Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3, được biên soạn theo chuẩn chương trình học mới nhất của Bộ Giáo dục và Đào tạo.

Đề thi này là tài liệu ôn tập lý tưởng, giúp học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự đánh giá năng lực của bản thân trước kỳ thi chính thức.

Câu 1: Đường tròn lượng giác có bán kính bằng:

Đề bài

Phần trắc nghiệm (4 điểm)

Câu 1: Đường tròn lượng giác có bán kính bằng:

A. \(2\)

B. \(1\)

C. \(\frac{\pi }{2}\)

D. \(\pi \)

Câu 2: Cho \(\sin a = \frac{1}{3}\). Giá trị của biểu thức \(A = \frac{{\cot a - \tan a}}{{\tan a + 2\cot a}}\) bằng:

A. \(\frac{1}{9}\)

B. \(\frac{7}{9}\)

C. \(\frac{{17}}{{81}}\)

D. \(\frac{7}{{17}}\)

Câu 3: Trong các công thức sau, công thức nào đúng?

A. \(\sin \left( {a-b} \right) = \sin a.\cos b - \cos a.\sin b.\).

B. \(\cos \left( {a-b} \right) = \cos a.\cos b - \sin a.\sin b.\).

C. \(\sin \left( {a + b} \right) = \sin a.\cos b - \cos a.\sin b.\).

D. \(\cos \left( {a + b} \right) = \cos a.\cos b + \sin a.\sin b.\).

Câu 4: Mệnh đề nào sau đây đúng?

A. \(\cos 2a = {\cos ^2}a - {\sin ^2}a\)

B. \(\cos 2a = {\cos ^2}a + {\sin ^2}a\)

C. \(\cos 2a = 2{\cos ^2}a + 1\)

D. \(\cos 2a = 2{\sin ^2}a - 1\)

Câu 5: Hàm số nào sau đây là hàm số chẵn?

A. \(y = - 2\cos x\)

B. \(y = - 2\sin x\)

C. \(y = 2\sin \left( { - x} \right)\)

D. \(y = \sin x - \cos x\)

Câu 6: Hình nào dưới đây biểu diễn đồ thị hàm số \(y = f(x) = 2\sin 2x?\)

A.Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 1

B.Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 2

C.Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 3

D.Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 4

Câu 7: Nghiệm của phương trình \(\cos x = \frac{1}{2}\) là:

A. \(x = \pm \frac{\pi }{2} + k2\pi \)

B. \(x = \pm \frac{\pi }{3} + k2\pi \)

C. \(x = \pm \frac{\pi }{4} + k2\pi \)

D. \(x = \pm \frac{\pi }{6} + k2\pi \)

Câu 8: Trên đoạn \(\left[ {0;2018\pi } \right]\), phương trình \(\sqrt 3 \cot x - 3 = 0\) có số nghiệm là :

A. \(2018.\)

B. \(6340.\)

C. \(2017.\)

D. \(6339.\)

Câu 9: Cho dãy số có các số hạng đầu là: \(\frac{1}{3};\,\frac{1}{{{3^2}}};\,\frac{1}{{{3^3}}};\,\frac{1}{{{3^4}}};\,\frac{1}{{{3^5}}};\,...\)Số hạng tổng quát của dãy số này là?

A. \({u_n} = \frac{1}{3}.\frac{1}{{{3^{n + 1}}}}\)

B. \({u_n} = \frac{1}{{{3^{n + 1}}}}\)

C. \({u_n} = \frac{1}{{{3^n}}}\)

D. \({u_n} = \frac{1}{{{3^{n - 1}}}}\)

Câu 10: Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} = 2\\{u_{n + 1}} = \frac{1}{3}\left( {{u_n} + 1} \right)\end{array} \right..\) Tìm số hạng \({u_4}.\)

A. \({u_4} = \frac{5}{9}.\)

B. \({u_4} = 1.\)

C. \({u_4} = \frac{2}{3}.\)

D. \({u_4} = \frac{{14}}{{27}}.\)

Câu 11: Trong các dãy số sau đây, dãy số nào là cấp số cộng?

A. \({u_n} = {3^n}\)

B. \({u_n} = {\left( { - 3} \right)^{n + 1}}\)

C. \({u_n} = 3n + 1\)

D. \({u_n} = {2^{n + 1}}\)

Câu 12: Cho cấp số cộng \(\left( {{u_n}} \right)\) và gọi \({S_n}\) là tổng \(n\) số hạng đầu tiên của nó. Biết \({u_{21}} = - 19\) và \({S_{22}} = 0\). Tìm số hạng tổng quát \({u_n}\) của cấp số cộng đó.

A. \({u_n} = 21 + 2n\)

B. \({u_n} = 21 - 2n\)

C. \({u_n} = 23 - 2n\)

D. \({u_n} = 23 + 2n\)

Câu 13: Hùng đang tiết kiệm để mua một cây đàn piano có giá 142 triệu đồng. Trong tháng đầu tiên, anh ta để dành được 20 triệu đồng. Mỗi tháng tiếp theo anh ta để dành được 3 triệu đồng và đưa số tiền tiết kiệm của mình. Hỏi ít nhất vào tháng thứ bao nhiêu thì Hùng mới có đủ tiền để mua cây đàn piano đó?

A. \(43\)

B. \(41\)

C. \(40\)

D. \(42\)

Câu 14: Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?

A. \(1;\,2;\,3;\,4;\,5\)

B. \(1;\,3;\,6;\,9;\,12\)

C. \(2;\,4;\,6;\,8;\,10\)

D. \(2;\,2;\,2;\,2;\,2\)

Câu 15: Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và \({u_6} = 486\). Công bội q bằng

A. \(q = 3\)

B. \(q = 5\)

C. \(q = \frac{3}{2}\)

D. \(q = \frac{2}{3}\)

Câu 16: Cho \(\left( {{u_n}} \right)\) là cấp số nhân, đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Biết \({S_2} = 4;\,{S_3} = 13\)và \({u_2} < 0\), giá trị \({S_5}\) bằng

A. \(2\)

B. \(\frac{{181}}{{16}}\)

C. \(\frac{{35}}{{16}}\)

D. \(121\)

Câu 17: Cho mẫu số liệu ghép nhóm về thời gian (phút) đi từ nhà đến nơi làm việc của các nhân viên một công ty như sau:

Thời gian

\(\left[ {15;20} \right)\)

\(\left[ {20;25} \right)\)

\(\left[ {25;30} \right)\)

\(\left[ {30;35} \right)\)

\(\left[ {35;40} \right)\)

\(\left[ {40;45} \right)\)

\(\left[ {45;50} \right)\)

Số nhân viên

6

14

25

37

21

13

9

Có bao nhiêu nhân viên có thời gian đi từ nhà đến nơi làm việc là từ 15 phút đến dưới 20 phút?

A. 6

B. \(9\)

C. 14

D. 13

Câu 18: Cho mẫu số liệu ghép nhóm sau:

Nhóm

\(\left[ {{a_1};{a_2}} \right)\)

.

\(\left[ {{a_i};{a_{i + 1}}} \right)\)

.

\(\left[ {{a_k};{a_{k + 1}}} \right)\)

Tần số

\({m_1}\)

.

\({m_i}\)

.

\({m_k}\)

Với \(n = {m_1} + {m_2} + ... + {m_k}\) là cỡ mẫu và \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) (\(i = 1,...k\)) là giá trị đại diện của nhóm \(\left[ {{a_i};{a_{i + 1}}} \right)\). Khi đó công thức tính số trung bình cộng của mẫu số liệu ghép nhóm trên là:

A. \(\bar x = \frac{n}{{{m_1}{x_1} + \ldots + {m_k}{x_k}}}\)

B. \(\bar x = \frac{{\left( {{m_1}{x_1}} \right) \ldots \left( {{m_k}{x_k}} \right)}}{n}\)

C. \(\bar x = \frac{{{m_1}{x_1} - \ldots - {m_k}{x_k}}}{n}\)

D. \(\bar x = \frac{{{m_1}{x_1} + \ldots + {m_k}{x_k}}}{n}\)

Câu 19: Thời gian luyện tập trong một ngày (tính theo giờ) của một số vận động viên được ghi lại ở bảng sau:

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 5

Tứ phân vị thứ ba của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?

A. 3

B. 4

C. 7

D. 5

Câu 20: Trong một hội thao, thời gian chạy \(200{\rm{\;m}}\) của một nhóm các vận động viên được ghi lại ở bảng sau:

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 6

Trung vị của mẫu số liệu ghép nhóm trên thuộc khoảng nào trong các khoảng dưới đây?

A. \(\left[ {20;30} \right)\)

B. \(\left[ {30;40} \right)\)

C. \(\left[ {50;60} \right)\)

D. \(\left[ {60;70} \right)\)

Phần tự luận (6 điểm)

Bài 1. (1 điểm)

Tìm giá trị lớn nhất và giá trị nhỏ nhất : \(y = {\tan ^2}x - \tan x + 1\) với \(x \in \left[ { - \frac{\pi }{4};\,\frac{\pi }{4}} \right]\).

Bài 2. (1,5 điểm)

a) Giải phương trình \(\cot \;x = \sqrt 3 \)

b) Trong khoảng \(\left( {0;\pi } \right)\), phương trình \(\cos 4x + \sin x = 0\) có tập nghiệm là \(S\). Tìm S.

c) Giải phương trình \(\frac{3}{2} - 3cos4x = 6sinx.sin3x\).

Bài 3. (2 điểm)

a) Một cơ sở khoan giếng đưa ra định mức giá như sau : Giá từ mét khoan đầu tiên là \(100000\) đồng và kể từ mét khoan thứ hai, giá mỗi mét tăng thêm \(30000\) đồng so với giá của mét khoan ngay trước đó. Một người muốn kí hợp đồng với cơ sở khoan giếng này để khoan giếng sâu \(20\) mét lấy nước dùng cho sinh hoạt gia đình. Hỏi sau khi hoàn thành việc khoan giếng, gia đình đó phải thanh toán cho cơ sở khoan giếng số tiền bằng bao nhiêu?

b) Cho cấp số nhân \(\left( {{x_n}} \right)\) có \({x_2} = - 3\) và \({x_4} = - 27.\) Tính số hạng đầu \({x_1}\) và công bội \(q\) của cấp số nhân

Bài 4. (1,5 điểm)

Một người thống kê lại thời gian thực hiện các cuộc gọi điện thoại của người đó trong một tuần ở bảng sau:

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 7

a)Tính trung vị của mẫu số liệu ghép nhóm này.

b) Tìm tứ phân vị thứ nhất và tứ phân vị thứ ba của mẫu số liệu ghép nhóm này.

---- Hết ----

Lời giải chi tiết

Phần trắc nghiệm (4 điểm)

Câu 1: B

Câu 2: D

Câu 3: A

Câu 4: A

Câu 5: A

Câu 6: C

Câu 7: B

Câu 8: A

Câu 9: C

Câu 10: A

Câu 11: C

Câu 12: C

Câu 13: D

Câu 14: D

Câu 15: A

Câu 16: B

Câu 17: A

Câu 18: D

Câu 19: C

Câu 20: A

Câu 1: Đường tròn lượng giác có bán kính bằng:

A. \(2\)

B. \(1\)

C. \(\frac{\pi }{2}\)

D. \(\pi \)

Phương pháp

Đường tròn lượng giác có bán kính bằng 1.

Lời giải

Đường tròn lượng giác có bán kính bằng 1.

Đáp án B

Câu 2: Cho \(\sin a = \frac{1}{3}\). Giá trị của biểu thức \(A = \frac{{\cot a - \tan a}}{{\tan a + 2\cot a}}\) bằng:

A. \(\frac{1}{9}\)

B. \(\frac{7}{9}\)

C. \(\frac{{17}}{{81}}\)

D. \(\frac{7}{{17}}\)

Phương pháp

B1: Biến đổi biểu thức A để xuất hiện giả thiết .

B2: Thay \(\sin a = \frac{1}{3}\) vào biểu thức A sau đó rút gọn.

Lời giải

Ta có: \(A = \frac{{\cot a - \tan a}}{{\tan a + 2\cot a}} = \frac{{\frac{{\cos a}}{{\sin a}} - \frac{{\sin a}}{{\cos a}}}}{{\frac{{\sin a}}{{\cos a}} + 2\frac{{\cos a}}{{\sin a}}}} = \frac{{{{\cos }^2}a - {{\sin }^2}a}}{{{{\sin }^2}a + 2{{\cos }^2}a}}\)\( = \frac{{\left( {1 - {{\sin }^2}a} \right) - {{\sin }^2}a}}{{{{\sin }^2}a + 2\left( {1 - {{\sin }^2}a} \right)}} = \frac{{1 - 2{{\sin }^2}a}}{{2 - {{\sin }^2}a}} = \frac{7}{{17}}\).

Đáp án D

Câu 3: Trong các công thức sau, công thức nào đúng?

A. \(\sin \left( {a-b} \right) = \sin a.\cos b - \cos a.\sin b.\).

B. \(\cos \left( {a-b} \right) = \cos a.\cos b - \sin a.\sin b.\).

C. \(\sin \left( {a + b} \right) = \sin a.\cos b - \cos a.\sin b.\).

D. \(\cos \left( {a + b} \right) = \cos a.\cos b + \sin a.\sin b.\).

Phương pháp

Sử dụng công thức cộng.

Lời giải

Ta có: \(\sin \left( {a-b} \right) = \sin a.\cos b - \cos a.\sin b.\).

Đáp án A

Câu 4: Mệnh đề nào sau đây đúng?

A. \(\cos 2a = {\cos ^2}a - {\sin ^2}a\)

B. \(\cos 2a = {\cos ^2}a + {\sin ^2}a\)

C. \(\cos 2a = 2{\cos ^2}a + 1\)

D. \(\cos 2a = 2{\sin ^2}a - 1\)

Phương pháp

Áp dụng công thức nhân đôi

Lời giải

Ta có: \(\cos 2a = {\cos ^2}a - {\sin ^2}a = 2{\cos ^2}a - 1 = 1 - 2{\sin ^2}a\).

Đáp án A

Câu 5: Hàm số nào sau đây là hàm số chẵn?

A. \(y = - 2\cos x\)

B. \(y = - 2\sin x\)

C. \(y = 2\sin \left( { - x} \right)\)

D. \(y = \sin x - \cos x\)

Phương pháp

Để xét tính chẵn – lẻ của hàm số, ta làm như sau:

Bước 1: Tìm tập xác định \(D\) của hàm số, khi đó:

- Nếu \(D\) là tập đối xứng (tức \(\forall x \in D \Rightarrow - x \in D\)), thì ta thực hiện tiếp bước 2.

- Nếu \(D\) không phải tập đối xứng (tức là \(\exists x \in D\) mà \( - x \notin D\)) thì ta kết luận hàm số không chẵn không lẻ.

Bước 2: Xác định \(f\left( { - x} \right)\):

- Nếu \(f\left( { - x} \right) = f\left( x \right),\forall x \in D\) thì kết luận hàm số là hàm số chẵn.

- Nếu \(f\left( { - x} \right) = - f\left( x \right),\forall x \in D\) thì kết luận hàm số là hàm số lẻ.

- Nếu không thỏa mãn một trong hai điều kiện trên thì kết luận hàm số không chẵn không lẻ.

Lời giải

Xét đáp án A:

Do tập xác định \(D = \mathbb{R}\) nên \(\forall x \in \mathbb{R} \Rightarrow - x \in \mathbb{R}\).

Ta có: \(f\left( { - x} \right) = - 2\cos \left( { - x} \right) = - 2\cos x = f\left( x \right)\).

Vậy hàm số \(y = - 2\cos x\) là hàm số chẵn.

Đáp án A

Câu 6: Hình nào dưới đây biểu diễn đồ thị hàm số \(y = f(x) = 2\sin 2x?\)

A.Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 8

B.Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 9

C.Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 10

D.Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 11

Phương pháp

Dựa vào các điểm đặc biết của đồ thị để nhận biết hàm số.

Lời giải

Ta thấy \( - 2 \le 2\sin 2x \le 2\) nên ta có loại AB.

Tiếp theo với CD ta có :

Ta thấy với \(x = 0\) thì \(y = 0\) nên đồ thị hàm số đi qua gốc tọa độ.

Từ đây ta chọn đáp án C.

Đáp án C

Câu 7: Nghiệm của phương trình \(\cos x = \frac{1}{2}\) là:

A. \(x = \pm \frac{\pi }{2} + k2\pi \)

B. \(x = \pm \frac{\pi }{3} + k2\pi \)

C. \(x = \pm \frac{\pi }{4} + k2\pi \)

D. \(x = \pm \frac{\pi }{6} + k2\pi \)

Phương pháp

- Trường hợp \(\left| m \right| > 1\) phương trình vô nghiệm.

- Trường hợp \(\left| m \right| \le 1\), khi đó: Tồn tại duy nhất một số thực \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\cos \alpha = m\).

Ta có : \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.,\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Ta có: \(\cos x = \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = - \frac{\pi }{3} + k2\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\)

Đáp án B

Câu 8: Trên đoạn \(\left[ {0;2018\pi } \right]\), phương trình \(\sqrt 3 \cot x - 3 = 0\) có số nghiệm là :

A. \(2018.\)

B. \(6340.\)

C. \(2017.\)

D. \(6339.\)

Phương pháp

Áp dụng các công thức giải phương trình lượng giác cơ bản rồi kết hợp điều kiện đã cho để chọn nghiệm thỏa mãn.

Lời giải

Ta có : \(\cot x = \sqrt 3 \Leftrightarrow \cot x = \cot \frac{\pi }{6} \Leftrightarrow x = \frac{\pi }{6} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right).\)

Theo giả thiết, ta có $0\le \frac{\pi }{6}+k\pi \le 2018\pi \xrightarrow{\text{xap xi}}-\frac{1}{6}\le k\le 2017,833$.

$3\xrightarrow{k\in \mathbb{Z}}k\in \left\{ 0;1;...;2017 \right\}$. 

Vậy có tất cả \(2018\) giá trị nguyên của \(k\) tương ứng với có \(2018\) nghiệm thỏa mãn yêu cầu bài toán.

Đáp án A

Câu 9: Cho dãy số có các số hạng đầu là: \(\frac{1}{3};\,\frac{1}{{{3^2}}};\,\frac{1}{{{3^3}}};\,\frac{1}{{{3^4}}};\,\frac{1}{{{3^5}}};\,...\)Số hạng tổng quát của dãy số này là?

A. \({u_n} = \frac{1}{3}.\frac{1}{{{3^{n + 1}}}}\)

B. \({u_n} = \frac{1}{{{3^{n + 1}}}}\)

C. \({u_n} = \frac{1}{{{3^n}}}\)

D. \({u_n} = \frac{1}{{{3^{n - 1}}}}\)

Phương pháp

Tìm tính chất chung của các số trong dãy số rồi dự đoán công thức tổng quát.

Lời giải

Từ các số hạng đầu tiên của dãy số ta dự đoán \({u_n} = \frac{1}{{{3^n}}},\,n \in {\mathbb{N}^*}\).

Đáp án C

Câu 10: Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} = 2\\{u_{n + 1}} = \frac{1}{3}\left( {{u_n} + 1} \right)\end{array} \right..\) Tìm số hạng \({u_4}.\)

A. \({u_4} = \frac{5}{9}.\)

B. \({u_4} = 1.\)

C. \({u_4} = \frac{2}{3}.\)

D. \({u_4} = \frac{{14}}{{27}}.\)

Phương pháp

Tính lần lượt \({u_2},{u_3},{u_4}\) theo bằng cách thay lần lượt \(n = 1,2,3\) vào công thức truy hồi của dãy số.

Lời giải

Ta có:

\({u_2} = \frac{1}{3}\left( {{u_1} + 1} \right) = \frac{1}{3}\left( {2 + 1} \right) = 1\).

\({u_3} = \frac{1}{3}\left( {{u_2} + 1} \right) = \frac{1}{3}\left( {1 + 1} \right) = \frac{2}{3}\).

\({u_4} = \frac{1}{3}\left( {{u_3} + 1} \right) = \frac{1}{3}\left( {\frac{2}{3} + 1} \right) = \frac{5}{9}\).

Vậy \({u_4} = \frac{5}{9}\).

Đáp án A

Câu 11: Trong các dãy số sau đây, dãy số nào là cấp số cộng?

A. \({u_n} = {3^n}\)

B. \({u_n} = {\left( { - 3} \right)^{n + 1}}\)

C. \({u_n} = 3n + 1\)

D. \({u_n} = {2^{n + 1}}\)

Phương pháp

Để chứng minh dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng, ta xét \(A = {u_{n + 1}} - {u_n}\)

\( \bullet \) Nếu \(A\) là hằng số thì \(\left( {{u_n}} \right)\) là một cấp số cộng với công sai \(d = A\).

\( \bullet \) Nếu \(A\) phụ thuộc vào \(n\) thì \(\left( {{u_n}} \right)\) không là cấp số cộng.

Lời giải

Ta có:

Xét đáp án A: \({u_{n + 1}} - {u_n} = {3^{n + 1}} - {3^n} = {2.3^n}\left( {\forall n \in {{\rm N}^*}} \right)\) nên \({u_n} = {3^n}\) không phải là cấp số cộng.

Xét đáp án B: \({u_{n + 1}} - {u_n} = {\left( { - 3} \right)^{n + 1}} - {\left( { - 3} \right)^n} = - 4.{\left( { - 3} \right)^n}\left( {\forall n \in {{\rm N}^*}} \right)\) nên \({u_n} = {\left( { - 3} \right)^{n + 1}}\) không phải là cấp số cộng.

Xét đáp án C: \({u_{n + 1}} - {u_n} = \left[ {3\left( {n + 1} \right) + 1} \right] - \left( {3n + 1} \right) = 3\left( {\forall n \in {{\rm N}^*}} \right)\) không đổi, nên \({u_n} = 3n + 1\) là cấp số cộng.

Xét đáp án D: \({u_{n + 1}} - {u_n} = {2^{n + 2}} - {2^{n + 1}} = {2^{n + 1}}\left( {\forall n \in {{\rm N}^*}} \right)\) nên \({u_n} = {2^{n + 1}}\) không phải là cấp số cộng.

Đáp án C

Câu 12: Cho cấp số cộng \(\left( {{u_n}} \right)\) và gọi \({S_n}\) là tổng \(n\) số hạng đầu tiên của nó. Biết \({u_{21}} = - 19\) và \({S_{22}} = 0\). Tìm số hạng tổng quát \({u_n}\) của cấp số cộng đó.

A. \({u_n} = 21 + 2n\)

B. \({u_n} = 21 - 2n\)

C. \({u_n} = 23 - 2n\)

D. \({u_n} = 23 + 2n\)

Phương pháp

Dựa vào giả thuyết, ta lập một hệ phương trình chứa công sai d và số hạng đầu \({u_1}\), giải hệ phương trình này tìm được d và \({u_1}\).

Lời giải

Giả sử cấp số cộng có số hạng đầu là \({u_1}\) và công sai \(d\).

Ta có: \(\left\{ \begin{array}{l}{u_{21}} = - 19\\{S_{22}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{21}} = {u_1} + 20d\\{S_{22}} = 22{u_1} + \frac{{22.21d}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 20d = - 19\\2{u_1} + 21d = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 21\\d = - 2\end{array} \right.\).

Khi đó: \({u_n} = {u_1} + \left( {n - 1} \right)d = 21 - 2\left( {n - 1} \right) = 23 - 2n\).

Đáp án C

Câu 13: Hùng đang tiết kiệm để mua một cây đàn piano có giá 142 triệu đồng. Trong tháng đầu tiên, anh ta để dành được 20 triệu đồng. Mỗi tháng tiếp theo anh ta để dành được 3 triệu đồng và đưa số tiền tiết kiệm của mình. Hỏi ít nhất vào tháng thứ bao nhiêu thì Hùng mới có đủ tiền để mua cây đàn piano đó?

A. \(43\)

B. \(41\)

C. \(40\)

D. \(42\)

Phương pháp

Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\).

Khi đó : \({u_n} = {u_1} + \left( {n - 1} \right)d\)

Lời giải

Tổng số tiền Hùng tiết kiệm được vào mỗi tháng lập thành một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 20\) và công sai \(d = 3\).

Tổng số tiền Hùng tiết kiệm được vào tháng thứ \(n\) bằng: \({u_n} = {u_1} + \left( {n - 1} \right)d = 20 + \left( {n - 1} \right).3 = 3n + 17\).

Hùng có đủ tiền mua cây đàn \({u_n} \ge 142 \Leftrightarrow 3n + 17 \ge 142\) \( \Leftrightarrow n \ge \frac{{125}}{3} \approx 41,67\).

Vậy ít nhất vào tháng thứ 42 thì Hùng mới có đủ tiền để mua cây đàn piano đó.

Đáp án D

Câu 14: Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?

A. \(1;\,2;\,3;\,4;\,5\)

B. \(1;\,3;\,6;\,9;\,12\)

C. \(2;\,4;\,6;\,8;\,10\)

D. \(2;\,2;\,2;\,2;\,2\)

Phương pháp

Chứng minh \(\forall n \ge 1,{u_{n + 1}} = {u_n}.q\) trong đó \(q\) là một số không đổi.

Nếu \({u_n} \ne 0\) với mọi \(n \in {\mathbb{N}^*}\) thì ta lập tỉ số \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\).

\( * \) T là hằng số thì \(({u_n})\) là cấp số nhân có công bội \(q = T\).

\( * \) T phụ thuộc vào n thì \(({u_n})\) không là cấp số nhân.

Lời giải

Ta thấy ở đáp án D có \({u_1} = {u_2} = {u_3} = {u_4} = {u_5} = 2\) nên đây là cấp số nhân với công bội \(q = 1\).

Đáp án D

Câu 15: Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và \({u_6} = 486\). Công bội q bằng

A. \(q = 3\)

B. \(q = 5\)

C. \(q = \frac{3}{2}\)

D. \(q = \frac{2}{3}\)

Phương pháp

Dựa vào giả thuyết, ta lập một hệ phương trình chứa công bội q và số hạng đầu \({u_1}\), giải hệ phương trình này tìm được q và \({u_1}\).

Lời giải

Theo đề ra ta có: \(\left\{ \begin{array}{l}{u_1} = 2\\{u_6} = 486\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\486 = {u_1}.{q^5}\end{array} \right.\)\( \Rightarrow {q^5} = 243 = {3^5}\)\( \Rightarrow q = 3\).

Đáp án A

Câu 16: Cho \(\left( {{u_n}} \right)\) là cấp số nhân, đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Biết \({S_2} = 4;\,{S_3} = 13\)và \({u_2} < 0\), giá trị \({S_5}\) bằng

A. \(2\)

B. \(\frac{{181}}{{16}}\)

C. \(\frac{{35}}{{16}}\)

D. \(121\)

Phương pháp

Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội \(q\).

Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).

Khi đó : \({S_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}},q \ne 1\).

Lời giải

Gọi \({u_1},q\) lần lượt là số hạng đầu tiên và công bội của cấp số nhân cần tìm.

Từ giả thiết ta có \(\left\{ \begin{array}{l}{S_2} = 4\\{S_3} = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + q} \right) = 4\\{u_1}\left( {1 + q + {q^2}} \right) = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + q} \right) = 4\\\left[ \begin{array}{l}q = 3\\q = \frac{{ - 3}}{4}\end{array} \right.\end{array} \right.\).

Vì \(\left\{ \begin{array}{l}{u_2} < 0\\{u_3} = {S_3} - {S_2} = 9 > 0\end{array} \right. \Rightarrow q = \frac{{{u_3}}}{{{u_2}}} < 0\) nên cấp số nhân cần tìm có \(\left\{ \begin{array}{l}{u_1} = 16\\q = - \frac{3}{4}\end{array} \right.\).

Do đó \({S_5} = {u_1}\left( {\frac{{1 - {q^5}}}{{1 - q}}} \right) = \frac{{181}}{{16}}\).

Đáp án B

Câu 17: Cho mẫu số liệu ghép nhóm về thời gian (phút) đi từ nhà đến nơi làm việc của các nhân viên một công ty như sau:

Thời gian

\(\left[ {15;20} \right)\)

\(\left[ {20;25} \right)\)

\(\left[ {25;30} \right)\)

\(\left[ {30;35} \right)\)

\(\left[ {35;40} \right)\)

\(\left[ {40;45} \right)\)

\(\left[ {45;50} \right)\)

Số nhân viên

6

14

25

37

21

13

9

Có bao nhiêu nhân viên có thời gian đi từ nhà đến nơi làm việc là từ 15 phút đến dưới 20 phút?

A. 6

B. \(9\)

C. 14

D. 13

Phương pháp

Đọc bảng số liệu.

Lời giải

Có 6 nhân viên có thời gian đi từ nhà đến nơi làm việc là từ 15 phút đến dưới 20 phút.

Đáp án A

Câu 18: Cho mẫu số liệu ghép nhóm sau:

Nhóm

\(\left[ {{a_1};{a_2}} \right)\)

.

\(\left[ {{a_i};{a_{i + 1}}} \right)\)

.

\(\left[ {{a_k};{a_{k + 1}}} \right)\)

Tần số

\({m_1}\)

.

\({m_i}\)

.

\({m_k}\)

Với \(n = {m_1} + {m_2} + ... + {m_k}\) là cỡ mẫu và \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) (\(i = 1,...k\)) là giá trị đại diện của nhóm \(\left[ {{a_i};{a_{i + 1}}} \right)\). Khi đó công thức tính số trung bình cộng của mẫu số liệu ghép nhóm trên là:

A. \(\bar x = \frac{n}{{{m_1}{x_1} + \ldots + {m_k}{x_k}}}\)

B. \(\bar x = \frac{{\left( {{m_1}{x_1}} \right) \ldots \left( {{m_k}{x_k}} \right)}}{n}\)

C. \(\bar x = \frac{{{m_1}{x_1} - \ldots - {m_k}{x_k}}}{n}\)

D. \(\bar x = \frac{{{m_1}{x_1} + \ldots + {m_k}{x_k}}}{n}\)

Phương pháp

Số trung bình của mẫu số liệu ghép nhóm kí hiệu là \(\bar x\).

\(\bar x = \frac{{{m_1}{x_1} + \ldots + {m_k}{x_k}}}{n}\)

trong đó, \(n = {m_1} + \ldots + {m_k}\) là cỡ mẫu và \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) (với \(i = 1, \ldots ,k\) ) là giá trị đại diện của nhóm \(\left[ {{a_i};{a_{i + 1}}} \right)\).

Lời giải

Số trung bình của mẫu số liệu ghép nhóm kí hiệu là \(\bar x\).

\(\bar x = \frac{{{m_1}{x_1} + \ldots + {m_k}{x_k}}}{n}\)

Đáp án D

Câu 19: Thời gian luyện tập trong một ngày (tính theo giờ) của một số vận động viên được ghi lại ở bảng sau:

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 12

Tứ phân vị thứ ba của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?

A. 3

B. 4

C. 7

D. 5

Phương pháp

Để tính tứ phân vị thứ nhất \({Q_3}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_3}\), giả sử đó là nhóm thứ \(p\) : \(\left[ {{a_p};{a_{p + 1}}} \right)\). Khi đó,

\({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}} \cdot \left( {{a_{p + 1}} - {a_p}} \right),\)

trong đó, \(n\) là cỡ mẫu, \({m_p}\) là tần số nhóm \(p\), với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).

Lời giải

Tứ phân vị thứ ba của dãy số liệu \({x_1};{x_2}, \ldots ,{x_{39}}\) là \({x_{30}} \in \left[ {6;8} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là

\({Q_3} = 6 + \frac{{\frac{{3.39}}{4} - \left( {3 + 8 + 12} \right)}}{{12}} \cdot \left( {8 - 6} \right) = \frac{{169}}{{24}} \approx 7,042\)

Đáp án C

Câu 20: Trong một hội thao, thời gian chạy \(200{\rm{\;m}}\) của một nhóm các vận động viên được ghi lại ở bảng sau:

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 13

Trung vị của mẫu số liệu ghép nhóm trên thuộc khoảng nào trong các khoảng dưới đây?

A. \(\left[ {20;30} \right)\)

B. \(\left[ {30;40} \right)\)

C. \(\left[ {50;60} \right)\)

D. \(\left[ {60;70} \right)\)

Phương pháp

  • Gọi\(n\) là cỡ mẫu.
  • Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị;
  • \({n_m}\) là tần số của nhóm chứa trung vị;
  • \(C = {n_1} + {n_2} + \ldots + {n_{m - 1}}\). Khi đó \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}} \cdot \left( {{u_{m + 1}} - {u_m}} \right)\)

Lời giải

Số vận động viên tham gia chạy là: \(n = 5 + 12 + 32 + 45 + 30 = 124\) Gọi \({x_1};{x_2};{x_3}; \ldots ;{x_{124}}\) lần lượt là thời gian chạy của các vận động viên theo thứ tự từ nhỏ đến lớn Do \({x_1}, \ldots ,{x_5} \in \left[ {21;21,5} \right);{x_6}, \ldots ,{x_{17}} \in \left[ {21,5;22} \right)\) \({x_{18}}, \ldots ,{x_{49}} \in \left[ {22;22,5} \right);{x_{50}}, \ldots ,{x_{94}} \in \left[ {22,5;23} \right); \ldots \) nên trung vị của mẫu số liệu thuộc nhóm \(\left[ {22,5;23} \right)\) Ta có: \(n = 124;{n_m} = 45;C = 5 + 12 + 32 = 49;{u_m} = 22,5;{u_{m + 1}} = 23\) Trung vị của mẫu số liệu ghép nhóm là:

\({M_e} = 22,5 + \frac{{\frac{{124}}{2} - 49}}{{124}} \cdot \left( {23 - 22,5} \right) = 22,55\)

Đáp án A

Phần tự luận.

Bài 1.

Tìm giá trị lớn nhất và giá trị nhỏ nhất : \(y = {\tan ^2}x - \tan x + 1\) với \(x \in \left[ { - \frac{\pi }{4};\,\frac{\pi }{4}} \right]\).

Phương pháp

B1: Đặt ẩn phụ và tìm điều kiện của ẩn

B2: Lập bảng biến thiên, khảo sát hàm số rồi kết luận

Lời giải

Đặt \(tanx = t\), \(t \in \left[ { - 1\,;\,1} \right]\), hàm số có dạng: \(y = {t^2} - t + 1\).

Xét hàm số \(y = {t^2} - t + 1\) trên \(\left[ { - 1\,;\,1} \right]\) có BBT như sau:

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 14

Giá trị nhỏ nhất của hàm số bằng \(\frac{3}{4}\) khi và chỉ khi \(t = \frac{1}{2}\) tức \(tanx = \frac{1}{2}\)\( \Leftrightarrow \)\(x = \arctan \left( {\frac{1}{2}} \right) + k\pi \), \(k \in \mathbb{Z}\).

Giá trị lớn nhất của hàm số bằng \(3\) khi và chỉ khi \(t = - 1\) tức là \(tanx = - 1\)\( \Leftrightarrow \)\(x = - \frac{\pi }{4} + k\pi \), \(k \in \mathbb{Z}\).

Bài 2.

a) Giải phương trình \(\cot \;x = \sqrt 3 \)

b) Trong khoảng \(\left( {0;\pi } \right)\), phương trình \(\cos 4x + \sin x = 0\) có tập nghiệm là \(S\). Tìm S.

c) Giải phương trình \(\frac{3}{2} - 3cos4x = 6sinx.sin3x\).

Phương pháp

a) Ta có: \(\cot x = m\,\)\( \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

b) Áp dụng các công thức giải phương trình lượng giác cơ bản rồi kết hợp điều kiện đã cho để chọn nghiệm thỏa mãn.

c) Sử dụng công thức biến tích thành tổng để rút gọn phương trình: \(\sin a.\sin b = \frac{1}{2}\left[ {\cos \left( {a - b} \right) - \cos \left( {a + b} \right)} \right]\).

Lời giải

a) Ta có: \(\cot x = \sqrt 3 \)\( \Leftrightarrow \cot x = \cot \;\frac{\pi }{6}\)\( \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\;\left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow x = \frac{{ - 5\pi }}{6} + k\pi \;\;\left( {k \in \mathbb{Z}} \right)\).

b) Ta có \(\cos 4x + \sin x = 0 \Leftrightarrow {\rm{cos}}4x = - \sin x \Leftrightarrow {\rm{cos}}4x = \sin \left( { - x} \right) \Leftrightarrow {\rm{cos}}4x = {\rm{cos}}\left( {\frac{\pi }{2} + x} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{2} + x + k2\pi \\4x = - \frac{\pi }{2} - x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\frac{{2\pi }}{3}\\x = - \frac{\pi }{{10}} + k\frac{{2\pi }}{5}\end{array} \right.\), \(k \in \mathbb{Z}\).

Vì \(x \in \left( {0;\pi } \right)\) nên \(S = \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6};\frac{{3\pi }}{{10}};\frac{{7\pi }}{{10}}} \right\}\).

c) Ta có: \(\frac{3}{2} - 3cos4x = 6sinx.sin3x\)

\( \Leftrightarrow \frac{3}{2} - 3\cos 4x = 3(\cos 2x - \cos 4x)\)

\( \Leftrightarrow 3\cos 2x = \frac{3}{2}\)

\(\begin{array}{l} \Leftrightarrow \cos 2x = \frac{1}{2}\,\\ \Leftrightarrow {\mathop{\rm x}\nolimits} = \pm \frac{\pi }{6} + {\mathop{\rm k}\nolimits} \pi ,{\mathop{\rm k}\nolimits} \in \mathbb{Z}\,\end{array}\).

Bài 3.

a) Một cơ sở khoan giếng đưa ra định mức giá như sau : Giá từ mét khoan đầu tiên là \(100000\) đồng và kể từ mét khoan thứ hai, giá mỗi mét tăng thêm \(30000\) đồng so với giá của mét khoan ngay trước đó. Một người muốn kí hợp đồng với cơ sở khoan giếng này để khoan giếng sâu \(20\) mét lấy nước dùng cho sinh hoạt gia đình. Hỏi sau khi hoàn thành việc khoan giếng, gia đình đó phải thanh toán cho cơ sở khoan giếng số tiền bằng bao nhiêu?

b) Cho cấp số nhân \(\left( {{x_n}} \right)\) có \({x_2} = - 3\) và \({x_4} = - 27.\) Tính số hạng đầu \({x_1}\) và công bội \(q\) của cấp số nhân

Phương pháp

a) Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\).

Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).

Khi đó : \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) hoặc \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2} = n{u_1} + \frac{{n\left( {n - 1} \right)}}{2}d\) .

b) Dựa vào giả thuyết, ta lập một hệ phương trình chứa công bội q và số hạng đầu \({u_1}\), giải hệ phương trình này tìm được q và \({u_1}\).

Lời giải

a) Giá tiền mỗi mét khoan giếng lập thành một cấp số cộng với

\({u_1} = 100000\) (số tiền mét khoan đầu tiên),

\({u_2} = {u_1} + 30000\) (số tiền mét khoan thứ hai),

\({u_3} = {u_2} + 30000 = {u_1} + 2.30000\) (số tiền mét khoan thứ ba)

\({u_{20}} = {u_{19}} + 30000 = {u_1} + 19.30000\) (số tiền mét khoan thứ 20),

và công sai \(d = 30000\).

Tổng chi phí cần phải thanh toán là:

\({S_{20}} = {u_1} + {u_2} + {u_3} + ... + {u_{20}}\) \( = \frac{{20(2.10000 + 19.30000)}}{2}\)\( = 7700000\).

b) Ta có : \(\left\{ {\begin{array}{*{20}{c}}{{x_2} = - 3}\\{{x_4} = - 27.}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1}q = - 3}\\{{x_1}{q^3} = - 27.}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{q^2} = 9}\\{{x_1} = - \frac{3}{q}.}\end{array}} \right.} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{q = \pm 3}\\{{x_1} = \mp 1.}\end{array}} \right.\).

Vậy dãy số có \({x_1} = - 1,q = 3\)hoặc \({x_1} = 1,q = - 3.\)

Bài 4.

Một người thống kê lại thời gian thực hiện các cuộc gọi điện thoại của người đó trong một tuần ở bảng sau:

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 15

a)Tính trung vị của mẫu số liệu ghép nhóm này.

b) Tìm tứ phân vị thứ nhất và tứ phân vị thứ ba của mẫu số liệu ghép nhóm này.

Phương pháp

a) Để tính trung vị của mẫu số liệu ghép nhóm, ta làm như sau:

Bước 1. Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ \(p\) : \(\left[ {{a_p};{a_{p + 1}}} \right)\).

Bước 2. Trung vị là \({M_e} = {a_p} + \frac{{\frac{n}{2} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}} \cdot \left( {{a_{p + 1}} - {a_p}} \right)\),

trong đó \(n\) là cỡ mẫu, \({m_p}\) là tần số nhóm \(p\). Với \(p = 1\), ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).

b) Để tính tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_1}\), giả sử đó là nhóm thứ \(p\) : \(\left[ {{a_p};{a_{p + 1}}} \right)\). Khi đó,

\({Q_1} = {a_p} + \frac{{\frac{n}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}} \cdot \left( {{a_{p + 1}} - {a_p}} \right),\)

trong đó, \(n\) là cỡ mẫu, \({m_p}\) là tần số nhóm \(p\), với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).

Để tịnh tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_3}\). Giả sử đó là nhóm thứ \(p\) : \(\left[ {{a_p};{a_{p + 1}}} \right)\). Khi đó,

\({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}} \cdot \left( {{a_{p + 1}} - {a_p}} \right),\)

trong đó, \(n\) là cỡ mẫu, \({m_p}\) là tần số nhóm \(p\), với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).

Tứ phân vị thứ hai \({Q_2}\) chính là trung vị \({M_e}\).

Nhận xét. Ta cũng có thể xác định nhóm chứa tứ phân vi thứ \(r\) nhờ tính chất: có khoảng \(\left( {\frac{{r \cdot n}}{4}} \right)\) giá trị nhỏ hơn tứ phân vị này.

Lời giải

a) Số lần thực hiện cuộc gọi là: \({\rm{n}} = 8 + 10 + 7 + 5 + 2 + 1 = 33\). Gọi \({x_1};{x_2};{x_3}; \ldots ;{x_{33}}\) lần lượt là thời gian thực hiện cuộc gọi theo thứ tự không gian. Do \({x_1}, \ldots ,{x_8} \in \left[ {0;60} \right);{x_9}, \ldots ,{x_{18}} \in \left[ {60;120} \right);{x_{19}}, \ldots ,{x_{25}} \in \left[ {120;180} \right)\) \({x_{26}}, \ldots ,{x_{30}} \in \left[ {180;240} \right); \ldots \)

Trung vị của dãy số liệu là \(\frac{1}{2}\left( {{x_{16}} + {x_{17}}} \right)\) thuộc nhóm \(\left[ {60;120} \right)\)nên tứ phân vị thứ hai của mẫu số liệu là

\({Q_2} = 60 + \frac{{\frac{{33}}{2} - 8}}{{10}}\left( {120 - 60} \right) = 111\).

b) Tứ phân vị thứ hai của dãy số liệu là \(\frac{1}{2}\left( {{x_{16}} + {x_{17}}} \right)\) thuộc nhóm \(\left[ {60;120} \right)\)nên tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = 60 + \frac{{\frac{{33}}{2} - 8}}{{10}}\left( {120 - 60} \right) = 111\).

Tứ phân vị thứ ba của dãy số liệu là \(\frac{1}{2}\left( {{x_{24}} + {x_{25}}} \right)\) thuộc nhóm [120;180) nên tứ phân vị thứ ba của mẫu số liệu là \({Q_3} = 120 + \frac{{\frac{{3.33}}{4} - 18}}{7}\left( {180 - 120} \right) = 177,8\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3: Phân tích chi tiết và hướng dẫn giải

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 là một bài kiểm tra quan trọng, đánh giá mức độ nắm vững kiến thức và kỹ năng giải toán của học sinh sau một nửa học kỳ đầu tiên. Đề thi bao gồm các dạng bài tập thuộc các chủ đề chính như hàm số, lượng giác, và tổ hợp - xác suất. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để đạt kết quả tốt trong kỳ thi này.

Cấu trúc đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3

Thông thường, đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 có cấu trúc gồm hai phần chính:

  1. Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản, công thức và định nghĩa.
  2. Phần tự luận: Chiếm khoảng 60-70% tổng số điểm, yêu cầu học sinh trình bày chi tiết lời giải cho các bài toán phức tạp hơn.

Nội dung chi tiết đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3

Dưới đây là phân tích chi tiết các dạng bài tập thường xuất hiện trong đề thi:

  • Hàm số: Các bài toán về tập xác định, tập giá trị, tính đơn điệu, cực trị của hàm số bậc hai, hàm số mũ, hàm số logarit.
  • Lượng giác: Các bài toán về giải phương trình lượng giác cơ bản, chứng minh đẳng thức lượng giác, ứng dụng của lượng giác trong giải tam giác.
  • Tổ hợp - Xác suất: Các bài toán về hoán vị, chỉnh hợp, tổ hợp, xác suất của biến cố.

Hướng dẫn giải một số bài toán điển hình

Bài toán 1: Giải phương trình lượng giác cos(2x) = 1/2.

Lời giải:

cos(2x) = 1/2 ⇔ 2x = ±π/3 + k2π (k ∈ Z)

⇔ x = ±π/6 + kπ (k ∈ Z)

Bài toán 2: Tính số hoán vị của 5 phần tử.

Lời giải:

Số hoán vị của 5 phần tử là P(5) = 5! = 5 × 4 × 3 × 2 × 1 = 120.

Mẹo làm bài thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 hiệu quả

  • Nắm vững kiến thức: Đọc kỹ sách giáo khoa, ghi chép bài giảng và làm đầy đủ các bài tập trong sách bài tập.
  • Luyện tập thường xuyên: Giải nhiều đề thi thử, đề thi năm trước để làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.
  • Phân bổ thời gian hợp lý: Đọc kỹ đề thi, ước lượng thời gian cần thiết cho mỗi câu hỏi và phân bổ thời gian hợp lý.
  • Kiểm tra lại bài làm: Sau khi làm xong bài thi, hãy dành thời gian kiểm tra lại bài làm để phát hiện và sửa lỗi.

Tài liệu ôn thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3

Giaitoan.edu.vn cung cấp đầy đủ các tài liệu ôn thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3, bao gồm:

  • Đề thi thử
  • Bài giảng video
  • Bài tập trắc nghiệm
  • Bài tập tự luận
  • Đáp án và lời giải chi tiết

Kết luận

Đề thi giữa kì 1 Toán 11 Kết nối tri thức - Đề số 3 là một cơ hội tốt để học sinh đánh giá năng lực của bản thân và chuẩn bị cho kỳ thi cuối kỳ. Hãy ôn tập kỹ lưỡng kiến thức, luyện tập thường xuyên và áp dụng các mẹo làm bài thi hiệu quả để đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 11