\) \( = \sum\limits_{k = 0}^7 {C_7^k} {\left( {\frac{{{x^2}}}{2}} \right)^{7 – k}}.{\left( { – \frac{1}{x}} \right)^k}.\)
Số hạng tổng quát trong khai triển là:
\({T_{k + 1}}\) \( = C_7^k{\left( {\frac{{{x^2}}}{2}} \right)^{7 – k}}.{\left( { – \frac{1}{x}} \right)^k}\) \( = C_7^k.\frac{{{x^{14 – 2k}}}}{{{2^{7 – k}}}}.\frac{{{{( – 1)}^k}}}{{{x^k}}}\) \( = C_7^k.\frac{{{{( – 1)}^k}}}{{{2^{7 – k}}}}.{x^{14 – 3k}}.\)
Nếu hạng tử \({T_{k + 1}}\) chứa \({x^5}\) thì: \(14 – 3k = 5\) \( \Leftrightarrow k = 3.\)
Vậy số hạng chứa \({x^5}\) là số hạng thứ \(4\) trong khai triển là:
\({T_6} = C_7^3.\frac{{{{( – 1)}^3}}}{{{2^4}}}.{x^5} = – \frac{{35}}{{16}}{x^5}.\)
Bài 2: Tìm hệ số của số hạng chứa \({x^{10}}\) trong khai triển nhị thức Niutơn của \({(2 + x)^n}\), biết \({3^n}C_n^0 – {3^{n – 1}}C_n^1\) \( + {3^{n – 2}}C_n^2 – {3^{n – 3}}C_n^3\) \( + … + {( – 1)^n}C_n^n = 2048.\)
Lời giải:
Ta có: \({(3 + x)^n}\) \( = C_n^0{3^n} + C_n^1{3^{n – 1}}x\) \( + C_n^2{3^{n – 2}}{x^2} + \ldots + C_n^n{x^n}.\)
Chọn \(x = – 1\), ta được:
\({3^n}C_n^0 – {3^{n – 1}}C_n^1\) \( + {3^{n – 2}}C_n^2 – {3^{n – 3}}C_n^3\) \( + … + {( – 1)^n}C_n^n\) \( = {(3 – 1)^n} = {2^n}.\)
Từ giả thiết suy ra: \({2^n} = 2048 = {2^{11}}\) \( \Leftrightarrow n = 11.\)
Suy ra: \({(2 + x)^n}\) \( = {(2 + x)^{11}}\) \( = \sum\limits_{k = 0}^{11} {C_{11}^k} {2^{11 – k}}{x^k}.\)
Số hạng tổng quát trong khai triển là: \(C_{11}^k{2^{11 – k}}{x^k}.\)
Cho \(k =10\), ta được hệ số của \({x^{10}}\) trong khai triển là: \(C_{11}^{10}.2 = 22.\)
Bài 3: Trong khai triển nhị thức \({\left( {x + \frac{1}{x}} \right)^n}\), hệ số của số hạng thứ ba lớn hơn hệ số của số hạng thứ hai là \(35.\) Tìm số hạng không chứa \(x\) trong khai triển nói trên (với \(n \in {N^*}\)).
Lời giải:
Ta có: \({\left( {x + \frac{1}{x}} \right)^n}\) \( = \sum\limits_{k = 0}^n {C_n^k} {x^{n – k}}{\left( {\frac{1}{x}} \right)^k}\) \( = \sum\limits_{k = 0}^n {C_n^k} {x^{n – 2k}}.\)
Hệ số của số hạng thứ \(k + 1\) trong khai triển là: \({T_{k + 1}} = C_n^k.\)
Theo giả thiết ta có: \(C_n^2 – C_n^1 = 35\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{n \ge 2,n \in N}\\
{\frac{{n!}}{{2!(n – 2)!}} – n = 35}
\end{array}} \right..\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{n \ge 2,n \in N}\\
{\frac{{n(n – 1)}}{2} – n = 35}
\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{n \ge 2,n \in N}\\
{{n^2} – 3n – 70 = 0}
\end{array}} \right.\) \( \Leftrightarrow n = 10.\)
Do đó: \({\left( {x + \frac{1}{x}} \right)^{10}}\) \( = \sum\limits_{k = 0}^{10} {C_{10}^k} {x^{10 – 2k}}.\)
Số hạng không chứa \(x\) trong khai triển là: \(C_{10}^k\) với \(10 – 2k = 0\) \( \Leftrightarrow k = 5.\)
Vậy số hạng không chứa \(x\) trong khai triển là: \(C_{10}^5 = 252.\)
Bài 4: Tìm số hạng không chứa \(x\) trong khai triển nhị thức \({\left( {{x^2} + \frac{1}{{{x^3}}}} \right)^n}\), biết rằng \(C_n^1 + C_n^3 = 13n\) (\(n\) là số tự nhiên lớn hơn \(2\) và \(x\) là số thực khác \(0\)).
Lời giải:
Ta có: \(C_n^1 + C_n^3 = 13n\) \( \Leftrightarrow \frac{{n!}}{{(n – 1)!}} + \frac{{n!}}{{3!(n – 3)!}} = 13n\) \( \Leftrightarrow n + \frac{{n(n – 1)(n – 2)}}{6} = 13n.\)
\( \Leftrightarrow 1 + \frac{{(n – 1)(n – 2)}}{6} = 13\) \( \Leftrightarrow {n^2} – 3n – 70 = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{n = 10}\\
{n = – 7\,\,{\rm{(loại)}}}
\end{array}} \right..\)
Do đó: \({\left( {{x^2} + \frac{1}{{{x^3}}}} \right)^n}\) \( = {\left( {{x^2} + \frac{1}{{{x^3}}}} \right)^{10}}\) \( = \sum\limits_{k = 0}^{10} {C_{10}^k} {\left( {{x^2}} \right)^{10 – k}}{\left( {{x^{ – 3}}} \right)^k}\) \( = \sum\limits_{k = 0}^{10} {C_{10}^k} {x^{20 – 5k}}.\)
Số hạng tổng quát trong khai triển \(C_{10}^k{x^{20 – 5k}}.\)
Hệ số không chứa \(x\) trong khai triển là: \(C_{10}^k\) với \(k\) thỏa mãn \(20 – 5k = 0\) \( \Leftrightarrow k = 4.\)
Vậy số hạng không chứa \(x\) trong khai triển là: \(C_{10}^4 = 210.\)
Bài 5: Khai triển biểu thức \({(1 – 2x)^n}\) ta được đa thức có dạng \({a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_n}{x^n}.\) Tìm hệ số của \({x^5}\) biết rằng: \({a_0} + {a_1} + {a_2} = 71.\)
Lời giải:
Ta có: \({(1 – 2x)^n}\) \( = \sum\limits_{k = 0}^n {C_n^k} .{( – 2x)^k}\) \( = \sum\limits_{k = 0}^n {C_n^k} .{( – 2)^k}{x^k}.\)
Do đó: \({a_k} = C_n^k.{( – 2)^k}\), \(\forall k = \overline {0..n} .\)
Khi đó \({a_0} + {a_1} + {a_2} = 71\) \( \Leftrightarrow C_n^0 – 2C_n^1 + 4C_n^2 = 71.\)
\( \Leftrightarrow 1 – 2n + 4\frac{{n(n – 1)}}{2} = 71\) \( \Leftrightarrow {n^2} + 2n – 35 = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{n = 5}\\
{n = – 7\,\,{\rm{(loại)}}}
\end{array}} \right..\)
Suy ra: \({(1 – 2x)^7}\) \( = \sum\limits_{k = 0}^7 {C_7^k.} {( – 2)^k}.{x^k}.\)
Vậy hệ số của \({x^5}\) trong khai triển là: \(C_7^5{( – 2)^5} = – 672.\)
Bài 6: Tìm hệ số của \({x^{26}}\) trong khai triển nhị thức Newton của \({\left( {\frac{1}{{{x^4}}} + {x^7}} \right)^n}\), biết rằng \(C_{2n + 1}^1 + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n\) \( = {2^{20}} – 1.\)
Lời giải:
Xét khai triển \({(1 + x)^{2n + 1}}\) \( = C_{2n + 1}^0 + C_{2n + 1}^1x\) \( + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}\) \( + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.\)
Chọn \(x = 1\), ta được: \(C_{2n + 1}^0 + C_{2n + 1}^1\) \( + C_{2n + 1}^2 + C_{2n + 1}^3\) \( + \ldots + C_{2n + 1}^{2n + 1} = {2^{2n + 1}}\) \((*).\)
Áp dụng công thức \(C_{2n + 1}^k = C_{2n + 1}^{2n + 1 – k}\), ta có:
\((*) \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^1\) \( + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n\) \( + C_{2n + 1}^n + C_{2n + 1}^{n – 1}\) \( + \ldots + C_{2n + 1}^0 = {2^{2n + 1}}.\)
\( \Leftrightarrow 2\left( {C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n} \right) = {2^{2n + 1}}.\)
\( \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n = {2^{2n}}.\)
\( \Leftrightarrow C_{2n + 1}^1 + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n\) \( = {2^{2n}} – 1.\)
Từ giả thiết ta có: \({2^{2n}} – 1 = {2^{20}} – 1\) \( \Leftrightarrow n = 10.\)
Khi đó: \({\left( {\frac{1}{{{x^4}}} + {x^7}} \right)^n}\) \( = {\left( {\frac{1}{{{x^4}}} + {x^7}} \right)^{10}}\) \( = \sum\limits_{k = 0}^{10} {C_{10}^k} {\left( {{x^{ – 4}}} \right)^{10 – k}}{\left( {{x^7}} \right)^k}\) \( = \sum\limits_{k = 0}^{10} {C_{10}^k} {x^{11k – 40}}.\)
Số hạng tổng quát trong khai triển là: \(C_{10}^k{x^{11k – 40}}.\)
Hệ số của \({x^{26}}\) trong khai triển là \(C_{10}^k\) với \(k\) thỏa mãn \(11k – 40 = 26\) \( \Leftrightarrow k = 6.\)
Vậy hệ số của \({x^{26}}\) trong khai triển là \(C_{10}^6 = 210.\)
Bài 7: Tìm hệ số chứa \({x^7}\) trong khai triển thành đa thức của \({(2 – 3x)^{2n}}\), trong đó \(n\) là số nguyên dương thỏa mãn: \(C_{2n + 1}^1 + C_{2n + 1}^3\) \( + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1} = 1024.\)
Lời giải:
Ta có: \({(1 + x)^{2n + 1}}\) \( = C_{2n + 1}^0 + C_{2n + 1}^1x\) \( + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}\) \( + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.\)
Chọn \(x = 1\), ta được: \(C_{2n + 1}^0 + C_{2n + 1}^1\) \( + C_{2n + 1}^2 + C_{2n + 1}^3\) \( + \ldots + C_{2n + 1}^{2n + 1} = {2^{2n + 1}}\) \((*).\)
Chọn \(x = -1\), ta được: \(C_{2n + 1}^0 – C_{2n + 1}^1\) \( + C_{2n + 1}^2 – C_{2n + 1}^3\) \( + \ldots – C_{2n + 1}^{2n + 1} = 0.\)
\( \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^2\) \( + C_{2n + 1}^4 + \ldots + C_{2n + 1}^{2n}\) \( = C_{2n + 1}^1 + C_{2n + 1}^3\) \( + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1}.\)
Từ \((*)\) suy ra: \(2\left( {C_{2n + 1}^1 + C_{2n + 1}^3 + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1}} \right)\) \( = {2^{2n + 1}}.\)
\( \Leftrightarrow C_{2n + 1}^1 + C_{2n + 1}^3\) \( + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1} = {2^{2n}}.\)
Theo giả thiết ta có: \({2^{2n}} = 1024 = {2^{10}}\) \( \Leftrightarrow n = 5.\)
Từ đó suy ra: \({(2 – 3x)^{2n}}\) \( = {(2 – 3x)^{10}}\) \( = \sum\limits_{k = 0}^{10} {{{( – 1)}^k}} C_{10}^k{2^{10 – k}}{(3x)^k}\) \( = \sum\limits_{k = 0}^{10} {{{( – 1)}^k}} {.3^k}.C_{10}^k{2^{10 – k}}{x^k}.\)
Số hạng tổng quát trong khai triển là: \({( – 1)^k}{.3^k}.C_{10}^k{2^{10 – k}}.{x^k}.\)
Để có hệ số chứa \({x^7}\) tương ứng với giá trị của \(k\) thỏa mãn \(k =7.\)
Vậy hệ số chứa \({x^7}\) trong khai triển là: \({( – 1)^7}{.3^7}.C_{10}^7{.2^3}\) \( = – C_{10}^7{3^7}{2^3} = 2099520.\)
Bài 8: Tìm hệ số chứa \({x^8}\) trong khai triển nhị thức Newton \({\left( {\frac{1}{{{x^3}}} + \sqrt {{x^5}} } \right)^n}\), biết rằng \(C_{n + 4}^{n + 1} – C_{n + 3}^n\) \( = 7(n + 3)\) (\(n\) nguyên dương, \(x/>0\)).
Lời giải:
Ta có: \(C_{n + 4}^{n + 1} – C_{n + 3}^n\) \( = 7(n + 3)\) \( \Leftrightarrow \frac{{(n + 4)!}}{{3!(n + 1)!}} + \frac{{(n + 3)!}}{{3!n!}}\) \( = 7(n + 3).\)
\( \Leftrightarrow \frac{{(n + 4)(n + 3)(n + 2)}}{6}\) \( – \frac{{(n + 3)(n + 2)(n + 1)}}{6}\) \( = 7(n + 3).\)
\( \Leftrightarrow \frac{{(n + 4)(n + 2)}}{6}\) \( – \frac{{(n + 2)(n + 1)}}{6} = 7\) \( \Leftrightarrow (n + 4)(n + 2) – (n + 2)(n + 1) = 42.\)
\( \Leftrightarrow 3n + 6 = 42\) \( \Leftrightarrow n = 12.\)
Khi đó: \({\left( {\frac{1}{{{x^3}}} + \sqrt {{x^5}} } \right)^n}\) \( = {\left( {{x^{ – 3}} + {x^{\frac{5}{2}}}} \right)^{12}}\) \( = \sum\limits_{k = 0}^{12} {C_{12}^k} {\left( {{x^{ – 3}}} \right)^k}{\left( {{x^{\frac{5}{2}}}} \right)^{12 – k}}.\)
Số hạng tổng quát trong khai triển là: \(C_{12}^k{\left( {{x^{ – 3}}} \right)^k}{\left( {{x^{\frac{5}{2}}}} \right)^{12 – k}}\) \( = C_{12}^k{x^{\frac{{60 – 11k}}{2}}}.\)
Để có hệ số chứa \({x^8}\) thì \(\frac{{60 – 11k}}{2} = 8\) \( \Leftrightarrow 60 – 11k = 16\) \( \Leftrightarrow k = 4.\)
Vậy hệ số chứa \({x^8}\) trong khai triển là \(C_{12}^4 = \frac{{12!}}{{4!(12 – 4)!}} = 495.\)
Bài 9: Cho khai triển \({\left( {{2^{\frac{{x – 1}}{2}}} + {2^{\frac{{ – x}}{3}}}} \right)^n}\) \( = C_n^0{\left( {{2^{\frac{{x – 1}}{2}}}} \right)^n}\) \( + C_n^1{\left( {{2^{\frac{{x – 1}}{2}}}} \right)^{n – 1}}\left( {{2^{\frac{{ – x}}{3}}}} \right)\) \( + \ldots + C_n^{n – 1}\left( {{2^{\frac{{x – 1}}{2}}}} \right){\left( {{2^{\frac{{ – x}}{3}}}} \right)^{n – 1}}\) \( + C_n^n{\left( {{2^{\frac{{ – x}}{3}}}} \right)^n}\) (\(n\) là số nguyên dương). Biết rằng trong khai triển đó có \(C_n^3 = 5C_n^1\) và số hạng thứ tư bằng \(140.\) Tìm \(n\) và \(x.\)
Lời giải:
Xét phương trình \({C_n^3 = 5C_n^1}\) (điều kiện \({n \ge 3}\)).
Ta có: \(C_n^3 = 5C_n^1\) \( \Leftrightarrow \frac{{n!}}{{3!(n – 3)!}} = 5\frac{{n!}}{{(n – 1)!}}\) \( \Leftrightarrow \frac{{n(n – 1)(n – 2)}}{6} = 5n.\)
\( \Leftrightarrow \frac{{(n – 1)(n – 2)}}{6} = 5\) \( \Leftrightarrow {n^2} – 3n – 28 = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{n = 7}\\
{n = – 4\,\,({\rm{loại}})}
\end{array}} \right..\)
Số hạng thứ tư trong khai triển là: \(C_n^3{\left( {{2^{\frac{{x – 1}}{2}}}} \right)^{n – 3}}{\left( {{2^{\frac{{ – x}}{3}}}} \right)^3}\) \( = C_7^3{\left( {{2^{\frac{{x – 1}}{2}}}} \right)^4}{\left( {{2^{\frac{{ – x}}{3}}}} \right)^3}.\)
Theo đề bài ta có: \(C_7^3{\left( {{2^{\frac{{x – 1}}{2}}}} \right)^4}{\left( {{2^{\frac{{ – x}}{3}}}} \right)^3} = 140\) \( \Leftrightarrow {35.2^{2x – 2}}{.2^{ – x}} = 140\) \( \Leftrightarrow {2^{x – 2}} = 4\) \( \Leftrightarrow x – 2 = 2\) \( \Leftrightarrow x = 4.\)
Vậy \(n = 7\) và \(x = 4.\)
Bài 10: Với \(n\) là số nguyên dương, gọi \({a_{3n – 3}}\) là hệ số của \({x^{3n – 3}}\) trong khai triển thành đa thức của \({\left( {{x^2} + 1} \right)^n}{(x + 2)^n}.\) Tìm \(n\) để \({a_{3n – 3}} = 26n.\)
Lời giải:
Ta có: \({\left( {{x^2} + 1} \right)^n}\) \( = C_n^0{x^{2n}} + C_n^1{x^{2n – 2}}\) \( + C_n^2{x^{2n – 4}} + \ldots + C_n^n\) \((1).\)
Và \({(x + 2)^n}\) \( = C_n^0{x^n} + 2C_n^1{x^{n – 1}}\) \( + {2^2}C_n^2{x^{n – 2}} + {2^3}C_n^3{x^{n – 3}}\) \( + \ldots + {2^n}C_n^n\) \((2).\)
Với \(n = 1\), ta có: \({\left( {{x^2} + 1} \right)^n}{(x + 2)^n}\) \( = \left( {{x^2} + 1} \right)(x + 2)\) \( = {x^3} + 2{x^2} + x + 2\) không thỏa mãn hệ thức \({a_{3n – 3}} = 26n.\)
Tương tự với \(n = 2\), cũng không thỏa mãn.
Với \(n \ge 3\), ta có: \({x^{3n – 3}} = {x^{2n}}.{x^{n – 3}}\) \( = {x^{2n – 2}}.{x^{n – 1}}.\)
Suy ra hệ số chứa \({x^{3n – 3}}\) bằng tổng của tích hệ số chứa \({x^{2n}}\) trong \((1)\) với hệ số chứa \({x^{n – 3}}\) trong \((2)\) và tích hệ số chứa \({x^{2n – 2}}\) trong \((1)\) với hệ số chứa \({x^{n – 1}}\) trong \((2).\)
Hay ta có: \({a_{3n – 3}} = {2^3}.C_n^0.C_n^3 + 2.C_n^1.C_n^1\) \( \Leftrightarrow {2^3}.1.\frac{{n!}}{{3!(n – 3)!}} + 2{n^2} = 26n.\)
\( \Leftrightarrow \frac{{4n(n – 1)(n – 2)}}{3} + 2{n^2} = 26n\) \( \Leftrightarrow \frac{{2(n – 1)(n – 2)}}{3} + n = 13.\)
\( \Leftrightarrow 2{n^2} – 3n – 35 = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{n = 5}\\
{n = – \frac{7}{2}\,\,{\rm{(loại)}}}
\end{array}} \right..\)
Vậy \(n = 5.\)
Giải Toán tìm hệ số hoặc số hạng chứa ${x^h}$ trong khai triển chứa điều kiện với Đáp Án Mới Nhất
Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề tìm hệ số hoặc số hạng chứa ${x^h}$ trong khai triển chứa điều kiện, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.
tìm hệ số hoặc số hạng chứa ${x^h}$ trong khai triển chứa điều kiện là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.
Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:
Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.
Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.
Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:
Chủ đề tìm hệ số hoặc số hạng chứa ${x^h}$ trong khai triển chứa điều kiện là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!
Chúc các bạn học tốt và đạt kết quả cao! 😊
>> Xem thêm đáp án chi tiết về: tìm hệ số hoặc số hạng chứa ${x^h}$ trong khai triển chứa điều kiện.