Logo Header
  1. Môn Toán
  2. khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Quý độc giả đang tham khảo tài liệu , được biên soạn bám sát chuẩn toán math mới nhất. Nội dung được cấu trúc chặt chẽ, phân tầng từ cơ bản đến nâng cao, hỗ trợ củng cố và mở rộng kiến thức toán học một cách hệ thống. Hãy tận dụng tối đa tài liệu này để nâng cao hiệu quả học tập và chinh phục mọi kỳ kiểm tra, kỳ thi với kết quả xuất sắc.

Bài viết hướng dẫn phương pháp khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức thường gặp trong chương trình Giải tích 12: hàm số bậc ba và hàm số trùng phương.

A. TÓM TẮT SÁCH GIÁO KHOA

CÁC BƯỚC KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA MỘT HÀM SỐ

1. Tìm tập xác định của hàm số.

2. Khảo sát sự biến thiên của hàm số.

a.

+ Tìm các giới hạn của hàm số: giới hạn tại vô cực và giới hạn vô cực.

+ Tìm các tiệm cận của đồ thị.

b. Lập bảng biến thiên của hàm số:

+ Tìm đạo hàm \(y’\) của hàm số.

+ Xét dấu \(y’.\) Từ đó suy ra chiều biến thiên và tìm cực trị của hàm số.

+ Ghi các kết quả vào bảng biến thiên.

3.

+ Tìm điểm uốn của đồ thị hàm số (đối với hàm đa thức).

+ Tìm đạo hàm \(y”\). Xét dấu \(y”\), từ đó suy ra điểm uốn của đồ thị hàm số.

4. Vẽ đồ thị của hàm số:

+ Vẽ các đường tiệm cận của đồ thị (nếu có).

+ Tìm các điểm đặc biệt của đồ thị (giao điểm của đồ thị với các trục toạ độ …).

+ Vẽ đồ thị của hàm số.

+ Nhận xét về đồ thị: chỉ ra trục hay tâm đối xứng của đồ thị.

B. PHƯƠNG PHÁP GIẢI TOÁN

Vấn đề 1: Khảo sát hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\) \((a \ne 0).\)

1. PHƯƠNG PHÁP:

1. Tập xác định: \(D = R.\)

2. Khảo sát sự biến thiên

Giới hạn: \(\mathop {\lim }\limits_{x \to \pm \infty } y = \pm \infty \) khi \(a /> 0\), \(\mathop {\lim }\limits_{x \to \pm \infty } y = \mp \infty \) khi \(a < 0.\)

\(y’ = 3a{x^2} + 2bx + c\) có \(\Delta ‘ = {b^2} – 3ac.\)

\(\Delta’ /> 0 \Leftrightarrow \) Hàm số có hai cực trị.

\(\Delta’ \le 0 \Leftrightarrow \) Hàm số không có cực trị.

Lập bảng biến thiên: Có 6 dạng bảng biến thiên sau:

\(y’ = 0\) có \(2\) nghiệm phân biệt và \(a /> 0\) (đồ thị dạng 1).

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

\(y’ = 0\) có \(2\) nghiệm phân biệt và \(a < 0\) (đồ thị dạng 2).

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

\(y’ = 0\) có nghiệm kép và \(a/>0\) (đồ thị dạng 3).

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

\(y’=0\) có nghiệm kép và \(a< 0\) (đồ thị dạng 4).

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

\(y’ = 0\) vô nghiệm và \(a /> 0\) (đồ thị dạng 5).

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

\(y’ = 0\) vô nghiệm và \(a < 0\) (đồ thị dạng 6).

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

3. Điểm uốn

\(y” = 6ax + 2b.\)

\(y” = 0 \Leftrightarrow x = – \frac{b}{{3a}}.\)

Lập bảng xét dấu \(y”\). Suy ra đồ thị có một điểm uốn \(I\left( { – \frac{b}{{3a}};f\left( { – \frac{b}{{3a}}} \right)} \right).\)

4. Đồ thị

Có 6 dạng đồ thị tương ứng với 6 bảng biến thiên:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Nhận xét: Đồ thị hàm số bậc ba luôn nhận điểm uốn làm tâm đối xứng.

2. CÁC VÍ DỤ:

Ví dụ 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = {x^3} – 3{x^2} + 4.\)

1. Tập xác định: \(D = R.\)

2. Khảo sát chiều biến thiên:

Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \), \(\mathop {\lim }\limits_{x \to – \infty } y = – \infty .\)

Chiều biến thiên:

\(y’ = 3{x^2} – 6x\) \(y’ = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}

{x = 0 \to y = 4}\\

{x = 2 \to y = 0}

\end{array}} \right..\)

Bảng biến thiên:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Vậy:

Hàm số tăng trong \(( – \infty ;0)\) và \((2; + \infty ).\)

Hàm số giảm trong \((0; 2).\)

Hàm số đạt cực đại tại \(x = 0\), \({y_{CĐ}} = 4\) và đạt cực tiểu tại \(x = 2\), \({y_{CT}} = 0.\)

3. Điểm uốn: \(y” = 6x – 6\), \(y” = 0 \Leftrightarrow x = 1 \Rightarrow y = 2.\)

Đồ thị có điểm uốn \(I(1;2).\)

4. Đồ thị:

Giá trị đặc biệt:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Đồ thị:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Nhận xét: Đồ thị hàm số nhận điểm uốn \(I( – 1; – 2)\) làm tâm đối xứng.

Ví dụ 2: Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = – {x^3} + 3{x^2} – 3x – 1.\)

1. Tập xác định: \(D= R.\)

2. Khảo sát sự biến thiên:

Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = – \infty \), \(\mathop {\lim }\limits_{x \to – \infty } y = + \infty .\)

Chiều biến thiên:

\(y’ = – 3{x^2} + 6x – 3\), \(y’ = 0 \Leftrightarrow x = 1 \Rightarrow y = – 2.\)

Bảng biến thiên:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Vậy:

Hàm số giảm trong \(( – \infty ; + \infty ).\)

Hàm số không đạt cực trị.

3. Điểm uốn: \(y” = – 6x + 6\), \(y” = 0 \Leftrightarrow x = 1 \Rightarrow y = – 2.\)

Đồ thị có điểm uốn là \(I(1; – 2).\)

4. Đồ thị:

Giá trị đặc biệt:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Đồ thị:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Nhận xét: Đồ thị hàm số nhận điểm uốn \(I(1;-2)\) làm tâm đối xứng.

Ví dụ 3: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số: \(y = {x^3} + 3{x^2} + 4x + 2.\)

1. Tập xác định: \(D = R.\)

2. Khảo sát sự biến thiên:

Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \), \(\mathop {\lim }\limits_{x \to – \infty } y = – \infty .\)

Chiều biến thiên: \(y’ = 3{x^2} + 6x + 4 /> 0\) với mọi \(x \in R.\)

Bảng biến thiên:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Vậy: Hàm số tăng trong \(( – \infty ; + \infty )\). Hàm số không đạt cực trị.

3. Điểm uốn: \(y” = 6x + 6\), \(y” = 0 \Leftrightarrow x = – 1 \Rightarrow y = 0.\)

Đồ thị có điểm uốn là \(I( – 1;0).\)

4. Đồ thị:

Giá trị đặc biệt:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Đồ thị:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Nhận xét: Đồ thị hàm số nhận điểm uốn \(I( – 1;0)\) làm tâm đối xứng.

3. BÀI TẬP:

1. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số:

a) \(y = – {x^3} – 3{x^2} + 2.\)

b) \(y = 2{x^3} – 3{x^2} + 2.\)

c) \(y = {x^3} – 3{x^2} + 5x – 2.\)

d) \(y = – \frac{8}{3}{x^3} + 4{x^2} – 2x + \frac{1}{3}.\)

2. Cho hàm số \(y = – \frac{1}{3}{x^3} – {x^2} + 3x – \frac{1}{3}\) có đồ thị \((C).\)

a. Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số.

b. Chứng minh đồ thị \((C)\) nhận điểm uốn làm tâm đối xứng.

c. Viết phương trình tiếp tuyến của \((C)\) tại điểm uống.

3. Cho hàm số \(y = \frac{1}{3}{x^3} – {x^2} – 3x + 1.\)

a. Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số.

b. Tìm điểm trên \((C)\) có hệ số góc của tiếp tuyến nhỏ nhất.

c. Viết phương trình tiếp tuyến của \((C)\) biết vuông góc với đường thẳng \((d):y = \frac{1}{3}x + 10.\)

4. Cho hàm số \(y = {x^3} – 3m{x^2} + 3m – 1.\)

a. Định \(m\) để hàm số có cực trị. Viết phương trình đường thẳng qua các điểm cực trị của đồ thị hàm số.

b. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi \(m = 1.\)

5. Cho hàm số \(y = {x^3} – 3m{x^2} + 3\left( {{m^2} – 1} \right)x + 1 + m\) \(\left( {{C_m}} \right).\)

a. Định \(m\) để hàm số đạt cực tiểu tại \(x = 3.\)

b. Khảo sát và vẽ đồ thị \((C)\) của hàm số với \(m = 1.\)

6. Cho hàm số \(y = {x^3} – m{x^2} + (2m + 1)x – m – 2\) \(\left( {{C_m}} \right).\)

a. Khảo sát và vẽ đồ thị \((C)\) của hàm số khi \(m = 0.\)

b. Tìm điểm cố định của \(\left( {{C_m}} \right).\)

c. Tìm \(m\) để \(\left( {{C_m}} \right)\) cắt trục hoành tại \(3\) điểm có hoành độ dương.

7. Cho hàm số \(y = (m + 1){x^3} – (4m + 1)x – 3m + 1\) có đồ thị \(\left( {{C_m}} \right).\)

a. Chứng minh rằng với mọi \(m\) đồ thị hàm số đi qua \(3\) điểm cố định thẳng hàng.

b. Định \(m\) để đồ thị hàm số có tiếp tuyến vuông góc với đường thẳng đi qua \(3\) điểm cố định trên.

8. Cho hàm số \(y = {x^3} + m{x^2} – m – 1.\)

a. Viết phương trình tiếp tuyến của đồ thị hàm số tại các điểm cố định. Tìm quỹ tích giao điểm của các tiếp tuyến đó.

b. Khảo sát và vẽ đồ thị \((C)\) của hàm số khi \(m = -3.\)

c. Định \(a\) để điểm cực đại và điểm cực tiểu của đồ thị \((C)\) ở về hai phía khác nhau của đường tròn \((T)\): \({x^2} + {y^2} – 2ax – 4ay + 4{a^2} – 4 = 0.\)

9. Cho hàm số \(y = {x^3} – (2m + 1){x^2} + \left( {{m^2} – 4m + 3} \right)x + 3.\)

a. Khảo sát hàm số khi \(m = 1.\)

b. Xác định tất cả các giá trị \(m\) để hàm số có điểm cực đại và điểm cực tiểu ở về hai phía của trục tung.

10. Cho hàm số \(y = \frac{1}{3}{x^3} – m{x^2} – x + m + 1.\)

a. Khảo sát hàm số khi \(m = 0.\)

b. Trong tất cả các tiếp tuyến của đồ thị hàm số đã khảo sát, hãy tìm tiếp tuyến có hệ số góc nhỏ nhất.

c. Chứng rằng với mọi \(m\) hàm số đã cho có cực đại, cực tiểu. Hãy định \(m\) để khoảng cách giữa điểm cực đại, cực tiểu nhỏ nhất.

Vấn đề 2: Khảo sát hàm số trùng phương \(y = a{x^4} + b{x^2} + c\) \((a \ne 0).\)

1. PHƯƠNG PHÁP:

1. Tập xác định: \(D=R.\)

2. Khảo sát sự biến thiên

Giới hạn:

\(\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \) khi \(a /> 0.\)

\(\mathop {\lim }\limits_{x \to \pm \infty } y = – \infty \) khi \(a < 0.\)

\(y’ = 4a{x^3} + 2bx = 2x\left( {2a{x^2} + b} \right).\)

+ Nếu \(ab < 0\): \(y’ = 0 \Leftrightarrow x = 0\) hay \(x = \pm \sqrt {\frac{{ – b}}{{2a}}} .\)

Suy ra hàm số có ba cực trị.

+ Nếu \(ab \ge 0\): \(y’\) chỉ đổi dấu tại \(x = 0.\)

Suy ra hàm số có một cực trị, đạt tại \(x = 0.\)

Lập bảng biến thiên:

Tùy theo dấu của \(a\) và tích \(ab < 0\) hay \(ab \ge 0\) ta có 4 dạng bảng biến thiên.

Kết luận các khoảng đơn điệu và cực trị của hàm số.

3. Đồ thị

Có 4 dạng đồ thị tương ứng với 4 dạng bảng biến thiên:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Nhận xét: Hàm số trùng phương là hàm chẵn nên đồ thị nhận \(Oy\) làm trục đối xứng.

2. CÁC VÍ DỤ:

Ví dụ 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = {x^4} – 2{x^2} + 2.\)

1. Tập xác định: \(D = R.\)

2. Khảo sát sự biến thiên:

Giới hạn: \(\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty .\)

Sự biến thiên:

\(y’ = 4{x^3} – 4x = 4x\left( {{x^2} – 1} \right)\), \(y’ = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}

{x = 0\quad \Rightarrow y = 2}\\

{x = \pm 1 \Rightarrow y = 1}

\end{array}} \right..\)

Bảng biến thiên:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Hàm số đồng biến trong \(( – 1;0)\), \((1; + \infty )\), nghịch biến trong \(( – \infty , – 1)\), \((0;1).\)

Hàm số đạt cực đại tại \(x = 0\), \({y_{CĐ}} = 2\), hàm số đạt cực tiểu tại \(x = \pm 1\), \({y_{CT}} = 1.\)

3. Đồ thị:

Giá trị đặc biệt:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Đồ thị:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Nhận xét: Đồ thị nhận trục \(Oy\) làm trục đối xứng.

Ví dụ 2: Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = – \frac{{{x^4}}}{2} – {x^2} + \frac{3}{2}.\)

1. Tập xác định: \(D = R.\)

2. Khảo sát sự biến thiên:

Giới hạn: \(\mathop {\lim }\limits_{x \to \pm \infty } y = – \infty .\)

Sự biến thiên: \(y’ = – 2{x^3} – 2x = – 2x\left( {{x^2} + 1} \right)\), \(y’ = 0 \Leftrightarrow x = 0 \Rightarrow y = \frac{3}{2}.\)

Bảng biến thiên:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Hàm số đồng biến trong \(( – \infty ;0).\)

Hàm số nghịch biến trong \((0; + \infty ).\)

Hàm số đạt cực đại tại \(x = 0,{y_{CĐ}} = \frac{3}{2}.\)

3. Đồ thị:

Giá trị đặc biệt:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Đồ thị:

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

Nhận xét: Đồ thị nhận trục \(Oy\) làm trục đối xứng.

3. BÀI TẬP:

1. Khảo sát sự biến thiên và vẽ đồ thị các hàm số:

a) \(y = 1 + 2{x^2} – {x^4}.\)

b) \(y = {x^4} + 4{x^2} – 1.\)

c) \(y = – {x^4} – {x^2} + 2.\)

d) \(y = \frac{1}{4}{x^4} – 2{x^2} + 1.\)

2. Cho hàm số \(y = {x^4} + 2(m – 2){x^2} + {m^2} – 6m\) \(\left( {{C_m}} \right).\)

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi \(m = 1.\)

b) Định \(m\) để \(\left( {{{\rm{C}}_m}} \right)\) cắt \(Ox\) tại \(4\) điểm phân biệt.

3. Cho hàm số \(y = (1 – m){x^4} + m{x^2} + 2m – 1.\)

a) Định \(m\) để hàm số có đúng một cực trị.

b) Định \(m\) để hàm số đạt cực đại tại \(x = 1.\)

4. Cho hàm số \(y = {x^4} – 2m{x^2} – m – 1.\)

a) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số khi \(m = -1.\)

b) Viết phương trình tiếp tuyến \((d)\) của \((C)\) biết \((d)\) song song với đường thẳng \((\Delta ):8x + y = 0.\)

5. Cho hàm số \(y = f(x) = – \frac{{{x^4}}}{2} + a{x^2} + \frac{b}{2}.\)

a) Tìm \(a\), \(b\) để hàm số đạt cực trị bằng \(2\) khi \(x = 1.\)

b) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số với \(a\), \(b\) tìm được ở câu a.

c) Viết phương trình tiếp tuyến của \((C)\) tại các giao điểm của \((C)\) và trục hoành.

6. Cho hàm số \(y = {x^4} + 2m{x^2} + 1\) \(\left( {{C_m}} \right).\)

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi \(m = -1.\)

b) Tìm các giá trị của tham số \(m\) để \(\left( {{C_m}} \right)\) có ba điểm cực trị và đường tròn đi qua ba điểm này có bán kính bằng \(1.\)

7. Cho hàm số \(y = {x^4} + m{x^2} – m – 1\) \(\left( {{C_m}} \right).\)

a) Tìm các điểm cố định của \(\left( {{C_m}} \right).\)

b) Gọi \(A\) là điểm cố định có hoành độ dương, hãy tìm \(m\) để tiếp tuyến với đồ thị tại \(A\) song song với đường thẳng \(y = -2x.\)

8. Cho hàm số \(y = {(x – 1)^2}{(x – a)^2}\) có đồ thị \(\left( {{C_a}} \right).\)

a) Khảo sát và vẽ đồ thị \((C)\) của hàm số khi \(a = 0.\)

b) Xác định \(a\) để hàm số có đồ thị \(\left( {{C_a}} \right)\) có điểm cực đại.

c) Chứng minh rằng: Với mọi giá trị của \(a\) đồ thị \(\left( {{C_a}} \right)\) luôn có trục đối xứng cùng phương với trục tung.

9. Cho hàm số \(y = {x^4} – 2m{x^2} + 2m + {m^4}.\)

a) Với giá trị \(m\) nào thì hàm số có cực đại, cực tiểu đồng thời các điểm cực đại, cực tiểu lập thành một tam giác đều.

b) Khảo sát và vẽ đồ thị \((C)\) của hàm số khi \(m = 1.\)

10. Cho hàm số \(y = {x^4} – 2(m + 1){x^2} + m\) \((1).\)

a) Khảo sát và vẽ đồ thị \((C)\) của hàm số khi \(m = 1.\)

b) Tìm \(m\) để đồ thị hàm số \((1)\) có ba điểm cực trị \(A\), \(B\), \(C\) sao cho \(OA = BC\) trong đó \(O\) là gốc tọa độ, \(A\) là điểm cực trị thuộc trục tung và \(B\), \(C\) là hai điểm cực trị còn lại.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải Toán khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức với Đáp Án Mới Nhất

Toán học luôn là một môn học quan trọng, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Để hỗ trợ các bạn học sinh và giáo viên trong việc học tập và giảng dạy, bài viết này sẽ cung cấp lời giải chi tiết và đáp án chính xác cho chủ đề khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức, giúp bạn hiểu sâu và tự tin hơn khi làm bài tập.

1. Tổng Quan về Chủ Đề khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức là một trong những phần kiến thức quan trọng trong chương trình toán học, thường xuất hiện trong các bài kiểm tra và kỳ thi lớn. Việc nắm vững phần này không chỉ giúp bạn đạt điểm cao mà còn tạo nền tảng vững chắc để học các nội dung nâng cao hơn.

2. Các Bài Tập Đặc Trưng trong khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức

  • Bài tập cơ bản: Những bài tập này giúp bạn hiểu rõ định nghĩa, công thức và cách áp dụng kiến thức.
  • Bài tập nâng cao: Dành cho những bạn muốn thử sức với các dạng bài khó hơn, đòi hỏi tư duy sáng tạo và kỹ năng phân tích.
  • Bài tập ôn luyện: Bao gồm các câu hỏi tương tự đề thi thực tế, giúp bạn làm quen với cấu trúc và cách trình bày bài thi.

3. Hướng Dẫn Giải Chi Tiết

Chúng tôi cung cấp hướng dẫn từng bước giải bài tập, bao gồm:

  1. Phân tích đề bài để hiểu yêu cầu.
  2. Áp dụng công thức và phương pháp phù hợp.
  3. Trình bày lời giải rõ ràng và khoa học.

Mỗi bài giải đều kèm theo lời giải thích chi tiết, giúp bạn hiểu không chỉ cách làm mà còn cả lý do tại sao nên áp dụng phương pháp đó.

4. Đáp Án Mới Nhất và Chính Xác

Tất cả các bài tập đều đi kèm đáp án mới nhất, được kiểm tra kỹ lưỡng để đảm bảo độ chính xác cao. Điều này giúp bạn tự kiểm tra kết quả và khắc phục lỗi sai một cách nhanh chóng.

5. Tài Liệu Ôn Luyện Kèm Theo

Ngoài ra, bài viết còn cung cấp các tài liệu bổ trợ như:

  • Bảng công thức toán học liên quan đến khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức.
  • Các mẹo giải nhanh và cách tránh sai lầm thường gặp.
  • Đề thi thử và bài tập rèn luyện theo cấp độ.

6. Lợi Ích Khi Học Chủ Đề Này

  • Giúp bạn hiểu sâu bản chất của kiến thức thay vì chỉ học thuộc lòng.
  • Tăng khả năng tư duy logic và sáng tạo.
  • Tự tin hơn khi đối mặt với các kỳ thi quan trọng.

Kết Luận

Chủ đề khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức là một phần kiến thức thú vị và hữu ích trong toán học. Hãy sử dụng bài viết này như một công cụ hỗ trợ để bạn chinh phục mọi thử thách trong môn Toán. Đừng quên ôn tập thường xuyên và luyện tập nhiều dạng bài tập khác nhau để thành thạo hơn!

Chúc các bạn học tốt và đạt kết quả cao! 😊

>> Xem thêm đáp án chi tiết về: khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức.