Chào mừng các em học sinh đến với bài học số 2 trong chương trình Toán 7 tập 1 - Cánh diều. Bài học hôm nay sẽ tập trung vào các phép toán cơ bản với số hữu tỉ: cộng, trừ, nhân, chia. Chúng ta sẽ cùng nhau tìm hiểu quy tắc, ví dụ minh họa và các bài tập vận dụng để nắm vững kiến thức này.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em tự học tại nhà hiệu quả. Ngoài ra, chúng tôi còn có nhiều bài tập luyện tập và các tài liệu hỗ trợ học tập khác.
Bài 2 trong chương trình Toán 7 tập 1 - Cánh diều tập trung vào việc củng cố và mở rộng kiến thức về số hữu tỉ, đặc biệt là các phép toán cộng, trừ, nhân, chia. Việc nắm vững các quy tắc này là nền tảng quan trọng cho các bài học tiếp theo và các ứng dụng thực tế.
Trước khi đi vào các phép toán, chúng ta cần ôn lại khái niệm về số hữu tỉ. Số hữu tỉ là số có thể được biểu diễn dưới dạng phân số \frac{a}{b}, trong đó a là số nguyên và b là số nguyên dương. Các tính chất cơ bản của số hữu tỉ bao gồm tính giao hoán, tính kết hợp, tính chất phân phối của phép nhân đối với phép cộng và phép trừ.
Để cộng hoặc trừ hai số hữu tỉ, chúng ta cần quy đồng mẫu số. Sau khi quy đồng, ta cộng hoặc trừ các tử số và giữ nguyên mẫu số chung. Cụ thể:
Nếu mẫu số khác nhau, ta cần tìm mẫu số chung nhỏ nhất (MSC) để quy đồng.
Phép nhân số hữu tỉ thực hiện bằng cách nhân các tử số với nhau và nhân các mẫu số với nhau:
\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}
Lưu ý rằng, khi nhân các số hữu tỉ, ta có thể rút gọn phân số trước khi thực hiện phép nhân để đơn giản hóa tính toán.
Phép chia số hữu tỉ thực hiện bằng cách nhân số bị chia với nghịch đảo của số chia:
\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}
Nghịch đảo của một số hữu tỉ \frac{a}{b} là \frac{b}{a} (với a \neq 0).
Dưới đây là một số bài tập vận dụng để các em luyện tập:
Lời giải:
Bài học về cộng, trừ, nhân, chia số hữu tỉ là một bước quan trọng trong việc xây dựng nền tảng toán học vững chắc. Hãy luyện tập thường xuyên để nắm vững các quy tắc và kỹ năng giải bài tập. Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục tri thức.