Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài 4 trang 17 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Chúng tôi giúp bạn nắm vững kiến thức và kỹ năng giải toán hiệu quả.
Giaitoan.edu.vn là nền tảng học toán online uy tín, cung cấp đầy đủ các bài giải, lý thuyết và bài tập Toán 11.
So sánh các cặp số sau:
Đề bài
So sánh các cặp số sau:
a) \(1,{04^{1,7}}\) và \(1,{04^2}\);
b) \({\left( {\frac{3}{5}} \right)^{ - \frac{2}{5}}}\) và \({\left( {\frac{3}{5}} \right)^{ - \frac{3}{5}}}\);
c) \(1,{2^{0,3}}\) và \(0,{9^{1,8}}\);
d) \({\left( {\frac{1}{3}} \right)^{ - 0,4}}\) và \({3^{ - 0,2}}\).
Phương pháp giải - Xem chi tiết
a, b) Sử dụng kiến thức về sự biến thiên của hàm số mũ \(y = {a^x}\) để so sánh:
+ Nếu \(a > 1\) thì hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\).
+ Nếu \(0 < a < 1\) thì hàm số \(y = {a^x}\) nghịch biến trên \(\mathbb{R}\).
c, d) So sánh với 1.
Lời giải chi tiết
a) Vì \(1,04 > 1\) nên hàm số \(y = 1,{04^x}\) đồng biến trên \(\mathbb{R}\) và \(1,7 < 2\) nên \(1,{04^{1,7}} < 1,{04^2}\).
b) Vì \(0 < \frac{3}{5} < 1\) nên hàm số \(y = {\left( {\frac{3}{5}} \right)^x}\)nghịch biến trên \(\mathbb{R}\) và \(\frac{{ - 2}}{5} > \frac{{ - 3}}{5}\) nên \({\left( {\frac{3}{5}} \right)^{\frac{{ - 2}}{5}}} < {\left( {\frac{3}{5}} \right)^{\frac{{ - 3}}{5}}}\).
c) Ta có: \(1,{2^{0,3}} > 1\) và \(1 > 0,{9^{1,8}}\) nên \(1,{2^{0,3}} > 0,{9^{1,8}}\).
d) Ta có: \({\left( {\frac{1}{3}} \right)^{ - 0,4}} > 1\) và \(1 > {3^{ - 0,2}}\) nên \({\left( {\frac{1}{3}} \right)^{ - 0,4}} > {3^{ - 0,2}}\).
Bài 4 trang 17 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường tập trung vào việc xác định tập xác định, tập giá trị, tính đơn điệu và cực trị của hàm số lượng giác. Việc nắm vững kiến thức nền tảng về hàm số lượng giác là điều kiện tiên quyết để giải quyết bài tập này một cách hiệu quả.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 17 sách bài tập Toán 11 - Chân trời sáng tạo tập 2, bạn có thể áp dụng các phương pháp sau:
Bài toán: Xác định tập xác định của hàm số y = tan(2x - π/3).
Lời giải:
Hàm số y = tan(2x - π/3) xác định khi và chỉ khi 2x - π/3 ≠ π/2 + kπ, với k là số nguyên.
Suy ra 2x ≠ 5π/6 + kπ, hay x ≠ 5π/12 + kπ/2, với k là số nguyên.
Vậy tập xác định của hàm số là D = R \ {5π/12 + kπ/2, k ∈ Z}.
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tự giải các bài tập sau:
Giải bài 4 trang 17 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 đòi hỏi sự nắm vững kiến thức về hàm số lượng giác và các phương pháp giải toán. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!