Logo Header
  1. Môn Toán
  2. Bài 1. Phân số với tử và mẫu là số nguyên

Bài 1. Phân số với tử và mẫu là số nguyên

Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Bài 1. Phân số với tử và mẫu là số nguyên – nội dung then chốt trong chuyên mục giải toán 6 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

Bài 1. Phân số với tử và mẫu là số nguyên - SGK Toán 6 - Cánh diều

Chào mừng các em học sinh đến với bài học Bài 1. Phân số với tử và mẫu là số nguyên trong chương trình Toán 6 tập 2 - Cánh diều. Bài học này thuộc Chương 5: Phân số và số thập phân, là nền tảng quan trọng để các em hiểu rõ hơn về khái niệm phân số và cách sử dụng chúng trong các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập trong sách giáo khoa.

Bài 1. Phân số với tử và mẫu là số nguyên - Giải Toán 6 Cánh Diều Tập 2

Bài 1 trong chương 5 Toán 6 Cánh Diều tập trung vào việc giới thiệu khái niệm phân số, điều kiện để một số được gọi là phân số, và cách xác định tử số, mẫu số của một phân số. Đây là bước đầu tiên để học sinh làm quen với một trong những khái niệm quan trọng nhất trong toán học.

1. Khái niệm phân số

Một phân số là biểu thức của một tỉ lệ giữa hai số nguyên, trong đó số chia khác 0. Phân số thường được viết dưới dạng a/b, trong đó:

  • atử số (số nguyên)
  • bmẫu số (số nguyên khác 0)

Ví dụ: 2/3, -5/7, 0/1 là những phân số. Tuy nhiên, 3/0 không phải là phân số vì mẫu số bằng 0.

2. Điều kiện để một số là phân số

Để một số được coi là phân số, nó phải thỏa mãn hai điều kiện sau:

  1. Cả tử số và mẫu số đều là số nguyên.
  2. Mẫu số phải khác 0.

Nếu một trong hai điều kiện này không được đáp ứng, thì biểu thức đó không phải là phân số.

3. Ví dụ minh họa

Hãy xét các biểu thức sau:

  • 5/2: Đây là phân số vì cả 5 và 2 đều là số nguyên, và 2 khác 0.
  • -3/4: Đây là phân số vì cả -3 và 4 đều là số nguyên, và 4 khác 0.
  • 7/0: Đây không phải là phân số vì mẫu số bằng 0.
  • 1.5/2: Đây không phải là phân số vì 1.5 không phải là số nguyên.

4. Bài tập vận dụng

Bài 1: Xác định xem các biểu thức sau có phải là phân số hay không:

  • a) 2/5
  • b) -1/3
  • c) 4/0
  • d) 0.5/1

Bài 2: Điền vào chỗ trống để hoàn thành các phân số sau:

  • a) .../3
  • b) 5/...

5. Mở rộng kiến thức

Phân số có vai trò quan trọng trong nhiều lĩnh vực của toán học và đời sống. Chúng được sử dụng để biểu diễn các tỉ lệ, phần trăm, và các khái niệm liên quan đến số lượng. Việc hiểu rõ về phân số là nền tảng để học sinh tiếp thu các kiến thức nâng cao hơn trong toán học.

Ngoài ra, các em có thể tham khảo thêm các bài học khác trong chương 5 Toán 6 Cánh Diều tập 2 để nắm vững kiến thức về phân số và số thập phân. giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục tri thức.

6. Luyện tập thêm

Để củng cố kiến thức về phân số, các em có thể thực hành thêm các bài tập sau:

  • Bài tập 2, 3, 4 trong SGK Toán 6 Cánh Diều tập 2
  • Các bài tập trực tuyến trên các trang web học toán uy tín

Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 6