Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 18 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 9 trang 18 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 9 trang 18 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài 9 trang 18 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác và đầy đủ.

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

a) \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\) trên đoạn \(\left[ {\frac{1}{3};3} \right]\);

b) \(y = f\left( x \right) = {\log _2}\left( {x + 1} \right)\) trên đoạn \(\left[ { - \frac{1}{2};3} \right]\).

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 18 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để tìm giá trị lớn nhất, giá trị nhỏ nhất:

+ Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0 < a < 1\) thì hàm số \(y = {\log _a}x\) nghịch biến trên \(\left( {0; + \infty } \right)\). 

Lời giải chi tiết

a) Hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\) có cơ số \(\frac{1}{{\sqrt 3 }} < 1\) nên nghịch biến trên \(\left( {0; + \infty } \right)\).

Do đó, \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = f\left( {\frac{1}{3}} \right) = {\log _{\frac{1}{{\sqrt 3 }}}}\frac{1}{3} = 2,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = f\left( 3 \right) = {\log _{\frac{1}{{\sqrt 3 }}}}3 = - 2\)

b) Vì \( - \frac{1}{2} \le x \le 3 \Rightarrow \frac{1}{2} \le x + 1 \le 4\).

Hàm số \(y = f\left( x \right) = {\log _2}\left( {x + 1} \right)\) có cơ số \(2 > 1\) nên đồng biến trên \(\left( {0; + \infty } \right)\).

Do đó, \(\mathop {\min }\limits_{x \in \left[ { - \frac{1}{2};3} \right]} y = f\left( { - \frac{1}{2}} \right) = {\log _2}\left( {\frac{{ - 1}}{2} + 1} \right) = - 1,\mathop {\max }\limits_{x \in \left[ { - \frac{1}{2};3} \right]} y = f\left( 3 \right) = {\log _2}\left( {3 + 1} \right) = 2\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 9 trang 18 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 9 trang 18 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 9 trang 18 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về phép biến hình. Bài tập này tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế. Việc nắm vững các tính chất và công thức liên quan đến các phép biến hình là yếu tố then chốt để giải quyết bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 9 trang 18 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thường bao gồm các dạng bài tập sau:

  • Xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép biến hình: Yêu cầu học sinh xác định vị trí mới của các đối tượng hình học sau khi thực hiện một phép biến hình cụ thể.
  • Tìm tâm, trục hoặc góc của phép biến hình: Yêu cầu học sinh xác định các yếu tố quan trọng của phép biến hình dựa trên thông tin đã cho.
  • Chứng minh một đẳng thức liên quan đến phép biến hình: Yêu cầu học sinh sử dụng các tính chất của phép biến hình để chứng minh một đẳng thức hình học.
  • Giải quyết các bài toán thực tế ứng dụng phép biến hình: Yêu cầu học sinh vận dụng kiến thức về phép biến hình để giải quyết các vấn đề thực tế liên quan đến hình học.

Phương pháp giải bài tập

Để giải bài tập 9 trang 18 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách hiệu quả, học sinh cần:

  1. Nắm vững định nghĩa và tính chất của các phép biến hình: Hiểu rõ các khái niệm cơ bản về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm.
  2. Sử dụng công thức biến hình: Áp dụng các công thức biến hình để tính toán tọa độ của ảnh sau khi thực hiện phép biến hình.
  3. Vẽ hình minh họa: Vẽ hình minh họa giúp học sinh hình dung rõ hơn về bài toán và tìm ra phương pháp giải phù hợp.
  4. Kiểm tra lại kết quả: Sau khi giải xong bài tập, học sinh nên kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Bài toán: Cho điểm A(1; 2) và phép tịnh tiến theo vectơ v = (3; -1). Tìm tọa độ điểm A' là ảnh của điểm A qua phép tịnh tiến đó.

Giải:

Áp dụng công thức phép tịnh tiến:

A'(x' ; y') = A(x ; y) + v(a ; b) = (x + a ; y + b)

Thay số vào, ta có:

A'(1 + 3 ; 2 - 1) = A'(4 ; 1)

Vậy, tọa độ điểm A' là (4; 1).

Lưu ý quan trọng

Khi giải bài tập về phép biến hình, học sinh cần chú ý:

  • Đọc kỹ đề bài: Xác định rõ các yếu tố đã cho và yêu cầu của bài toán.
  • Chọn hệ tọa độ phù hợp: Việc chọn hệ tọa độ phù hợp có thể giúp đơn giản hóa bài toán.
  • Sử dụng các công cụ hỗ trợ: Sử dụng máy tính bỏ túi hoặc phần mềm hình học để kiểm tra kết quả.

Tổng kết

Bài 9 trang 18 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về phép biến hình. Bằng cách nắm vững các định nghĩa, tính chất và công thức liên quan, học sinh có thể giải quyết bài tập này một cách hiệu quả và tự tin hơn trong quá trình học tập. Giaitoan.edu.vn hy vọng bài viết này đã cung cấp cho các em những kiến thức hữu ích và phương pháp giải bài tập hiệu quả.

Tài liệu, đề thi và đáp án Toán 11