Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 1 Toán 12 - Đề số 2, một công cụ hữu ích giúp các em học sinh ôn luyện và đánh giá năng lực bản thân trước kỳ thi quan trọng. Đề thi được biên soạn theo cấu trúc chuẩn của Bộ Giáo dục và Đào tạo, bao gồm nhiều dạng bài tập khác nhau, từ cơ bản đến nâng cao.
Với đáp án chi tiết và lời giải dễ hiểu, các em có thể tự học tại nhà, trau dồi kiến thức và kỹ năng giải đề một cách hiệu quả. Đây là cơ hội tuyệt vời để các em tự tin bước vào kỳ thi giữa kì 1 Toán 12 với kết quả tốt nhất.
Cho hàm số f(x) liên tục trên R có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
\(( - \infty ;3)\)
\((5; + \infty )\)
\((3;5)\)
\(\mathbb{R}\)
Đường cong dưới đây là đồ thị hàm số nào?
\(y = \frac{{2x - 1}}{{x + 1}}\)
\(y = \frac{{2x + 1}}{{x - 1}}\)
\(y = \frac{{2x + 1}}{{x + 1}}\)
\(y = \frac{{1 - 2x}}{{x - 1}}\)
Cho hàm số f(x) có đồ thị như hình dưới đây:
Giá trị lớn nhất của hàm số đã cho trên [-1;3] là:
y = 1
y = 2
y = -2
y = 3
Đồ thị hàm số dưới đây có bao nhiêu đường tiệm cận?
0
2
1
4
Đồ thị \(y = \frac{{{x^2} - 3x + 2}}{{x - 1}}\) có tất cả bao nhiêu đường tiệm cận đứng?
3
1
0
2
Tọa độ tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 3}}\) là?
(3;2)
(-3;2)
(-1;3)
(1;-3)
Trong không gian cho điểm O và bốn điểm A, B, C, D không thẳng hàng. Điều kiện cần và đủ để A, B, C, D tạo thành hình bình hành là?
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)
\(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} \)
\(\overrightarrow {OA} + \frac{1}{2}\overrightarrow {OB} = \overrightarrow {OC} + \frac{1}{2}\overrightarrow {OD} \)
\(\overrightarrow {OA} + \frac{1}{2}\overrightarrow {OC} = \overrightarrow {OB} + \frac{1}{2}\overrightarrow {OD} \)
Đồ thị của hàm số nào dưới đây có dạng như trong hình dưới?
\(y = {x^3} - 3{x^2} + 2\)
\(y = - {x^3} + 3{x^2} + 2\)
\(y = {x^3} + 3{x^2} + 2\)
\(y = - {x^3} - 3{x^2} + 2\)
Giá trị lớn nhất của hàm số \(\frac{{2x + 1}}{{x - 2}}\) trên đoạn \([ - \frac{1}{2};1]\) bằng:
0
\(\frac{1}{2}\)
-3
1
Cho hàm số \(f(x) = a{x^3} + b{x^2} + cx + d\) có bảng biến thiên như hình vẽ:
Xác định công thức của hàm số.
\(y = {x^3} - 3{x^2} + 1\)
\(y = - {x^3} - 3{x^2} + 1\)
\(y = {x^3} - 3{x^2} + 2\)
\(y = - {x^3} - 3{x^2} - 1\)
Công thức tính tích vô hướng của 2 vecto là?
\(\overrightarrow {a.} \overrightarrow b = \left| {\overrightarrow {a.} \overrightarrow b } \right|.\cos \left( {\overrightarrow {a,} \overrightarrow b } \right)\)
\(\overrightarrow {a.} \overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow {a,} \overrightarrow b } \right)\)
\(\overrightarrow {a.} \overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\sin \left( {\overrightarrow {a,} \overrightarrow b } \right)\)
\(\overrightarrow {a.} \overrightarrow b = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow {a,} \overrightarrow b } \right)\)
Cho ba vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng. Xét các vecto \(\overrightarrow x = 2\overrightarrow a - \overrightarrow b \); \(\overrightarrow y = - 4\overrightarrow a + 2\overrightarrow b \); \(\overrightarrow z = - 3\overrightarrow b - 2\overrightarrow c \). Chọn khẳng định đúng?
Hai vecto \(\overrightarrow y ,\overrightarrow z \) cùng phương
Hai vecto \(\overrightarrow x ,\overrightarrow y \) cùng phương
Hai vecto \(\overrightarrow x ,\overrightarrow z \) cùng phương
Ba vecto \(\overrightarrow x ,\overrightarrow y ,\overrightarrow z \) đồng phẳng.
Cho hàm số f(x) xác định trên R có bảng biến thiên như sau:
a) Hàm số f(x) đồng biến trên mỗi khoảng (-1;0) và (0;1)
b) Số điểm cực trị của hàm số đã cho là 3
c) Hàm số f(x) có giá trị lớn nhất bằng -3
d) Đồ thị hàm số không có đường tiệm cận
Cho hàm số \(y=x - \sqrt {{x^2} + 1} \).
a) Hàm số đã cho nghịch biến trên R
b) Đồ thị hàm số đã cho có cực tiểu
c) Đồ thị hàm số đã cho có 1 tiệm cận ngang
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O.
a) \(\overrightarrow {AB} = \overrightarrow {DC} \)
b) \(\overrightarrow {AC} = \overrightarrow {BD} \)
c) \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SO} \)
d) \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 2\overrightarrow {SO} \)
Cho hình hộp chữ nhật \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có \(AB = a\), \(BC = 2a\), \(A{A_1} = 3a\).
a) \(\left( {\overrightarrow {A{B_1}} ;\overrightarrow {{C_1}D} } \right) = {45^o}\)
b) \(\overrightarrow {{A_1}B} .\overrightarrow {{D_1}D} = 9{a^2}\)
c) \(\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {{C_1}{A_1}} .\overrightarrow {{C_1}{B_1}} \)
d) \(\overrightarrow {{A_1}{D_1}} .\overrightarrow {{C_1}C} = 0\)
Giá trị lớn nhất của hàm số \(y = x{(5 - 2x)^2}\) trên [0;3] là một phân số có dạng \(\frac{a}{b}\). Tính a + 2b.
Đáp án:
Khoảng cách từ điểm A(-5;1) đến đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) là bao nhiêu?
Đáp án:
Trong không gian Oxyz, cho hình bình hành ABCD. Biết A(1;0;1), B(2;1;2), và D(1;-1;1). Tọa độ điểm C là (a;b;c). Tính tổng a + b + c.
Đáp án:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G(x) = 0,025{x^2}(30 - x)\), trong đó x là liều lượng thuốc được tiêm cho bênh nhân (x được tính bằng milligram). Tính liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất.
Đáp án:
Một con nhện đang treo mình dưới một sợi tơ theo phương thẳng đứng thì bị một cơn gió thổi theo phương ngang làm dây treo lệch đi so với phương thẳng đứng một góc \({30^o}\). Biết trọng lượng của con nhện là P = 0,1 N. Xác định độ lớn của lực mà gió tác dụng lên con nhện ở vị trí cân bằng (kết quả làm tròn đến hàng phần trăm).
Đáp án:
Hình vẽ dưới đây mô tả một sân cầu long với kích thước theo chuẩn quốc tế. Ta chọn hệ trục Oxyz cho sân đó như hình vẽ (đơn vị trên mỗi trục là mét). Giả sử AB là một trụ cầu lông để căng lưới. Gọi (x;y;z) là tọa độ của \(\overrightarrow {AB} \). Tính x + y + x.
Đáp án:
Cho hàm số f(x) liên tục trên R có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
\(( - \infty ;3)\)
\((5; + \infty )\)
\((3;5)\)
\(\mathbb{R}\)
Đáp án : B
Quan sát bảng biến thiên và nhận xét.
Quan sát bảng biến thiên thấy y’ < 0 trên khoảng (3;5) nên hàm số nghịch biến trên khoảng (3;5).
Đường cong dưới đây là đồ thị hàm số nào?
\(y = \frac{{2x - 1}}{{x + 1}}\)
\(y = \frac{{2x + 1}}{{x - 1}}\)
\(y = \frac{{2x + 1}}{{x + 1}}\)
\(y = \frac{{1 - 2x}}{{x - 1}}\)
Đáp án : A
Quan sát đồ thị và nhận xét.
Nhìn vào đồ thị thấy ngay tiệm cận đứng x = -1, tiệm cận ngang y = 2. Loại đáp án B, D.
Đồ thị hàm số đi qua điểm (0;-1). Thay x = 0 vào đáp án A, C để tính y, thấy ở đồ thị đáp án A y = -1.
Cho hàm số f(x) có đồ thị như hình dưới đây:
Giá trị lớn nhất của hàm số đã cho trên [-1;3] là:
y = 1
y = 2
y = -2
y = 3
Đáp án : D
Quan sát đồ thị và nhận xét.
Hàm số đạt giá trị lớn nhất y = 3.
Đồ thị hàm số dưới đây có bao nhiêu đường tiệm cận?
0
2
1
4
Đáp án : D
Quan sát đồ thị và nhận xét.
Có tất cả 4 đường tiệm cận.
Đồ thị \(y = \frac{{{x^2} - 3x + 2}}{{x - 1}}\) có tất cả bao nhiêu đường tiệm cận đứng?
3
1
0
2
Đáp án : B
Tìm đường tiệm cận đứng thông qua giới hạn của hàm số.
Ta có: \(y = \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}} = \frac{{(x - 1)(x - 2)}}{{(x - 1)(x + 1)}} = \frac{{x - 2}}{{x + 1}}.\)
\( \Rightarrow \mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{x - 2}}{{x + 1}} = - \infty .\)
Vậy x = -1 là tiệm cận đứng của đồ thị hàm số.
Tọa độ tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 3}}\) là?
(3;2)
(-3;2)
(-1;3)
(1;-3)
Đáp án : A
Tìm giao điểm hai đường tiệm cận của đồ thị hàm số.
Vậy tâm đối xứng của đồ thị có tọa độ (3;2).
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2\) suy ra đuờng thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Ta có \(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\) \(\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \) suy ra đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.
Vậy tâm đối xứng của đồ thị có tọa độ (3;2).
Trong không gian cho điểm O và bốn điểm A, B, C, D không thẳng hàng. Điều kiện cần và đủ để A, B, C, D tạo thành hình bình hành là?
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)
\(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} \)
\(\overrightarrow {OA} + \frac{1}{2}\overrightarrow {OB} = \overrightarrow {OC} + \frac{1}{2}\overrightarrow {OD} \)
\(\overrightarrow {OA} + \frac{1}{2}\overrightarrow {OC} = \overrightarrow {OB} + \frac{1}{2}\overrightarrow {OD} \)
Đáp án : B
Dựa vào lí thuyết phép cộng (trừ) các vecto trong không gian, các vecto bằng nhau, đối nhau, quy tắc hình bình hành.
Điều kiện cần và đủ để ABCD là hình bình hành là: \(\overrightarrow {BD} = \overrightarrow {BA} + \overrightarrow {BC} \) (quy tắc hình bình hành).
Với mọi điểm O bất kì khác A, B, C, D, ta có:
\(\overrightarrow {BD} = \overrightarrow {BA} + \overrightarrow {BC} \Leftrightarrow \overrightarrow {OD} - \overrightarrow {OB} = \overrightarrow {OA} - \overrightarrow {OB} + \overrightarrow {OC} - \overrightarrow {OB} \Leftrightarrow \overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} .\)\(\)
Đồ thị của hàm số nào dưới đây có dạng như trong hình dưới?
\(y = {x^3} - 3{x^2} + 2\)
\(y = - {x^3} + 3{x^2} + 2\)
\(y = {x^3} + 3{x^2} + 2\)
\(y = - {x^3} - 3{x^2} + 2\)
Đáp án : A
Quan sát đồ thị và nhận xét.
Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \) nên a > 0. Loại B, D.
Hàm số đạt cực trị tại \({x_1} = 0\) và \({x_2} > 0\).
Xét hàm số \(y = {x^3} + 3{x^2} + 2\) có \(y' = 3{x^2} + 6x = 0\) suy ra x = -2 hoặc x = 0.
Suy ra \(y = {x^3} + 3{x^2} + 2\) đạt cực trị tại \({x_1} = 0\) và \({x_2} < 0\). Loại C.
Giá trị lớn nhất của hàm số \(\frac{{2x + 1}}{{x - 2}}\) trên đoạn \([ - \frac{1}{2};1]\) bằng:
0
\(\frac{1}{2}\)
-3
1
Đáp án : A
Xét sự biến thiên và tìm các giá trị của y tại x khi y’ = 0, khi x với giá trị ở hai đầu mút.
Tập xác định \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).
\(y' = \frac{{ - 5}}{{{{(x - 2)}^2}}} < 0,\forall x \in \left[ { - \frac{1}{2};1} \right]\)
\(y\left( { - \frac{1}{2}} \right) = 0,\) \(y\left( 1 \right) = - 3\).
Vậy giá trị lớn nhất của hàm số trên đoạn \([ - \frac{1}{2};1]\) bằng 0.
Cho hàm số \(f(x) = a{x^3} + b{x^2} + cx + d\) có bảng biến thiên như hình vẽ:
Xác định công thức của hàm số.
\(y = {x^3} - 3{x^2} + 1\)
\(y = - {x^3} - 3{x^2} + 1\)
\(y = {x^3} - 3{x^2} + 2\)
\(y = - {x^3} - 3{x^2} - 1\)
Đáp án : B
Quan sát bảng biến thiên, tìm đạo hàm, xét các điểm cực trị và các giá trị của hàm số tại điểm đó, thay số vào f(x), f’(x) để tìm các hệ số của phương trình.
Ta có: \(f'(x) = 3a{x^2} + 2bx + c\). Đồ thị đạt cực trị tại các điểm (0;1) và (-2;-3) nên f’(0) = 0, f’(-2) = 0.
Đồ thị hàm số đi qua các điểm (-2;-3) và (0;1) nên f(-2) = -3, f(0) = 1.
Ta có hệ phương trình sau:
\(\left\{ {\begin{array}{*{20}{c}}{f'(0) = 0}\\{f(0) = 1}\\{f'( - 2) = 0}\\{f( - 2) = - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{c = 0}\\{d = 1}\\{12a - 4b = 0}\\{ - 8a + 4b + 1 = - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{c = 0}\\{d = 1}\\{a = - 1}\\{b = - 3}\end{array}} \right.\)
Vậy hàm số cần tìm là: \(y = - {x^3} - 3{x^2} + 1\).
Công thức tính tích vô hướng của 2 vecto là?
\(\overrightarrow {a.} \overrightarrow b = \left| {\overrightarrow {a.} \overrightarrow b } \right|.\cos \left( {\overrightarrow {a,} \overrightarrow b } \right)\)
\(\overrightarrow {a.} \overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow {a,} \overrightarrow b } \right)\)
\(\overrightarrow {a.} \overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\sin \left( {\overrightarrow {a,} \overrightarrow b } \right)\)
\(\overrightarrow {a.} \overrightarrow b = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow {a,} \overrightarrow b } \right)\)
Đáp án : B
Dựa vào lý thuyết công thức tính tích vô hướng.
Công thức tính tích vô hướng của 2 vecto là: \(\overrightarrow {a.} \overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow {a,} \overrightarrow b } \right).\)
Cho ba vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng. Xét các vecto \(\overrightarrow x = 2\overrightarrow a - \overrightarrow b \); \(\overrightarrow y = - 4\overrightarrow a + 2\overrightarrow b \); \(\overrightarrow z = - 3\overrightarrow b - 2\overrightarrow c \). Chọn khẳng định đúng?
Hai vecto \(\overrightarrow y ,\overrightarrow z \) cùng phương
Hai vecto \(\overrightarrow x ,\overrightarrow y \) cùng phương
Hai vecto \(\overrightarrow x ,\overrightarrow z \) cùng phương
Ba vecto \(\overrightarrow x ,\overrightarrow y ,\overrightarrow z \) đồng phẳng.
Đáp án : B
Sử dụng lí thuyết hai vecto cùng phương. \(\overrightarrow x \) cùng phương \(\overrightarrow y \) khi và chỉ khi \(\overrightarrow x = k\overrightarrow y \) với \(k \ne 0\).
Nhận thấy: \(\overrightarrow y = - 4\overrightarrow a + 2\overrightarrow b = - 2\left( {2\overrightarrow a + \overrightarrow b } \right) = - 2\overrightarrow x \) nên hai vecto \(\overrightarrow x ,\overrightarrow y \) cùng phương.
Cho hàm số f(x) xác định trên R có bảng biến thiên như sau:
a) Hàm số f(x) đồng biến trên mỗi khoảng (-1;0) và (0;1)
b) Số điểm cực trị của hàm số đã cho là 3
c) Hàm số f(x) có giá trị lớn nhất bằng -3
d) Đồ thị hàm số không có đường tiệm cận
a) Hàm số f(x) đồng biến trên mỗi khoảng (-1;0) và (0;1)
b) Số điểm cực trị của hàm số đã cho là 3
c) Hàm số f(x) có giá trị lớn nhất bằng -3
d) Đồ thị hàm số không có đường tiệm cận
Quan sát đồ bảng biến thiên và nhận xét.
a) Sai. Hàm số f(x) nghịch biên trên (0;1) và đồng biến trên (-1;0).
b) Đúng. Số điểm cực trị của hàm số đã cho là 3 (x = -1, x = 0, x = 1).
c) Sai. Hàm số f(x) không có giá trị lớn nhất.
d) Đúng. Đồ thị hàm số liên tục trên và không có tiệm cận.
Cho hàm số \(y=x - \sqrt {{x^2} + 1} \).
a) Hàm số đã cho nghịch biến trên R
b) Đồ thị hàm số đã cho có cực tiểu
c) Đồ thị hàm số đã cho có 1 tiệm cận ngang
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ
a) Hàm số đã cho nghịch biến trên R
b) Đồ thị hàm số đã cho có cực tiểu
c) Đồ thị hàm số đã cho có 1 tiệm cận ngang
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ
Lập bảng biến thiên và nhận xét.
Tập xác định: \(D = \mathbb{R}\).
\(y' = 1 - \frac{x}{{\sqrt {{x^2} + 1} }} = \frac{{\sqrt {{x^2} + 1} - x}}{{\sqrt {{x^2} + 1} }} \).
Vì \(\sqrt {{x^2} + 1} > \sqrt {{x^2}} = \left| x \right| \Rightarrow \sqrt {{x^2} + 1} > x \Rightarrow \sqrt {{x^2} + 1} - x > 0\).
Mà \(\sqrt {{x^2} + 1} > 0\).
Vậy y’ > 0 với mọi x.
Ta có bảng biến thiên:
a) Sai. Hàm số đồng biến trên R.
b) Sai. Đồ thị hàm số đã cho không có cực tiểu.
c) Đúng. Đồ thị hàm số đã cho có tiệm cận ngang y = 0 vì \(\mathop {\lim }\limits_{x \to + \infty } y = 0\).
d) Đúng. Thay tọa độ x = 0, y = 0 của O(0;0) vào phương trình xem có thỏa mãn không:
\(0 = 0 - \sqrt {{0^2} + 1} \) (vô lí).
Vậy đồ thị hàm số không đi qua gốc tọa độ.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O.
a) \(\overrightarrow {AB} = \overrightarrow {DC} \)
b) \(\overrightarrow {AC} = \overrightarrow {BD} \)
c) \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SO} \)
d) \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 2\overrightarrow {SO} \)
a) \(\overrightarrow {AB} = \overrightarrow {DC} \)
b) \(\overrightarrow {AC} = \overrightarrow {BD} \)
c) \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SO} \)
d) \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 2\overrightarrow {SO} \)
Sử dụng quy tắc cộng vecto, lý thuyết các vecto bằng nhau, vecto đối nhau, quy tắc trung điểm, quy tắc trọng tâm.
a) Đúng. Vì hai vecto trên cùng hướng và cùng độ dài.
b) Sai. Vì hai vecto trên không cùng hướng.
c) Sai. Vì O là trung điểm của AC nên \(\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} \).
d) Sai. Vì \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} + \overrightarrow {SB} + \overrightarrow {SD} = 2\overrightarrow {SO} + 2\overrightarrow {SO} = 4\overrightarrow {SO} \).
Cho hình hộp chữ nhật \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có \(AB = a\), \(BC = 2a\), \(A{A_1} = 3a\).
a) \(\left( {\overrightarrow {A{B_1}} ;\overrightarrow {{C_1}D} } \right) = {45^o}\)
b) \(\overrightarrow {{A_1}B} .\overrightarrow {{D_1}D} = 9{a^2}\)
c) \(\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {{C_1}{A_1}} .\overrightarrow {{C_1}{B_1}} \)
d) \(\overrightarrow {{A_1}{D_1}} .\overrightarrow {{C_1}C} = 0\)
a) \(\left( {\overrightarrow {A{B_1}} ;\overrightarrow {{C_1}D} } \right) = {45^o}\)
b) \(\overrightarrow {{A_1}B} .\overrightarrow {{D_1}D} = 9{a^2}\)
c) \(\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {{C_1}{A_1}} .\overrightarrow {{C_1}{B_1}} \)
d) \(\overrightarrow {{A_1}{D_1}} .\overrightarrow {{C_1}C} = 0\)
Sử dụng lý thuyết các vecto bằng nhau, các vecto đối nhau, góc giữa hai vecto.
a) Sai. Vì hai vecto trên ngược hướng nên \(\left( {\overrightarrow {A{B_1}} ;\overrightarrow {{C_1}D} } \right) = {180^o}\).
b) Đúng. \(\overrightarrow {{A_1}B} .\overrightarrow {{D_1}D} = \overrightarrow {{A_1}B} .\overrightarrow {{A_1}A} = \left| {\overrightarrow {{A_1}B} } \right|.\left| {\overrightarrow {{A_1}A} } \right|\cos \left( {\overrightarrow {{A_1}B} ,\overrightarrow {{A_1}A} } \right) = a\sqrt {10} .3a.\frac{{3a}}{{a\sqrt {10} }} = 9{a^2}\).
c) Đúng. \(\overrightarrow {AC} .\overrightarrow {AD} = - \overrightarrow {{C_1}{A_1}} .\left( { - \overrightarrow {{C_1}{B_1}} } \right) = \overrightarrow {{C_1}{A_1}} .\overrightarrow {{C_1}{B_1}} \).
d) Đúng. \(\overrightarrow {{A_1}{D_1}} .\overrightarrow {{C_1}C} = \overrightarrow {{A_1}{D_1}} .\overrightarrow {{D_1}D} = 0\) (vì \(\overrightarrow {{A_1}{D_1}} \) và \(\overrightarrow {{D_1}D} \) vuông góc với nhau).
Giá trị lớn nhất của hàm số \(y = x{(5 - 2x)^2}\) trên [0;3] là một phân số có dạng \(\frac{a}{b}\). Tính a + 2b.
Đáp án:
Đáp án:
- Tính y’, tìm các nghiệm của y’ = 0
- Tìm giá trị lớn nhất điểm cực đại, cực tiểu của hàm số
Ta có: \(y' = 1{(5 - 2x)^2} + x.2(5 - 2x).(5 - 2x)' = 25 - 29x + 4{x^2} - 20x + 8{x^2} = 12{x^2} - 40x + 25\).
\(y' = 0\) khi \(x = \frac{5}{2}\) hoặc \(x = \frac{5}{6}\).
Ta có: \(y(0) = 0\); \(y\left( {\frac{5}{6}} \right) = \frac{{250}}{{27}}\); \(y\left( {\frac{5}{2}} \right) = 0\); \(y(3) = 3\).
Vậy giá trị lớn nhất của hàm số trên [0;3] là \(\frac{{250}}{{27}}\) khi \(x = \frac{5}{6}\).
Vậy \(a = 250,b = 27\). Khi đó \(a + 2b = 250 + 2.27 = 304.\)
Khoảng cách từ điểm A(-5;1) đến đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) là bao nhiêu?
Đáp án:
Đáp án:
Tìm đường tiệm cận đứng của đồ thị bằng cách tìm giới hạn. Từ đó tính khoảng cách từ A đến tiệm cận.
Tập xác định: \(D = [ - 1;1]\backslash \{ 0\} \).
Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} = + \infty \), \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} = - \infty \).
Suy ra đường thẳng x = 0 (trục Oy) là đường tiệm cận đứng của đồ thị hàm số.
Vì hoành độ điểm A là -5 nên khoảng cách \(d(A,Oy) = \left| { - 5} \right| = 5\).
Trong không gian Oxyz, cho hình bình hành ABCD. Biết A(1;0;1), B(2;1;2), và D(1;-1;1). Tọa độ điểm C là (a;b;c). Tính tổng a + b + c.
Đáp án:
Đáp án:
Sử dụng quy tắc hình bình hành.
Vì ABCD là hình bình hành nên \(\overrightarrow {DC} = \overrightarrow {AB} \).
Ta có: \(\overrightarrow {DC} = (a - 1;b + 1c - 1)\) và \(\overrightarrow {AB} = (1;1;1)\).
Suy ra \(\left\{ {\begin{array}{*{20}{c}}{a - 1 = 1}\\{b + 1 = 1}\\{c - 1 = 1}\end{array} \Leftrightarrow } \right.\left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 0}\\{c = 2}\end{array}} \right.\)
Vậy \(a = 2,b = 0,c = 2\). Khi đó \(a + b + c = 2 + 0 + 2 = 4\).
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G(x) = 0,025{x^2}(30 - x)\), trong đó x là liều lượng thuốc được tiêm cho bênh nhân (x được tính bằng milligram). Tính liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất.
Đáp án:
Đáp án:
Lập bảng biến thiên cho hàm số tính độ giảm huyết áp đó rồi tìm giá trị lớn nhất của hàm số đó.
Xét hàm số \(G(x) = 0,75{x^2} - 0,025{x^3};x \in (0; + \infty )\).
Ta có: \(G'(x) = 1,5x - 0,075{x^2} = 0 \Leftrightarrow \) x = 0 hoặc x = 20.
Bảng biến thiên:
Từ bảng biến thiên, hàm G(x) đạt giá trị lớn nhất tại x = 20. Khi đó, độ giảm huyết áp là 100.
Một con nhện đang treo mình dưới một sợi tơ theo phương thẳng đứng thì bị một cơn gió thổi theo phương ngang làm dây treo lệch đi so với phương thẳng đứng một góc \({30^o}\). Biết trọng lượng của con nhện là P = 0,1 N. Xác định độ lớn của lực mà gió tác dụng lên con nhện ở vị trí cân bằng (kết quả làm tròn đến hàng phần trăm).
Đáp án:
Đáp án:
Tính lực F thông qua góc lượng giác.
Khi con nhện và sợi tơ cân bằng như hình dưới:
Ta có: \(\tan {30^o} = \frac{F}{P}\), suy ra \(F = P.\tan {30^o} = 0,1.\frac{1}{{\sqrt 3 }} \approx 0,06\) (N).
Hình vẽ dưới đây mô tả một sân cầu long với kích thước theo chuẩn quốc tế. Ta chọn hệ trục Oxyz cho sân đó như hình vẽ (đơn vị trên mỗi trục là mét). Giả sử AB là một trụ cầu lông để căng lưới. Gọi (x;y;z) là tọa độ của \(\overrightarrow {AB} \). Tính x + y + x.
Đáp án:
Đáp án:
Tìm tọa độ của A, B bằng cách quan sát hình vẽ, từ đó tính tọa độ \(\overrightarrow {AB} \).
Quan sát hình vẽ, thấy điểm A có tọa độ \(\left( {6,1;\frac{{13,4}}{2};0} \right) = \left( {6,1;6,7;0} \right)\).
Điểm B có tọa độ \(\left( {6,1;\frac{{13,4}}{2};1,55} \right) = \left( {6,1;6,7;1,55} \right)\).
Suy ra \(\overrightarrow {AB} = (0;0;1,55)\).
Vậy x + y + z = 0 + 0 + 1,55 = 1,55.
Đề thi giữa kì 1 Toán 12 - Đề số 2 đóng vai trò quan trọng trong việc đánh giá mức độ nắm vững kiến thức và kỹ năng giải toán của học sinh sau một thời gian học tập. Đề thi này thường bao gồm các nội dung trọng tâm như hàm số, đạo hàm, tích phân, số phức, và hình học không gian. Việc làm quen với cấu trúc đề thi và các dạng bài tập thường gặp là yếu tố then chốt để đạt kết quả cao.
Thông thường, đề thi giữa kì 1 Toán 12 - Đề số 2 có cấu trúc tương tự như đề thi chính thức của Bộ Giáo dục và Đào tạo, bao gồm:
Các dạng bài tập thường xuất hiện trong đề thi bao gồm:
1. Dạng bài tập về hàm số:
Để giải các bài tập về hàm số, học sinh cần nắm vững các kiến thức về tập xác định, tập giá trị, tính đơn điệu, cực trị, và đồ thị của hàm số. Sử dụng đạo hàm để xác định các điểm cực trị và khoảng đơn điệu của hàm số là một kỹ năng quan trọng.
2. Dạng bài tập về đạo hàm:
Khi giải các bài tập về đạo hàm, học sinh cần nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản và các quy tắc tính đạo hàm của hàm hợp. Ứng dụng đạo hàm để giải các bài toán về cực trị, khoảng đơn điệu, và tiếp tuyến đòi hỏi sự hiểu biết sâu sắc về ý nghĩa hình học của đạo hàm.
3. Dạng bài tập về tích phân:
Để tính tích phân xác định, học sinh cần nắm vững các phương pháp tính tích phân cơ bản như phương pháp đổi biến số và phương pháp tích phân từng phần. Ứng dụng tích phân để tính diện tích hình phẳng đòi hỏi sự hiểu biết về mối liên hệ giữa tích phân và diện tích.
Để đạt kết quả tốt trong kỳ thi giữa kì 1 Toán 12, học sinh cần luyện tập thường xuyên với các đề thi thử và đề thi chính thức. Đề thi giữa kì 1 Toán 12 - Đề số 2 tại giaitoan.edu.vn là một nguồn tài liệu hữu ích giúp các em làm quen với cấu trúc đề thi, các dạng bài tập thường gặp, và rèn luyện kỹ năng giải đề. Sau khi làm đề thi, các em nên tự đánh giá kết quả và phân tích các lỗi sai để rút kinh nghiệm và cải thiện kỹ năng giải toán.
Ngoài việc luyện tập với đề thi, học sinh cũng nên ôn tập lại các kiến thức cơ bản và các công thức quan trọng trong chương trình Toán 12. Các tài liệu ôn tập bổ sung như sách giáo khoa, sách bài tập, và các bài giảng trực tuyến có thể giúp các em củng cố kiến thức và hiểu sâu hơn về các khái niệm toán học.
Giaitoan.edu.vn hy vọng rằng Đề thi giữa kì 1 Toán 12 - Đề số 2 sẽ là một công cụ hữu ích giúp các em học sinh ôn tập và đạt kết quả tốt nhất trong kỳ thi sắp tới. Chúc các em thành công!