Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8

Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8

Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8, được biên soạn theo chuẩn chương trình học mới nhất. Đề thi này là tài liệu ôn tập và luyện thi vô cùng hữu ích cho học sinh trước kỳ kiểm tra.

Đề thi bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và nắm vững kiến thức đã học.

Đề bài

    Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Góc có số đo \(\frac{\pi }{6}\) radian bằng bao nhiêu độ?

    • A.

      \({30^o}\)

    • B.

      \({45^o}\)

    • C.

      \({60^o}\)

    • D.

      \({90^o}\)

    Câu 2 :

    Cho \(\cos \alpha = - \frac{1}{4}\) với \(\pi < \alpha < \frac{{3\pi }}{2}\). Giá trị của \(\sin \alpha \) là?

    • A.

      \(\sin \alpha = \frac{{\sqrt {15} }}{4}\)

    • B.

      \(\sin \alpha = - \frac{{\sqrt {15} }}{4}\)

    • C.

      \(\sin \alpha = \frac{{15}}{{16}}\)

    • D.

      \(\sin \alpha = - \frac{{15}}{{16}}\)

    Câu 3 :

    Giá trị lượng giác \(\cos \left( {\frac{{37\pi }}{{12}}} \right)\) bằng?

    • A.

      \(\frac{{\sqrt 6 + \sqrt 2 }}{4}\)

    • B.

      \(\frac{{\sqrt 6 - \sqrt 2 }}{4}\)

    • C.

      \( - \frac{{\sqrt 6 + \sqrt 2 }}{4}\)

    • D.

      \( - \frac{{\sqrt 6 - \sqrt 2 }}{4}\)

    Câu 4 :

    Hàm số nào sau đây là hàm số chẵn?

    • A.

      \(y = \left| {\sin x} \right|\)

    • B.

      \(y = {x^2}.\sin x\)

    • C.

      \(y = \frac{x}{{\cos x}}\)

    • D.

      \(y = x + \sin x\)

    Câu 5 :

    Nghiệm của phương trình \(\cos x = 0\) là?

    • A.

      \(x = k2\pi ,k \in \mathbb{Z}\)

    • B.

      \(x = k\pi ,k \in \mathbb{Z}\)

    • C.

      \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

    • D.

      \(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)

    Câu 6 :

    Số hạng thứ 3 của dãy số \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_n} = 2{u_{n - 1}} + 3}\end{array}} \right.\) là?

    • A.

      5

    • B.

      8

    • C.

      28

    • D.

      13

    Câu 7 :

    Dãy số nào sau đây là cấp số cộng?

    • A.

      1; 4; 8; 10

    • B.

      2; 3; 5; 8; 9

    • C.

      0; 2; 4; 6; 8

    • D.

      1; 3; -5; -7; -9

    Câu 8 :

    Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 12\) và công bội \(q = - 2\). Số hạng thứ sáu của cấp số nhân đã cho bằng

    • A.

      2

    • B.

      -384

    • C.

      -24

    • D.

      -34

    Câu 9 :

    Trên mặt phẳng cho bốn điểm A, B, C, D như hình vẽ. Ba điểm nào sau đây không xác định một mặt phẳng?

    Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 0 1

    • A.

      A, B, C

    • B.

      B, C, D

    • C.

      A, B, D

    • D.

      A, C, D

    Câu 10 :

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Chọn khẳng định đúng.

    Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 0 2

    • A.

      AB//(SBD)

    • B.

      BC//(SCD)

    • C.

      AD//(SBC)

    • D.

      BD//(SAC)

    Câu 11 :

    Số nghiệm của phương trình \(\sin 2x + \cos x = 0\) trên \([0;2\pi ]\) là

    • A.

      3

    • B.

      1

    • C.

      2

    • D.

      4

    Câu 12 :

    Cho cấp số cộng \(({u_n})\) có \({u_5} = - 10\) và \({u_{15}} = 60\). Tổng 20 số hạng đầu tiên của cấp số cộng là

    • A.

      560

    • B.

      480

    • C.

      570

    • D.

      475

    Phần II: Câu trắc nghiệm đúng sai.
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Cho phương trình lượng giác \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0\). Khi đó

    a) Phương trình tương đương \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \frac{\pi }{3}\)

    Đúng
    Sai

    b) Phương trình có nghiệm là \(x = \frac{\pi }{4} + k2\pi \); \(x = \frac{{7\pi }}{{12}} + k2\pi \) \((k \in \mathbb{Z})\)

    Đúng
    Sai

    c) Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\)

    Đúng
    Sai

    d) Số nghiệm của phương trình trong khoảng \(( - \pi ;\pi )\) là hai nghiệm

    Đúng
    Sai
    Câu 2 :

    Cho \(\cos \alpha = - \frac{1}{4}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\). Khi đó

    a) \({\sin ^2}\alpha = \frac{{15}}{{16}}\)

    Đúng
    Sai

    b) \(\sin \alpha = \frac{{\sqrt {15} }}{4}\)

    Đúng
    Sai

    c) \(\tan \alpha = \sqrt {15} \)

    Đúng
    Sai

    d) \(\cot \alpha = - \frac{1}{{\sqrt {15} }}\)

    Đúng
    Sai
    Câu 3 :

    Cho dãy số \(({u_n})\) biết \({u_n} = {2^n} + 1\). Khi đó

    a) Dãy số \(({u_n})\) là dãy số tăng

    Đúng
    Sai

    b) Dãy số \(({u_n})\) là dãy số bị chặn

    Đúng
    Sai

    c) \({u_6} = 65\)

    Đúng
    Sai

    d) Số hạng thứ n + 2 của dãy số là \({u_{n + 2}} = {2^n}.2\)

    Đúng
    Sai
    Câu 4 :

    Trong mặt phẳng (P), cho hình bình hành ABCD tâm O, ngoài mặt phẳng (P) cho một điểm S.

    a) C là một điểm chung của hai mặt phẳng (SAB) và (SCD)

    Đúng
    Sai

    b) Giao tuyến của hai mặt phẳng (SCB) và (SCD) là đường thẳng SC

    Đúng
    Sai

    c) Đường thẳng AB song song với mặt phẳng (SCD)

    Đúng
    Sai

    d) Giao điểm của đường thẳng BC với mặt phẳng (SBD) là điểm C

    Đúng
    Sai
    Phần III: Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6.
    Câu 1 :

    Hằng ngày mực nước tại một cảng biển lên xuống theo thủy triều. Độ sâu h (m) của mực nước theo thời gian t (giờ) trong một ngày được cho bởi công thức \(h = 11 + 2\sin \left( {\frac{\pi }{{12}}t} \right)\) với \(0 \le t \le 24\). Tính thời điểm mực nước tại cảng cao nhất.

    Đáp án:

    Câu 2 :

    Phương trình \(2\sin 2x + 4\cos x = 0\) có bao nhiêu nghiệm trong khoảng (0;3000)?

    Đáp án:

    Câu 3 :

    Công ty cây xanh X trồng 496 cây hoa trong một khu vườn hình tam giác như sau: hàng thứ nhất trồng 1 cây hoa, kể từ hàng thứ hai trở đi số cây hoa trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi công ty cây xanh X trồng được bao nhiêu hàng cây trong khu vườn hình tam giác đó.

    Đáp án:

    Câu 4 :

    Cho dãy số \(({u_n})\) biết \({u_n} = n + \frac{1}{n}\). Tìm m để dãy số \(({u_n})\) bị chặn dưới bởi m.

    Đáp án:

    Câu 5 :

    Cho tứ diện ABCD, M thuộc đoạn AB, thiết diện của hình chóp cắt bởi mặt phẳng \(\left( \alpha \right)\) đi qua M song song với BD và AC là hình có mấy cạnh?

    Đáp án:

    Câu 6 :

    Cho tứ diện ABCD có N, P lần lượt là trung điểm của BC, BD. Điểm M là điểm thay đổi trên cạnh AC. Mặt phẳng (MNP) cắt AD tại Q. Giả sử AC = kAM. Tìm k để tứ giác MNPQ là hình bình hành.

    Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 0 3

    Đáp án:

    Lời giải và đáp án

      Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Góc có số đo \(\frac{\pi }{6}\) radian bằng bao nhiêu độ?

      • A.

        \({30^o}\)

      • B.

        \({45^o}\)

      • C.

        \({60^o}\)

      • D.

        \({90^o}\)

      Đáp án : A

      Phương pháp giải :

      Áp dụng quan hệ giữa radian và độ: \(1rad = {\left( {\frac{{180}}{\pi }} \right)^o}\), \({1^o} = \frac{\pi }{{180}}rad\).

      Lời giải chi tiết :

      Ta có: \(\frac{\pi }{6}rad = \frac{\pi }{6}.\frac{{{{180}^o}}}{\pi } = {30^o}\).

      Câu 2 :

      Cho \(\cos \alpha = - \frac{1}{4}\) với \(\pi < \alpha < \frac{{3\pi }}{2}\). Giá trị của \(\sin \alpha \) là?

      • A.

        \(\sin \alpha = \frac{{\sqrt {15} }}{4}\)

      • B.

        \(\sin \alpha = - \frac{{\sqrt {15} }}{4}\)

      • C.

        \(\sin \alpha = \frac{{15}}{{16}}\)

      • D.

        \(\sin \alpha = - \frac{{15}}{{16}}\)

      Đáp án : B

      Phương pháp giải :

      Áp dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và sử dụng đường tròn lượng giác để xét dấu.

      Lời giải chi tiết :

      Ta có: \({\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {\frac{1}{4}} \right)^2} = \frac{{15}}{{16}}\), suy ra \(\sin \alpha = \pm \frac{{\sqrt {15} }}{4}\).

      Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên điểm cuối của cung \(\alpha \) thuộc cung phần tư thứ III, do đó \(\sin \alpha < 0\).

      Vậy \(\sin \alpha = - \frac{{\sqrt {15} }}{4}\).

      Câu 3 :

      Giá trị lượng giác \(\cos \left( {\frac{{37\pi }}{{12}}} \right)\) bằng?

      • A.

        \(\frac{{\sqrt 6 + \sqrt 2 }}{4}\)

      • B.

        \(\frac{{\sqrt 6 - \sqrt 2 }}{4}\)

      • C.

        \( - \frac{{\sqrt 6 + \sqrt 2 }}{4}\)

      • D.

        \( - \frac{{\sqrt 6 - \sqrt 2 }}{4}\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng công thức cộng lượng giác \(\cos (a - b) = \cos a.\cos b + \sin b.\sin a\).

      Lời giải chi tiết :

      \(\cos \frac{{37\pi }}{{12}} = \cos \left( {3\pi + \frac{\pi }{{12}}} \right) = \cos \left( {\pi + \frac{\pi }{{12}}} \right) = - \cos \frac{\pi }{{12}} = - \cos \left( {\frac{\pi }{3} - \frac{\pi }{4}} \right)\)

      \( = - \left( {\cos \frac{\pi }{3}.\cos \frac{\pi }{4} + \sin \frac{\pi }{3}.\sin \frac{\pi }{4}} \right) = - \frac{{\sqrt 6 + \sqrt 2 }}{4}\).

      Câu 4 :

      Hàm số nào sau đây là hàm số chẵn?

      • A.

        \(y = \left| {\sin x} \right|\)

      • B.

        \(y = {x^2}.\sin x\)

      • C.

        \(y = \frac{x}{{\cos x}}\)

      • D.

        \(y = x + \sin x\)

      Đáp án : A

      Phương pháp giải :

      Cho hàm số y = f(x) liên tục và xác định trên khoảng (đoạn) K. Với mỗi \(x \in K\) thì \( - x \in K\).

      - Nếu f(x) = f(-x) thì hàm số y = f(x) là hàm số chẵn trên tập xác định.

      - Nếu f(-x) = -f(x) thì hàm số y = f(x) là hàm số lẻ trên tập xác định.

      Lời giải chi tiết :

      Xét phương án A, hàm số \(y = \left| {\sin x} \right|\) có tập xác định D = R, suy ra có \(x \in R\) thì \( - x \in R\).

      Mặt khác, \(f( - x) = \left| {\sin ( - x)} \right| = \left| { - \sin x} \right| = \sin x = f(x)\).

      Vậy hàm số đáp án A là hàm số chẵn.

      Câu 5 :

      Nghiệm của phương trình \(\cos x = 0\) là?

      • A.

        \(x = k2\pi ,k \in \mathbb{Z}\)

      • B.

        \(x = k\pi ,k \in \mathbb{Z}\)

      • C.

        \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

      • D.

        \(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)

      Đáp án : C

      Phương pháp giải :

      Nghiệm của phương trình lượng giác cơ bản.

      Lời giải chi tiết :

      \(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\).

      Câu 6 :

      Số hạng thứ 3 của dãy số \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_n} = 2{u_{n - 1}} + 3}\end{array}} \right.\) là?

      • A.

        5

      • B.

        8

      • C.

        28

      • D.

        13

      Đáp án : D

      Phương pháp giải :

      Tìm lần lượt \({u_2},{u_3}\) bằng cách thay n vào công thức tổng quát.

      Lời giải chi tiết :

      Ta có:

      \({u_2} = 2{u_{2 - 1}} + 3 = 2{u_1} + 3 = 2.1 + 3 = 5\)

      \({u_3} = 2{u_{3 - 1}} + 3 = 2{u_2} + 3 = 2.5 + 3 = 13\)

      Câu 7 :

      Dãy số nào sau đây là cấp số cộng?

      • A.

        1; 4; 8; 10

      • B.

        2; 3; 5; 8; 9

      • C.

        0; 2; 4; 6; 8

      • D.

        1; 3; -5; -7; -9

      Đáp án : C

      Phương pháp giải :

      Dãy số lập thành một cấp số cộng khi và chỉ khi hai phần tử liên tiếp sai khác nhau một hằng số.

      Lời giải chi tiết :

      Xét hiệu các phần tử liên tiếp trong các dãy số, chỉ có dãy ở đáp án C phần tử sau hơn phần tử liền trước 2 đơn vị (8 – 6 = 6 – 4 = 4 – 2 = 2 – 0 = 2).

      Câu 8 :

      Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 12\) và công bội \(q = - 2\). Số hạng thứ sáu của cấp số nhân đã cho bằng

      • A.

        2

      • B.

        -384

      • C.

        -24

      • D.

        -34

      Đáp án : B

      Phương pháp giải :

      Sử dụng công thức \({u_n} = {u_1}{q^{n - 1}}\).

      Lời giải chi tiết :

      Ta có: \({u_6} = {u_1}{q^{6 - 1}} = 12.{( - 2)^5} = - 384\).

      Câu 9 :

      Trên mặt phẳng cho bốn điểm A, B, C, D như hình vẽ. Ba điểm nào sau đây không xác định một mặt phẳng?

      Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 1 1

      • A.

        A, B, C

      • B.

        B, C, D

      • C.

        A, B, D

      • D.

        A, C, D

      Đáp án : B

      Phương pháp giải :

      Một mặt phẳng được xác định nếu nó đi qua:

      - Ba điểm không thẳng hàng.

      - Một điểm và một đường thẳng không đi qua điểm đó.

      - Hai đường thẳng cắt nhau.

      Lời giải chi tiết :

      Một mặt phẳng được xác định nếu nó đi qua:

      - Ba điểm không thẳng hàng.

      - Một điểm và một đường thẳng không đi qua điểm đó.

      - Hai đường thẳng cắt nhau.

      Vì B, C, D thẳng hàng nên ba điểm này không xác định một mặt phẳng.

      Câu 10 :

      Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Chọn khẳng định đúng.

      Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 1 2

      • A.

        AB//(SBD)

      • B.

        BC//(SCD)

      • C.

        AD//(SBC)

      • D.

        BD//(SAC)

      Đáp án : C

      Phương pháp giải :

      Lý thuyết đường thẳng song song với mặt phẳng.

      Lời giải chi tiết :

      - Xét A: AB và (SBD) chung điểm B nên AB cắt (SBD)

      - Xét B: BC và (SCD) chung điểm C nên BC cắt (SCD)

      - Xét C: AD//BC vì ABCD là hình bình hành nên AD//(SBC)

      - Xét D: Vì BD cắt AC tại tâm O của hình bình hành nên BD cắt (SAC)

      Vậy khẳng định đúng là C.

      Câu 11 :

      Số nghiệm của phương trình \(\sin 2x + \cos x = 0\) trên \([0;2\pi ]\) là

      • A.

        3

      • B.

        1

      • C.

        2

      • D.

        4

      Đáp án : D

      Phương pháp giải :

      Biến đổi phương trình trở thành dạng phương trình tích, đưa về giải phương trình lượng giác cơ bản.

      Lời giải chi tiết :

      \(\sin 2x + \cos x = 0 \Leftrightarrow 2\sin x.\cos x + \cos x = 0 \Leftrightarrow \cos x.(2\sin x + 1) = 0\)

      \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{2\sin x + 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\sin x = - \frac{1}{2}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = - \frac{\pi }{6} + k2\pi }\\{x = \frac{{7\pi }}{6} + k2\pi }\end{array}} \right.} \right.\) với \(k \in \mathbb{Z}\).

      Vì \(x \in [0;2\pi ]\) nên chỉ có 4 nghiệm thỏa mãn: \(x = \left\{ {\frac{\pi }{2};\frac{{3\pi }}{2};\frac{{7\pi }}{6};\frac{{11\pi }}{6}} \right\}\).

      Câu 12 :

      Cho cấp số cộng \(({u_n})\) có \({u_5} = - 10\) và \({u_{15}} = 60\). Tổng 20 số hạng đầu tiên của cấp số cộng là

      • A.

        560

      • B.

        480

      • C.

        570

      • D.

        475

      Đáp án : C

      Phương pháp giải :

      Tìm số hạng đầu và công sai dựa theo công thức \({u_n} = {u_1} + (n - 1)d\).

      Từ đó tìm tổng 20 số hạng đầu tiên \({S_n} = \frac{{({u_1} + {u_n})n}}{2}\).

      Lời giải chi tiết :

      Ta có: \(\left\{ {\begin{array}{*{20}{c}}{{u_5} = {u_1} + 4d}\\{{u_{15}} = {u_1} + 14d}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 10 = {u_1} + 4d}\\{60 = {u_1} + 14d}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{u_1} = - 38}\\{d = 7}\end{array}} \right.\)

      Từ đó ta tính được \({u_{20}} = - 38 + (20 - 1)7 = 95\).

      Vậy tổng 20 số hạng đầu của cấp số cộng là \({S_{20}} = \frac{{({u_1} + {u_{20}}).20}}{2} = \frac{{( - 38 + 95).20}}{2} = 570\).

      Phần II: Câu trắc nghiệm đúng sai.
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Cho phương trình lượng giác \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0\). Khi đó

      a) Phương trình tương đương \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \frac{\pi }{3}\)

      Đúng
      Sai

      b) Phương trình có nghiệm là \(x = \frac{\pi }{4} + k2\pi \); \(x = \frac{{7\pi }}{{12}} + k2\pi \) \((k \in \mathbb{Z})\)

      Đúng
      Sai

      c) Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\)

      Đúng
      Sai

      d) Số nghiệm của phương trình trong khoảng \(( - \pi ;\pi )\) là hai nghiệm

      Đúng
      Sai
      Đáp án

      a) Phương trình tương đương \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \frac{\pi }{3}\)

      Đúng
      Sai

      b) Phương trình có nghiệm là \(x = \frac{\pi }{4} + k2\pi \); \(x = \frac{{7\pi }}{{12}} + k2\pi \) \((k \in \mathbb{Z})\)

      Đúng
      Sai

      c) Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\)

      Đúng
      Sai

      d) Số nghiệm của phương trình trong khoảng \(( - \pi ;\pi )\) là hai nghiệm

      Đúng
      Sai
      Phương pháp giải :

      Giải phương trình lượng giác \(\sin x = a\):

      - Nếu \(\left| a \right| > 1\) thì phương trình vô nghiệm.

      - Nếu \(\left| a \right| \le 1\) thì chọn cung \(\alpha \) sao cho \(\sin \alpha = a\). Khi đó phương trình trở thành:

      \(\sin x = \sin \alpha \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \alpha + k2\pi }\\{x = \pi - \alpha + k2\pi }\end{array}} \right.\) với \(k \in \mathbb{Z}\).

      Lời giải chi tiết :

      \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)

      \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - \frac{\pi }{{12}} = - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi }{{12}} = \pi + \frac{\pi }{3} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }}{{12}} + k2\pi }\end{array}} \right.\)

      a)Sai. \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)

      b) Sai. Phương trình có nghiệm là \(x = - \frac{\pi }{4} + k2\pi \); \(x = \frac{{17\pi }}{{12}} + k2\pi \) \((k \in \mathbb{Z})\).

      c) Đúng.

      + Xét họ nghiệm \(x = - \frac{\pi }{4} + k2\pi \):

      Nghiệm âm lớn nhất là \(x = - \frac{\pi }{4}\) khi k = 0.

      + Xét họ nghiệm \(x = \frac{{17\pi }}{{12}} + k2\pi \):

      Nghiệm âm lớn nhất là \(x = - \frac{{7\pi }}{{12}}\) khi k = -1.

      Vì \( - \frac{\pi }{4} > - \frac{{7\pi }}{{12}}\) nên nghiệm âm lớn nhất là \(x = - \frac{\pi }{4}\).

      d) Đúng.

      + Xét họ nghiệm \(x = - \frac{\pi }{4} + k2\pi \):

      \( - \pi < x < \pi \Leftrightarrow - \pi < - \frac{\pi }{4} + k2\pi < \pi \)

      \( \Leftrightarrow - 1 < - \frac{1}{4} + 2k < 1 \Leftrightarrow - \frac{3}{4} < 2k < \frac{5}{4} \Leftrightarrow - \frac{3}{8} < k < \frac{5}{8}\).

      Vậy chỉ có k = 0 thỏa mãn. Khi đó \(x = - \frac{\pi }{4}\).

      + Xét họ nghiệm \(x = \frac{{17\pi }}{{12}} + k2\pi \):

      \( - \pi < x < \pi \Leftrightarrow - \pi < \frac{{17\pi }}{{12}} + k2\pi < \pi \Leftrightarrow - 1 < \frac{{17}}{{12}} + 2k < 1\)

      \( \Leftrightarrow - \frac{{29}}{{12}} < 2k < - \frac{5}{{12}} \Leftrightarrow - \frac{{29}}{{24}} < k < - \frac{5}{{24}}\).

      Vậy chỉ có k = -1 thỏa mãn. Khi đó \(x = - \frac{{7\pi }}{{12}}\).

      Vậy phương trình có hai nghiệm thuộc khoảng \(( - \pi ;\pi )\) là \(x = - \frac{\pi }{4}\) và \(x = - \frac{{7\pi }}{{12}}\).

      Câu 2 :

      Cho \(\cos \alpha = - \frac{1}{4}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\). Khi đó

      a) \({\sin ^2}\alpha = \frac{{15}}{{16}}\)

      Đúng
      Sai

      b) \(\sin \alpha = \frac{{\sqrt {15} }}{4}\)

      Đúng
      Sai

      c) \(\tan \alpha = \sqrt {15} \)

      Đúng
      Sai

      d) \(\cot \alpha = - \frac{1}{{\sqrt {15} }}\)

      Đúng
      Sai
      Đáp án

      a) \({\sin ^2}\alpha = \frac{{15}}{{16}}\)

      Đúng
      Sai

      b) \(\sin \alpha = \frac{{\sqrt {15} }}{4}\)

      Đúng
      Sai

      c) \(\tan \alpha = \sqrt {15} \)

      Đúng
      Sai

      d) \(\cot \alpha = - \frac{1}{{\sqrt {15} }}\)

      Đúng
      Sai
      Phương pháp giải :

      a) Áp dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và dựa vào góc phần tư của đường tròn lượng giác để xét dấu.

      b) Áp dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và dựa vào góc phần tư của đường tròn lượng giác để xét dấu.

      c) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{{\cot \alpha }}\)

      d) \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\tan \alpha }}\)

      Lời giải chi tiết :

      \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( { - \frac{1}{4}} \right)^2} = \frac{{15}}{{16}} \Rightarrow \sin \alpha = \pm \frac{{\sqrt {15} }}{4}\).

      Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên điểm cuối của cung \(\alpha \) thuộc góc phần tư thứ III nên \(\sin \alpha < 0\). Vậy \(\sin \alpha = - \frac{{\sqrt {15} }}{4}\).

      \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \frac{1}{4}}}{{ - \frac{{\sqrt {15} }}{4}}} = \sqrt {15} \); \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt {15} }}\).

      a)Đúng.

      b) Sai.

      c) Đúng.

      d) Sai.

      Câu 3 :

      Cho dãy số \(({u_n})\) biết \({u_n} = {2^n} + 1\). Khi đó

      a) Dãy số \(({u_n})\) là dãy số tăng

      Đúng
      Sai

      b) Dãy số \(({u_n})\) là dãy số bị chặn

      Đúng
      Sai

      c) \({u_6} = 65\)

      Đúng
      Sai

      d) Số hạng thứ n + 2 của dãy số là \({u_{n + 2}} = {2^n}.2\)

      Đúng
      Sai
      Đáp án

      a) Dãy số \(({u_n})\) là dãy số tăng

      Đúng
      Sai

      b) Dãy số \(({u_n})\) là dãy số bị chặn

      Đúng
      Sai

      c) \({u_6} = 65\)

      Đúng
      Sai

      d) Số hạng thứ n + 2 của dãy số là \({u_{n + 2}} = {2^n}.2\)

      Đúng
      Sai
      Phương pháp giải :

      a) Dãy số \(({u_n})\) là dãy số giảm nếu \({u_n} > {u_{n + 1}}\). Dãy số \(({u_n})\) là dãy số tăng nếu \({u_n} < {u_{n + 1}}\).

      b) Dãy số \(({u_n})\) là dãy số bị chặn nếu \(({u_n})\) vừa bị chặn trên vừa bị chặn dưới, tức tồn tại hai số m, M sao cho \(m \le {u_n} \le M\) \(\forall n \in \mathbb{N}*\).

      c) Tính \({u_6}\) bằng công thức \({u_n} = {2^n} + 1\).

      d) Thay n + 2 vào n trong công thức số hạng tổng quát \({u_n} = {2^n} + 1\).

      Lời giải chi tiết :

      a) Đúng. \({u_{n + 1}} - {u_n} = {2^{n + 1}} + 1 - ({2^n} + 1) = {2^{n + 1}} - {2^n} = {2^n}(2 - 1) = {2^n} > 0\) với mọi n. Vậy dãy số là dãy tăng.

      b) Sai. Dãy không bị chặn trên vì không có giá trị M nào để \({2^n} < M\) với mọi n. Vậy dãy số không bị chặn.

      c) Đúng. \({u_6} = {2^6} + 1 = 64 + 1 = 65\).

      d) Sai. \({u_{n + 2}} = {2^{n + 2}} + 1 = {4.2^n} + 1\).

      Câu 4 :

      Trong mặt phẳng (P), cho hình bình hành ABCD tâm O, ngoài mặt phẳng (P) cho một điểm S.

      a) C là một điểm chung của hai mặt phẳng (SAB) và (SCD)

      Đúng
      Sai

      b) Giao tuyến của hai mặt phẳng (SCB) và (SCD) là đường thẳng SC

      Đúng
      Sai

      c) Đường thẳng AB song song với mặt phẳng (SCD)

      Đúng
      Sai

      d) Giao điểm của đường thẳng BC với mặt phẳng (SBD) là điểm C

      Đúng
      Sai
      Đáp án

      a) C là một điểm chung của hai mặt phẳng (SAB) và (SCD)

      Đúng
      Sai

      b) Giao tuyến của hai mặt phẳng (SCB) và (SCD) là đường thẳng SC

      Đúng
      Sai

      c) Đường thẳng AB song song với mặt phẳng (SCD)

      Đúng
      Sai

      d) Giao điểm của đường thẳng BC với mặt phẳng (SBD) là điểm C

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng các định lý về đường thẳng song song với mặt phẳng, cách tìm giao tuyến của hai mặt phẳng.

      Lời giải chi tiết :

      Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 1 3

      a) Sai. C không thuộc mặt phẳng (SAB).

      b) Đúng. Giao tuyến của hai mặt phẳng (SCB) và (SCD) là đường thẳng SC.

      c) Đúng. Vì ABCD là hình bình hành nên AB//CD, khi đó AB//(SCD).

      d) Sai. Giao điểm của đường thẳng BC với mặt phẳng (SBD) là điểm B.

      Phần III: Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6.
      Câu 1 :

      Hằng ngày mực nước tại một cảng biển lên xuống theo thủy triều. Độ sâu h (m) của mực nước theo thời gian t (giờ) trong một ngày được cho bởi công thức \(h = 11 + 2\sin \left( {\frac{\pi }{{12}}t} \right)\) với \(0 \le t \le 24\). Tính thời điểm mực nước tại cảng cao nhất.

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tìm t sao cho hàm số \(h = 11 + 2\sin \left( {\frac{\pi }{{12}}t} \right)\) đạt giá trị lớn nhất.

      Lời giải chi tiết :

      \(h = 11 + 2\sin \left( {\frac{\pi }{{12}}t} \right)\) đạt giá trị lớn nhất khi \(\sin \left( {\frac{\pi }{{12}}t} \right) = 1 \Leftrightarrow \frac{\pi }{{12}}t = \frac{\pi }{2} + k2\pi \Leftrightarrow t = 6 + 24k\) (giờ).

      Vì \(0 \le t \le 24\) nên chỉ có giá trị t = 6 thỏa mãn.

      Vậy thời điểm mực nước tại cảng cao nhất là lúc 6 giờ.

      Câu 2 :

      Phương trình \(2\sin 2x + 4\cos x = 0\) có bao nhiêu nghiệm trong khoảng (0;3000)?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Giải phương trình lượng giác bằng cách biến đổi về dạng phương trình tích. Xét họ nghiệm trong khoảng (0;3000) để tìm số giá trị k nguyên thỏa mãn.

      Lời giải chi tiết :

      Ta có: \(2\sin 2x + 4\cos x = 0 \Rightarrow 4\sin x.\cos x + 4\cos x = 0 \Rightarrow 4\cos x.(\sin x + 1) = 0\)

      \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\sin x = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \frac{{3\pi }}{2} + k2\pi }\end{array}} \right. \Leftrightarrow x = \frac{\pi }{2} + k\pi \) với \(k \in \mathbb{Z}\).

      Xét họ nghiệm \(x = \frac{\pi }{2} + k\pi \), ta có:

      \(0 < \frac{\pi }{2} + k\pi < 3000 \Leftrightarrow - \frac{\pi }{2} < k\pi < 3000 - \frac{\pi }{2} \Leftrightarrow - \frac{1}{2} < k < \frac{{3000}}{\pi } - \frac{1}{2} \Leftrightarrow - 0,5 < k < 954,43\).

      Mà \(k \in \mathbb{Z}\) nên \(k \in \{ 0;1;2;3;...;954\} \), tức có 955 giá trị k thỏa mãn.

      Vậy phương trình có 955 nghiệm thuộc khoảng (0;3000).

      Câu 3 :

      Công ty cây xanh X trồng 496 cây hoa trong một khu vườn hình tam giác như sau: hàng thứ nhất trồng 1 cây hoa, kể từ hàng thứ hai trở đi số cây hoa trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi công ty cây xanh X trồng được bao nhiêu hàng cây trong khu vườn hình tam giác đó.

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Số cây mỗi hàng lập thành một cấp số cộng với tổng n số hạng là 496, số hạng đầu \({u_1} = 1\) công sai d = 1. Tìm n.

      Lời giải chi tiết :

      Số cây mỗi hàng lập thành một cấp số cộng với tổng n số hạng là 496, số hạng đầu \({u_1} = 1\) công sai d = 1.

      Ta có: \(496 = \frac{{2.1 + (n - 1).1}}{2}.n \Leftrightarrow 992 = (2 + n - 1).n = {n^2} + n - 992 = 0\).

      Ta tính được n = 31 hoặc n = -32 (loại).

      Vậy số hàng cây trồng được là 31 hàng.

      Câu 4 :

      Cho dãy số \(({u_n})\) biết \({u_n} = n + \frac{1}{n}\). Tìm m để dãy số \(({u_n})\) bị chặn dưới bởi m.

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Chứng minh dãy số tăng và bị chặn dưới tại \(m = {u_1}\).

      Lời giải chi tiết :

      Xét \({u_{n + 1}} - {u_n} = \left( {n + 1 + \frac{1}{{n + 1}}} \right) - \left( {n + \frac{1}{n}} \right) = 1 + \frac{1}{{n + 1}} - \frac{1}{n} = \left( {1 - \frac{1}{n}} \right) + \frac{1}{{n + 1}}\).

      Ta có: \(n \ge 1 \Leftrightarrow \frac{1}{n} < 1 \Leftrightarrow 1 - \frac{1}{n} > 0\); \(n \ge 1 \Rightarrow \frac{1}{{n + 1}} > 0\).

      Vậy \({u_{n + 1}} - {u_n} > 0\), tức dãy số tăng.

      Khi đó, dãy bị chặn dưới bởi \({u_1} = 1 + \frac{1}{1} = 2 = m\).

      Câu 5 :

      Cho tứ diện ABCD, M thuộc đoạn AB, thiết diện của hình chóp cắt bởi mặt phẳng \(\left( \alpha \right)\) đi qua M song song với BD và AC là hình có mấy cạnh?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng tính chất: Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) có điểm chung M và lần lượt chứa hai đường thẳng song song d và d’ thì giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là đường thẳng đi qua M và song song với d và d’ để xác định thiết diện.

      Lời giải chi tiết :

      Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 1 4

      \(\left\{ \begin{array}{l}M \in (\alpha ) \cap (ABC)\\(\alpha )//AC \subset (ABC)\end{array} \right.\) nên giao tuyến của \(\left( \alpha \right)\) và (ABC) là đường thẳng qua M và song song với AB, cắt BC tại N, suy ra MN//AC.

      \(\left\{ \begin{array}{l}N \in (\alpha ) \cap (BCD)\\(\alpha )//BD \subset (BCD)\end{array} \right.\) nên giao tuyến của \(\left( \alpha \right)\) và (BCD) là đường thẳng qua N và song song với BD, cắt CD tại P, suy ra NP//BD.

      \(\left\{ \begin{array}{l}P \in (\alpha ) \cap (ACD)\\(\alpha )//AC \subset (ACD)\end{array} \right.\) nên giao tuyến của \(\left( \alpha \right)\) và (ACD) là đường thẳng qua P và song song với AC, cắt AD tại Q, suy ra PQ//AC.

      \(\left\{ \begin{array}{l}P \in (\alpha ) \cap (ACD)\\(\alpha )//AC \subset (ACD)\end{array} \right.\) nên giao tuyến của \(\left( \alpha \right)\) và (ACD) là đường thẳng qua P và song song với AC, cắt AD tại Q, suy ra PQ//AC.

      \(\left\{ {\begin{array}{*{20}{c}}{(\alpha ) \cap (ABD) = MQ}\\{(\alpha )//BD \subset (ABD)}\end{array}} \right.\) nên MQ//BD.

      Có: MN//PQ (cùng song song với AC), NP//MQ (cùng song song với BD) nên MNPQ là hình bình hành.

      Vậy thiết diện cần tìm có 4 cạnh.

      Câu 6 :

      Cho tứ diện ABCD có N, P lần lượt là trung điểm của BC, BD. Điểm M là điểm thay đổi trên cạnh AC. Mặt phẳng (MNP) cắt AD tại Q. Giả sử AC = kAM. Tìm k để tứ giác MNPQ là hình bình hành.

      Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 1 5

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      - Định lý Thales.

      - Giao tuyến của hai mặt phẳng chứa hai đường thẳng song song là đường thẳng song song với hai đường thẳng đó.

      Lời giải chi tiết :

      Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 1 6

      Xét tam giác BCD có N là trung điểm của BC, P là trung điểm của BD.

      Khi đó, NP là đường trung bình của tam giác BCD, suy ra NP//CD.

      Ta có \(\left\{ {\begin{array}{*{20}{c}}{(MNP) \cap (ACD) = \{ M\} }\\\begin{array}{l}NP//CD\\NP \subset (MNP)\\CD \subset (ACD)\end{array}\end{array}} \right.\) nên giao tuyến của (MNP) và (ACD) là đường thẳng qua M song song với NP và CD. Gọi giao tuyến đó là d.

      Mà \(\left\{ {\begin{array}{*{20}{c}}{Q \in (MNP)}\\{Q \in AD \subset (ACD)}\end{array}} \right.\) nên \(Q \in d\) và MQ//NP, MQ//CD.

      Vì đã có MQ//NP nên để MNPQ là hình bình hành thì cần điều kiện MQ = NP.

      Mà \(NP = \frac{1}{2}CD\) nên cần \(MQ = \frac{1}{2}CD\).

      Xét tam giác ACD có \(M \in AC\), \(Q \in AD\) và MQ//CD.

      Khi đó, \(\frac{{AM}}{{AC}} = \frac{{MQ}}{{CD}}\) (định lý Thales đảo).

      Vậy để MNPQ là hình bình hành thì \(\frac{{AM}}{{AC}} = \frac{{MQ}}{{CD}} = \frac{1}{2} \Leftrightarrow AC = 2AM\).

      Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

      Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8: Phân tích chi tiết và hướng dẫn giải

      Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8 là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau một nửa học kỳ đầu tiên. Đề thi này bao gồm các chủ đề chính như hàm số bậc hai, hàm số lượng giác, và các kiến thức về vector trong mặt phẳng. Việc ôn tập kỹ lưỡng và làm quen với các dạng bài tập trong đề thi là rất cần thiết để đạt kết quả tốt.

      Cấu trúc đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8

      Đề thi thường được chia thành hai phần chính: trắc nghiệm và tự luận. Phần trắc nghiệm thường chiếm khoảng 40-50% tổng số điểm, tập trung vào việc kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản. Phần tự luận chiếm khoảng 50-60% tổng số điểm, yêu cầu học sinh trình bày chi tiết lời giải và chứng minh các kết quả.

      Nội dung chi tiết đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8

      Phần trắc nghiệm

      • Hàm số bậc hai: Các câu hỏi về tập xác định, tập giá trị, đỉnh, trục đối xứng, và dấu của hệ số a.
      • Hàm số lượng giác: Các câu hỏi về chu kỳ, giá trị lớn nhất, giá trị nhỏ nhất, và các phép biến đổi lượng giác.
      • Vector trong mặt phẳng: Các câu hỏi về phép cộng, phép trừ, tích vô hướng, và ứng dụng của vector trong hình học.

      Phần tự luận

      1. Bài toán về hàm số bậc hai: Xác định phương trình hàm số bậc hai khi biết các yếu tố, tìm điều kiện để hàm số có cực trị, và giải các bài toán ứng dụng.
      2. Bài toán về hàm số lượng giác: Giải phương trình lượng giác, chứng minh đẳng thức lượng giác, và giải các bài toán liên quan đến đồ thị hàm số lượng giác.
      3. Bài toán về vector trong mặt phẳng: Chứng minh các đẳng thức vector, tính góc giữa hai vector, và giải các bài toán hình học sử dụng vector.

      Hướng dẫn giải đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 8

      Để giải đề thi một cách hiệu quả, học sinh cần:

      • Đọc kỹ đề bài: Hiểu rõ yêu cầu của từng câu hỏi trước khi bắt đầu giải.
      • Sử dụng công thức và định lý: Vận dụng các công thức và định lý đã học để giải quyết bài toán.
      • Trình bày lời giải rõ ràng: Viết các bước giải một cách logic và dễ hiểu.
      • Kiểm tra lại kết quả: Đảm bảo rằng kết quả cuối cùng là chính xác.

      Tài liệu ôn tập hữu ích

      Để chuẩn bị tốt nhất cho kỳ thi giữa kì 1, học sinh nên tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 11 Chân trời sáng tạo: Nguồn kiến thức cơ bản và quan trọng nhất.
      • Sách bài tập Toán 11 Chân trời sáng tạo: Các bài tập luyện tập đa dạng và phong phú.
      • Các đề thi thử giữa kì 1 Toán 11 Chân trời sáng tạo: Giúp học sinh làm quen với cấu trúc và dạng bài của đề thi.
      • Giaitoan.edu.vn: Cung cấp các bài giảng, bài tập, và đề thi trực tuyến chất lượng cao.

      Lời khuyên

      Hãy dành thời gian ôn tập đều đặn và làm nhiều bài tập để nắm vững kiến thức. Đừng ngần ngại hỏi thầy cô hoặc bạn bè nếu gặp khó khăn. Chúc các em học sinh đạt kết quả tốt trong kỳ thi giữa kì 1 Toán 11 Chân trời sáng tạo!

      Chủ đềMức độ quan trọng
      Hàm số bậc haiCao
      Hàm số lượng giácTrung bình
      Vector trong mặt phẳngTrung bình
      Nguồn: Giaitoan.edu.vn

      Tài liệu, đề thi và đáp án Toán 11