Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 7 trang 18 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật nhanh chóng nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
So sánh các cặp số sau:
Đề bài
So sánh các cặp số sau:
a) \(2{\log _{0,6}}5\) và \(3{\log _{0,6}}\left( {2\sqrt[3]{3}} \right)\);
b) \(6{\log _5}2\) và \(2{\log _5}6\);
c) \(\frac{1}{2}{\log _2}121\) và \(2{\log _2}2\sqrt 3 \);
d) \(2{\log _3}7\) và \(6{\log _9}4\).
Phương pháp giải - Xem chi tiết
So sánh các cặp số sau:
a) \(2{\log _{0,6}}5\) và \(3{\log _{0,6}}\left( {2\sqrt[3]{3}} \right)\);
b) \(6{\log _5}2\) và \(2{\log _5}6\);
c) \(\frac{1}{2}{\log _2}121\) và \(2{\log _2}2\sqrt 3 \);
d) \(2{\log _3}7\) và \(6{\log _9}4\).
Lời giải chi tiết
a) Ta có: \(2{\log _{0,6}}5 = {\log _{0,6}}25,3{\log _{0,6}}\left( {2\sqrt[3]{3}} \right) = {\log _{0,6}}{\left( {2\sqrt[3]{3}} \right)^3} = {\log _{0,6}}24\)
Vì hàm số \(y = {\log _{0,6}}x\) có cơ số \(0,6 < 1\) nên nghịch biến trên \(\left( {0; + \infty } \right)\).
Mà \(25 > 24\) nên \({\log _{0,6}}25 < {\log _{0,6}}24\) hay \(2{\log _{0,6}}5 < 3{\log _{0,6}}\left( {2\sqrt[3]{3}} \right)\)
b) Ta có: \(6{\log _5}2 = {\log _5}64,2{\log _5}6 = {\log _5}36\)
Vì hàm số \(y = {\log _5}x\) có cơ số \(5 > 1\) nên đồng biến trên \(\left( {0; + \infty } \right)\).
Mà \(64 > 36\) nên \({\log _5}64 > {\log _5}36\) hay \(6{\log _5}2 > 2{\log _5}6\)
c) Ta có: \(\frac{1}{2}{\log _2}121 = {\log _2}11,2{\log _2}2\sqrt 3 = {\log _2}12\)
Vì hàm số \(y = {\log _2}x\) có cơ số \(2 > 1\) nên đồng biến trên \(\left( {0; + \infty } \right)\).
Mà \(11 < 12\) nên \({\log _2}11 < {\log _2}12\) hay \(\frac{1}{2}{\log _2}121 < 2{\log _2}2\sqrt 3 \)
d) Ta có: \(2{\log _3}7 = {\log _3}49,6{\log _9}4 = 3{\log _3}4 = {\log _3}64\)
Vì hàm số \(y = {\log _3}x\) có cơ số \(3 > 1\) nên đồng biến trên \(\left( {0; + \infty } \right)\).
Mà \(49 < 64\) nên \({\log _3}49 < {\log _3}64\) hay \(2{\log _3}7 < 6{\log _9}4\)
Bài 7 trang 18 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài 7 trang 18, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập. Mỗi lời giải sẽ bao gồm các bước sau:
Ví dụ minh họa (giả định):
Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh AB. Chứng minh rằng vectơ CM = 1/2 * (vectơ AD + vectơ AB).
Lời giải:
Ta có: vectơ CM = vectơ CA + vectơ AM
Mà vectơ CA = vectơ CB + vectơ BA = vectơ AD + vectơ BA
Và vectơ AM = 1/2 * vectơ AB
Do đó, vectơ CM = vectơ AD + vectơ BA + 1/2 * vectơ AB = vectơ AD + 3/2 * vectơ AB
(Lưu ý: Đây chỉ là ví dụ minh họa, lời giải chi tiết cho từng câu hỏi cụ thể sẽ được trình bày đầy đủ trong bài viết.)
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học về vectơ:
Bài 7 trang 18 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả.