Logo Header
  1. Môn Toán
  2. Bài 3. Hàm số mũ Hàm số lôgarit

Bài 3. Hàm số mũ Hàm số lôgarit

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 3. Hàm số mũ Hàm số lôgarit – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 3. Hàm số mũ Hàm số lôgarit - SBT Toán 11 - Chân trời sáng tạo

Chào mừng bạn đến với bài giải Bài 3. Hàm số mũ Hàm số lôgarit thuộc SBT Toán 11 - Chân trời sáng tạo. Bài viết này cung cấp lời giải chi tiết, dễ hiểu cho từng bài tập trong sách bài tập, giúp bạn nắm vững kiến thức về hàm số mũ và hàm số lôgarit.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ bạn học tập hiệu quả và đạt kết quả tốt nhất trong môn Toán.

Bài 3. Hàm số mũ Hàm số lôgarit - SBT Toán 11 - Chân trời sáng tạo: Tổng quan

Bài 3 trong sách bài tập Toán 11 Chân trời sáng tạo tập trung vào việc củng cố và mở rộng kiến thức về hàm số mũ và hàm số lôgarit. Học sinh sẽ được làm quen với các dạng bài tập khác nhau, từ việc xác định tập xác định, tập giá trị, đến việc vẽ đồ thị và giải các phương trình, bất phương trình liên quan đến hàm số mũ và hàm số lôgarit.

I. Hàm số mũ

Hàm số mũ là hàm số có dạng y = ax, trong đó a là một số thực dương khác 1. Để hiểu rõ hơn về hàm số mũ, chúng ta cần nắm vững các khái niệm sau:

  • Tập xác định: Tập xác định của hàm số mũ là tập R (tất cả các số thực).
  • Tập giá trị: Tập giá trị của hàm số mũ là (0, +∞) nếu a > 1 và (0, +∞) nếu 0 < a < 1.
  • Tính đơn điệu: Hàm số mũ y = ax đồng biến trên R nếu a > 1 và nghịch biến trên R nếu 0 < a < 1.
  • Đồ thị: Đồ thị của hàm số mũ y = ax luôn đi qua điểm (0, 1).

II. Hàm số lôgarit

Hàm số lôgarit là hàm số nghịch đảo của hàm số mũ. Hàm số lôgarit có dạng y = logax, trong đó a là một số thực dương khác 1. Các khái niệm quan trọng cần nắm vững về hàm số lôgarit:

  • Tập xác định: Tập xác định của hàm số lôgarit là (0, +∞).
  • Tập giá trị: Tập giá trị của hàm số lôgarit là tập R.
  • Tính đơn điệu: Hàm số lôgarit y = logax đồng biến trên (0, +∞) nếu a > 1 và nghịch biến trên (0, +∞) nếu 0 < a < 1.
  • Đồ thị: Đồ thị của hàm số lôgarit y = logax luôn đi qua điểm (1, 0).

III. Các dạng bài tập thường gặp

Trong sách bài tập Toán 11 Chân trời sáng tạo, Bài 3 thường xuất hiện các dạng bài tập sau:

  1. Xác định tập xác định của hàm số: Yêu cầu học sinh xác định điều kiện để hàm số có nghĩa.
  2. Tìm tập giá trị của hàm số: Yêu cầu học sinh xác định khoảng giá trị mà hàm số có thể nhận được.
  3. Vẽ đồ thị hàm số: Yêu cầu học sinh vẽ đồ thị của hàm số mũ hoặc hàm số lôgarit.
  4. Giải phương trình mũ và phương trình lôgarit: Yêu cầu học sinh sử dụng các tính chất của hàm số mũ và hàm số lôgarit để giải phương trình.
  5. Giải bất phương trình mũ và bất phương trình lôgarit: Yêu cầu học sinh sử dụng các tính chất của hàm số mũ và hàm số lôgarit để giải bất phương trình.

IV. Mẹo giải bài tập

Để giải tốt các bài tập về hàm số mũ và hàm số lôgarit, bạn nên:

  • Nắm vững các định nghĩa, tính chất của hàm số mũ và hàm số lôgarit.
  • Luyện tập thường xuyên với các bài tập khác nhau.
  • Sử dụng các công thức chuyển đổi để đơn giản hóa bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

V. Bài tập ví dụ

Ví dụ 1: Giải phương trình 2x = 8

Lời giải: Ta có 2x = 23, suy ra x = 3.

Ví dụ 2: Giải bất phương trình log2(x + 1) > 3

Lời giải: Ta có x + 1 > 23, suy ra x + 1 > 8, suy ra x > 7.

Kết luận

Bài 3. Hàm số mũ Hàm số lôgarit - SBT Toán 11 - Chân trời sáng tạo là một bài học quan trọng giúp học sinh hiểu sâu hơn về hai loại hàm số này. Việc nắm vững kiến thức và luyện tập thường xuyên sẽ giúp bạn tự tin giải quyết các bài tập liên quan.

Tài liệu, đề thi và đáp án Toán 11