Logo Header
  1. Môn Toán
  2. Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8

Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8

Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8

Chào mừng các em học sinh lớp 11 đến với đề thi học kì 1 môn Toán theo chương trình Kết nối tri thức. Đề số 8 này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Đề thi bao gồm các dạng bài tập đa dạng, bám sát cấu trúc đề thi chính thức, giúp các em làm quen với áp lực phòng thi và rèn luyện kỹ năng giải quyết vấn đề.

Đề bài

    Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Khi biểu diễn trên đường tròn lượng giác, góc lượng giác nào trong các góc lượng giác có số đo dưới đây có cùng điểm cuối với góc lượng giác có số đo \(\frac{\pi }{4}\)?

    • A.

      \(\frac{{10\pi }}{3}\)

    • B.

      \( - \frac{{5\pi }}{4}\)

    • C.

      \(\frac{{25\pi }}{4}\)

    • D.

      \(\frac{{7\pi }}{4}\)

    Câu 2 :

    Cho \(0 < \alpha < \frac{\pi }{2}\). Khẳng định nào sau đây đúng?

    • A.

      \(\cot \left( {\alpha + \frac{\pi }{2}} \right) > 0\)

    • B.

      \(\cot \left( {\alpha + \frac{\pi }{2}} \right) \ge 0\)

    • C.

      \(\tan \left( {\alpha + \pi } \right) < 0\)

    • D.

      \(\tan \left( {\alpha + \pi } \right) > 0\)

    Câu 3 :

    Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{{( - 1)}^{n - 1}}}}{{n + 1}}\). Số hạng thứ 9 của dãy là

    • A.

      \({u_9} = \frac{1}{{10}}\)

    • B.

      \({u_9} = \frac{{ - 1}}{{10}}\)

    • C.

      \({u_9} = \frac{{ - 1}}{9}\)

    • D.

      \({u_9} = \frac{1}{9}\)

    Câu 4 :

    Trong các dãy số sau, dãy số nào là một cấp số cộng?

    • A.

      1; -2; -4; -6; -8

    • B.

      1; -3; -6; -9; -12

    • C.

      1; -3; -7; -11; -15

    • D.

      1; -3; -5; -7; -9

    Câu 5 :

    Cho dãy số \(\left( {{u_n}} \right)\) là cấp số nhân có số hạng đầu \({u_1} = 4\), công bội q = 3. Giá trị của \({u_2}\) bằng

    • A.

      8

    • B.

      9

    • C.

      6

    • D.

      12

    Câu 6 :

    Giới hạn \(\lim \frac{1}{{2n + 5}}\) bằng

    • A.

      \(\frac{1}{2}\)

    • B.

      0

    • C.

      \( + \infty \)

    • D.

      \(\frac{1}{5}\)

    Câu 7 :

    Cho hàm số \(f(x) = \frac{{2x - 1}}{{x + 2}}\). Hàm số gián đoạn tại điểm

    • A.

      \({x_0} = - 2\)

    • B.

      \({x_0} = \frac{1}{2}\)

    • C.

      \({x_0} = 2\)

    • D.

      \({x_0} = 1\)

    Câu 8 :

    Trong các khẳng định sau, khẳng định nào sai?

    • A.

      Mặt phẳng hoàn toàn xác định khi biết nó đi qua hai điểm

    • B.

      Tồn tại bốn điểm không cùng thuộc một mặt phẳng

    • C.

      Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng còn có một điểm chung khác nữa

    • D.

      Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đườngthẳng đều thuộc mặt phẳng đó

    Câu 9 :

    Cho tứ diện ABCD. Cặp đường thẳng nào sau đây chéo nhau?

    • A.

      AB, AD

    • B.

      AB, CB

    • C.

      BC, BD

    • D.

      BC, AD

    Câu 10 :

    Hình chiếu của hình chữ nhật không thể là hình nào trong các hình sau?

    • A.

      Hình chữ nhật

    • B.

      Hình thang

    • C.

      Hình bình hành

    • D.

      Hình thoi

    Câu 11 :

    Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 0 1

    Nhóm chứa mốt của mẫu số liệu trên là

    • A.

      [40;60)

    • B.

      [20;40)

    • C.

      [60;80)

    • D.

      [80;100)

    Câu 12 :

    Khảo sát khối lượng 30 củ khoai tây ngẫu nhiên thu hoạch được ở một nông trường:

    Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 0 2

    Số củ khoai tây đạt chuẩn loại I (từ 90 gam đến dưới 100 gam) là

    • A.

      5

    • B.

      12

    • C.

      6

    • D.

      4

    Phần II: Câu trắc nghiệm đúng sai.
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Cho hàm số y = sinx.

    a) sinx < 0 khi \( - \frac{\pi }{2} < x < 0\).

    Đúng
    Sai

    b) Hàm số y = sinx là hàm số lẻ với mọi \(x \in \mathbb{R}\).

    Đúng
    Sai

    c) Phương trình sinx = 1 có nghiệm \(x = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\).

    Đúng
    Sai

    d) Hàm số y = sinx có chặn dưới là 0.

    Đúng
    Sai
    Câu 2 :

    Cho g(x) = \(\left\{ \begin{array}{l}\frac{{{x^2} - x - 6}}{{x + 2}}\\2x + a\end{array} \right.\) \(\begin{array}{l}khi\\khi\end{array}\) \(\begin{array}{l}x \ne - 2\\x = - 2\end{array}\).

    a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{x + 2}} = - 4\).

    Đúng
    Sai

    b) g(x) liên tục tại x = -2 thì a = 1.

    Đúng
    Sai

    c) g(x) liên tục tại x = -2 thì bộ ba số a; 2; 5 tạo thành một cấp số cộng.

    Đúng
    Sai

    d) g(x) liên tục tại x = -2 thì bộ ba số 1; a; 1 tạo thành một cấp số nhân.

    Đúng
    Sai
    Câu 3 :

    Cho tứ diện ABCD có điểm G là trọng tâm tam giác ABD và điểm M thuộc cạnh BC sao cho MB = 2MC.

    a) MG cắt AC.

    Đúng
    Sai

    b) MG//AB.

    Đúng
    Sai

    c) MG//(ACD).

    Đúng
    Sai

    d) \((BGM) \cap (ACD) = MG\).

    Đúng
    Sai
    Câu 4 :

    Số lượng người đi xem một bộ phim mới theo độ tuổi trong một rạp chiếu phim (sau 1 giờ đầu công chiếu) được ghi lại theo bảng phân phối ghép nhóm sau:

    Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 0 3

    a) Giá trị đại diện nhóm [50;60) là 55.

    Đúng
    Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất thuộc nhóm [50;60).

    Đúng
    Sai

    c) Nhóm chứa mốt là [30;40).

    Đúng
    Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 32 tuổi.

    Đúng
    Sai
    Phần III: Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6.
    Câu 1 :

    Chiều cao h (m) của một cabin trên vòng quay vào thời điểm t giây sau khi bắt đầu chuyển động được cho bởi công thức \(h = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right)\). Sau bao nhiêu giây thì cabin đạt độ cao 40 m lần đầu tiên (viết kết quả ở dạng số thập phân)?

    Đáp án:

    Câu 2 :

    Một cơ sở khoan giếng đưa ra định mức giá như sau: Giá của mét khoan đầu tiên là 100 nghìn đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 30 nghìn đồng so với giá của mét khoan ngay trước đó. Một người cần khoan một giếng sâu 20 m để lấy nước dùng cho sinh hoạt của gia đình. Hỏi sau khi hoàn thành việc khoan giếng, gia đình đó phải thanh toán cho cơ sở khoan giếng số tiền bao nhiêu nghìn đồng?

    Đáp án:

    Câu 3 :

    Tìm công bội của cấp số nhân thỏa \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 135\\{u_4} + {u_5} + {u_6} = 40\end{array} \right.\) là \(\frac{a}{b}\) là phân số tối giản. Giá trị a + b là bao nhiêu?

    Đáp án:

    Câu 4 :

    Có bao nhiêu giá trị nguyên của tham số m để hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt x - 1}}{{{x^2} - 1}}\\{m^2}x\end{array} \right.\) \(\begin{array}{l}khi\\khi\end{array}\) \(\begin{array}{l}x \ne 1\\x = 1\end{array}\) liên tục tại điểm \({x_0} = 1\)?

    Đáp án:

    Câu 5 :

    Cho tứ diện ABCD có I, J lần lượt là trung điểm của các cạnh BC và BD. Gọi (P) là mặt phẳng qua I, J và cắt hai cạnh AC và AD lần lượt tại M và N. Để IJNM là hình thoi thì AC = kAM và AB = mCD. Khi đó giá trị của k + m bằng bao nhiêu?

    Đáp án:

    Câu 6 :

    Thời gian (phút) truy cập internet mỗi buổi tối của một số học sinh được cho trong bảng sau:

    Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 0 4

    Tìm trung vị của mẫu số liệu ghép nhóm trên (kết quả viết dưới dạng số thập phân).

    Đáp án:

    Lời giải và đáp án

      Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Khi biểu diễn trên đường tròn lượng giác, góc lượng giác nào trong các góc lượng giác có số đo dưới đây có cùng điểm cuối với góc lượng giác có số đo \(\frac{\pi }{4}\)?

      • A.

        \(\frac{{10\pi }}{3}\)

      • B.

        \( - \frac{{5\pi }}{4}\)

      • C.

        \(\frac{{25\pi }}{4}\)

      • D.

        \(\frac{{7\pi }}{4}\)

      Đáp án : C

      Phương pháp giải :

      Các góc lượng giác hơn kém nhau \(k2\pi \) có cùng điểm cuối.

      Lời giải chi tiết :

      Ta có \(\frac{{25\pi }}{4} = \frac{\pi }{4} + 3.2\pi \).

      Câu 2 :

      Cho \(0 < \alpha < \frac{\pi }{2}\). Khẳng định nào sau đây đúng?

      • A.

        \(\cot \left( {\alpha + \frac{\pi }{2}} \right) > 0\)

      • B.

        \(\cot \left( {\alpha + \frac{\pi }{2}} \right) \ge 0\)

      • C.

        \(\tan \left( {\alpha + \pi } \right) < 0\)

      • D.

        \(\tan \left( {\alpha + \pi } \right) > 0\)

      Đáp án : D

      Phương pháp giải :

      Dựa vào vị trí điểm cuối của góc lượng giác để xét dấu.

      Lời giải chi tiết :

      Vì \(0 < \alpha < \frac{\pi }{2}\) nên \(\frac{\pi }{2} < \alpha + \frac{\pi }{2} < \pi \). Khi đó \(\sin \left( {\alpha + \frac{\pi }{2}} \right) > 0\), \(\cos \left( {\alpha + \frac{\pi }{2}} \right) < 0\) suy ra \(\cot \left( {\alpha + \frac{\pi }{2}} \right) < 0\).

      Vì \(0 < \alpha < \frac{\pi }{2}\) nên \(\pi < \alpha + \pi < \frac{{3\pi }}{2}\). Khi đó \(\sin \left( {\alpha + \pi } \right) < 0\), \(\cos \left( {\alpha + \pi } \right) < 0\) suy ra \(\tan \left( {\alpha + \pi } \right) > 0\).

      Câu 3 :

      Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{{( - 1)}^{n - 1}}}}{{n + 1}}\). Số hạng thứ 9 của dãy là

      • A.

        \({u_9} = \frac{1}{{10}}\)

      • B.

        \({u_9} = \frac{{ - 1}}{{10}}\)

      • C.

        \({u_9} = \frac{{ - 1}}{9}\)

      • D.

        \({u_9} = \frac{1}{9}\)

      Đáp án : A

      Phương pháp giải :

      Thay 9 vào n và tính.

      Lời giải chi tiết :

      \({u_9} = \frac{{{{( - 1)}^{9 - 1}}}}{{9 + 1}} = \frac{1}{{10}}\).

      Câu 4 :

      Trong các dãy số sau, dãy số nào là một cấp số cộng?

      • A.

        1; -2; -4; -6; -8

      • B.

        1; -3; -6; -9; -12

      • C.

        1; -3; -7; -11; -15

      • D.

        1; -3; -5; -7; -9

      Đáp án : C

      Phương pháp giải :

      Dãy số \(\left( {{u_n}} \right)\) có tính chất \({u_{n + 1}} = {u_n} + d\) thì được gọi là một cấp số cộng.

      Lời giải chi tiết :

      Ta thấy dãy số 1; -3; -7; -11; -15 là một cấp số cộng có số hạng đầu và công sai d = -4.

      Câu 5 :

      Cho dãy số \(\left( {{u_n}} \right)\) là cấp số nhân có số hạng đầu \({u_1} = 4\), công bội q = 3. Giá trị của \({u_2}\) bằng

      • A.

        8

      • B.

        9

      • C.

        6

      • D.

        12

      Đáp án : D

      Phương pháp giải :

      \({u_n} = {u_1}{q^{n - 1}}\).

      Lời giải chi tiết :

      \({u_2} = {u_1}q = 4.3 = 12\).

      Câu 6 :

      Giới hạn \(\lim \frac{1}{{2n + 5}}\) bằng

      • A.

        \(\frac{1}{2}\)

      • B.

        0

      • C.

        \( + \infty \)

      • D.

        \(\frac{1}{5}\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng quy tắc tính giới hạn của dãy số.

      Lời giải chi tiết :

      Ta có \(\lim (2n + 5) = + \infty \) suy ra \(\lim \frac{1}{{2n + 5}} = 0\).

      Câu 7 :

      Cho hàm số \(f(x) = \frac{{2x - 1}}{{x + 2}}\). Hàm số gián đoạn tại điểm

      • A.

        \({x_0} = - 2\)

      • B.

        \({x_0} = \frac{1}{2}\)

      • C.

        \({x_0} = 2\)

      • D.

        \({x_0} = 1\)

      Đáp án : A

      Phương pháp giải :

      f(x) gián đoạn tại điểm mà hàm số không xác định.

      Lời giải chi tiết :

      Hàm số có tập xác định là \(D = \mathbb{R}\backslash \{ - 2\} \), do đó hàm số không liên tục tại \({x_0} = - 2\).

      Câu 8 :

      Trong các khẳng định sau, khẳng định nào sai?

      • A.

        Mặt phẳng hoàn toàn xác định khi biết nó đi qua hai điểm

      • B.

        Tồn tại bốn điểm không cùng thuộc một mặt phẳng

      • C.

        Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng còn có một điểm chung khác nữa

      • D.

        Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đườngthẳng đều thuộc mặt phẳng đó

      Đáp án : A

      Phương pháp giải :

      Sử dụng khái niệm, tính chất của đường thẳng, mặt phẳng trong không gian.

      Lời giải chi tiết :

      A sai vì mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.

      Câu 9 :

      Cho tứ diện ABCD. Cặp đường thẳng nào sau đây chéo nhau?

      • A.

        AB, AD

      • B.

        AB, CB

      • C.

        BC, BD

      • D.

        BC, AD

      Đáp án : D

      Phương pháp giải :

      Dựa vào định nghĩa tứ diện.

      Lời giải chi tiết :

      BC, AD là hai đường chéo nhau.

      Câu 10 :

      Hình chiếu của hình chữ nhật không thể là hình nào trong các hình sau?

      • A.

        Hình chữ nhật

      • B.

        Hình thang

      • C.

        Hình bình hành

      • D.

        Hình thoi

      Đáp án : B

      Phương pháp giải :

      Dựa vào tính chất của phép chiếu song song.

      Lời giải chi tiết :

      Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.

      Vì hình chữ nhật có hai cặp cạnh song song nên hình chiếu của nó cũng phải là tứ giác có hai cặp cạnh song song hoặc trở thành một đoạn thẳng.

      Vì hình thang chỉ có một cặp cạnh song song nên không thể là hình chiếu của hình chữ nhật.

      Câu 11 :

      Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 1 1

      Nhóm chứa mốt của mẫu số liệu trên là

      • A.

        [40;60)

      • B.

        [20;40)

      • C.

        [60;80)

      • D.

        [80;100)

      Đáp án : A

      Phương pháp giải :

      Nhóm chứa mốt là nhóm có tần số lớn nhất trong bảng số liệu.

      Lời giải chi tiết :

      Tần số lớn nhất của bảng là 12 nên nhóm chứa mốt là [40;60).

      Câu 12 :

      Khảo sát khối lượng 30 củ khoai tây ngẫu nhiên thu hoạch được ở một nông trường:

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 1 2

      Số củ khoai tây đạt chuẩn loại I (từ 90 gam đến dưới 100 gam) là

      • A.

        5

      • B.

        12

      • C.

        6

      • D.

        4

      Đáp án : B

      Phương pháp giải :

      Số củ khoai tây đạt chuẩn loại I (từ 90 gam đến dưới 100 gam) là tần số của nhóm [90;100).

      Lời giải chi tiết :

      Số củ khoai tây đạt chuẩn loại I (từ 90 gam đến dưới 100 gam) là 12.

      Phần II: Câu trắc nghiệm đúng sai.
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Cho hàm số y = sinx.

      a) sinx < 0 khi \( - \frac{\pi }{2} < x < 0\).

      Đúng
      Sai

      b) Hàm số y = sinx là hàm số lẻ với mọi \(x \in \mathbb{R}\).

      Đúng
      Sai

      c) Phương trình sinx = 1 có nghiệm \(x = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\).

      Đúng
      Sai

      d) Hàm số y = sinx có chặn dưới là 0.

      Đúng
      Sai
      Đáp án

      a) sinx < 0 khi \( - \frac{\pi }{2} < x < 0\).

      Đúng
      Sai

      b) Hàm số y = sinx là hàm số lẻ với mọi \(x \in \mathbb{R}\).

      Đúng
      Sai

      c) Phương trình sinx = 1 có nghiệm \(x = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\).

      Đúng
      Sai

      d) Hàm số y = sinx có chặn dưới là 0.

      Đúng
      Sai
      Phương pháp giải :

      a) Dựa vào vị trí điểm cuối của góc lượng giác để nhận xét dấu của giá trị lượng giác.

      b) Hàm số f(x) là hàm số lẻ khi thỏa mãn các điều kiện:

      - Nếu \(x \in D\) thì \( - x \in D\).

      - Có \(f( - x) = - f(x)\).

      c) Sử dụng công thức nghiệm của phương trình lượng giác cơ bản.

      d) Dựa vào tập giá trị của hàm số.

      Lời giải chi tiết :

      a) Đúng. \( - \frac{\pi }{2} < x < 0\) nên điểm cuối của góc lượng giác nằm ở góc phần tư thứ IV.

      Khi đó sinx < 0.

      b) Đúng. Tập xác định của hàm số y = sinx là \(D = \mathbb{R}\) nên \(x \in D\) thì \( - x \in D\).

      Mặt khác \(f( - x) = \sin ( - x) = - \sin x = - f(x)\).

      Vậy hàm số y = sinx là hàm số lẻ.

      c) Sai. \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \), \(k \in \mathbb{Z}\).

      d) Sai. Ta có \( - 1 \le \sin x \le 1\) nên hàm số y = sinx có chặn dưới là -1.

      Câu 2 :

      Cho g(x) = \(\left\{ \begin{array}{l}\frac{{{x^2} - x - 6}}{{x + 2}}\\2x + a\end{array} \right.\) \(\begin{array}{l}khi\\khi\end{array}\) \(\begin{array}{l}x \ne - 2\\x = - 2\end{array}\).

      a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{x + 2}} = - 4\).

      Đúng
      Sai

      b) g(x) liên tục tại x = -2 thì a = 1.

      Đúng
      Sai

      c) g(x) liên tục tại x = -2 thì bộ ba số a; 2; 5 tạo thành một cấp số cộng.

      Đúng
      Sai

      d) g(x) liên tục tại x = -2 thì bộ ba số 1; a; 1 tạo thành một cấp số nhân.

      Đúng
      Sai
      Đáp án

      a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{x + 2}} = - 4\).

      Đúng
      Sai

      b) g(x) liên tục tại x = -2 thì a = 1.

      Đúng
      Sai

      c) g(x) liên tục tại x = -2 thì bộ ba số a; 2; 5 tạo thành một cấp số cộng.

      Đúng
      Sai

      d) g(x) liên tục tại x = -2 thì bộ ba số 1; a; 1 tạo thành một cấp số nhân.

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng quy tắc tính giới hạn của hàm số tại một điểm.

      Hàm số f(x) liên tục tại \({x_0}\) khi \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\).

      Lời giải chi tiết :

      a) Sai \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{(x - 3)(x + 2)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} (x - 3) = - 2 - 3 = - 5\).

      b) Sai. Ta có:

      \(\mathop {\lim }\limits_{x \to - 2} g(x) = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{x + 2}} = - 5\);

      \(g( - 2) = 2.( - 2) + a = a - 4\).

      Để g(x) liên tục tại x = -2 thì \(\mathop {\lim }\limits_{x \to - 2} g(x) = g( - 2) \Leftrightarrow - 5 = a - 4 \Leftrightarrow a = - 1\).

      c) Đúng. Bộ ba số -1; 2; 5 tạo thành cấp số cộng với công sai d = 3.

      d) Đúng. Bộ ba số 1; -1; 1 tạo thành một cấp số nhân với công bội q = -1.

      Câu 3 :

      Cho tứ diện ABCD có điểm G là trọng tâm tam giác ABD và điểm M thuộc cạnh BC sao cho MB = 2MC.

      a) MG cắt AC.

      Đúng
      Sai

      b) MG//AB.

      Đúng
      Sai

      c) MG//(ACD).

      Đúng
      Sai

      d) \((BGM) \cap (ACD) = MG\).

      Đúng
      Sai
      Đáp án

      a) MG cắt AC.

      Đúng
      Sai

      b) MG//AB.

      Đúng
      Sai

      c) MG//(ACD).

      Đúng
      Sai

      d) \((BGM) \cap (ACD) = MG\).

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng các điều kiện, tính chất của đường thẳng và mặt phẳng song song.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 1 3

      Gọi I là trung điểm của AD. Khi đó BI là đường trung tuyến tam giác ABD.

      Suy ra \(\frac{{BG}}{{BI}} = \frac{2}{3}\).

      Vì MB = 2MC suy ra \(\frac{{BM}}{{BC}} = \frac{2}{3}\).

      Xét tam giác BCI có \(\frac{{BG}}{{BI}} = \frac{{BM}}{{BC}} = \frac{2}{3}\) suy ra MG//CI (định lí Thales đảo).

      Mà \(MG\not{ \subset }(ACD)\), \(CI \subset (ACD)\) nên MG//(ACD).

      a) Sai. Có MG//(ACD) mà \(AC \subset (ACD)\) nên MG không cắt AC.

      b) Sai. MG và AB là hai đường thẳng chéo nhau.

      c) Đúng. MG//(ACD).

      d) Sai. Ta có:

      Vì \(\left\{ \begin{array}{l}C \in BM \subset (BMG)\\C \in (ACD)\end{array} \right.\) nên \(C \in (BGM) \cap (ACD)\).

      Vì \(\left\{ \begin{array}{l}I \in BG \subset (BMG)\\I \in AD \subset (ACD)\end{array} \right.\) nên \(I \in (BGM) \cap (ACD)\).

      Vậy \((BGM) \cap (ACD) = CI\).

      Câu 4 :

      Số lượng người đi xem một bộ phim mới theo độ tuổi trong một rạp chiếu phim (sau 1 giờ đầu công chiếu) được ghi lại theo bảng phân phối ghép nhóm sau:

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 1 4

      a) Giá trị đại diện nhóm [50;60) là 55.

      Đúng
      Sai

      b) Độ tuổi được dự báo là ít xem phim đó nhất thuộc nhóm [50;60).

      Đúng
      Sai

      c) Nhóm chứa mốt là [30;40).

      Đúng
      Sai

      d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 32 tuổi.

      Đúng
      Sai
      Đáp án

      a) Giá trị đại diện nhóm [50;60) là 55.

      Đúng
      Sai

      b) Độ tuổi được dự báo là ít xem phim đó nhất thuộc nhóm [50;60).

      Đúng
      Sai

      c) Nhóm chứa mốt là [30;40).

      Đúng
      Sai

      d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 32 tuổi.

      Đúng
      Sai
      Phương pháp giải :

      a) Giá trị đại diện của nhóm là trung bình cộng hai đầu mút của nhóm.

      b) Độ tuổi được dự báo là ít xem phim đó nhất thuộc nhóm có tần số nhỏ nhất.

      c) Nhóm chứa mốt có tần số lớn nhất trong bảng số liệu.

      d) Công thức tính mốt thuộc nhóm \([{u_m};{u_{m + 1}})\):

      \({M_o} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right)\left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right)\); trong đó \({n_m}\) là tần số nhóm thứ m.

      Lời giải chi tiết :

      a) Đúng. Giá trị đại diện của nhóm [50;60) là \(\frac{{50 + 60}}{2} = 55\).

      b) Đúng. Độ tuổi được dự báo là ít xem phim đó nhất thuộc nhóm [50;60) vì có tần số nhỏ nhất là 2.

      c) Đúng. Nhóm chứa mốt là [30;40) vì có tần số lớn nhất là 16.

      d) Sai. Độ tuổi được dự báo là thích xem phim đó nhiều nhất là mốt của mẫu số liệu:

      \({M_o} = 30 + \frac{{16 - 12}}{{\left( {16 - 12} \right)\left( {16 - 7} \right)}}.\left( {40 - 30} \right) = \frac{{280}}{9} \approx 31,(1)\).

      Phần III: Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6.
      Câu 1 :

      Chiều cao h (m) của một cabin trên vòng quay vào thời điểm t giây sau khi bắt đầu chuyển động được cho bởi công thức \(h = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right)\). Sau bao nhiêu giây thì cabin đạt độ cao 40 m lần đầu tiên (viết kết quả ở dạng số thập phân)?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Giải phương trình \(30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = 40\) và tìm nghiệm t dương nhỏ nhất.

      Lời giải chi tiết :

      \(30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = 40 \Leftrightarrow \sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = \frac{1}{2} \Leftrightarrow \sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\)

      \( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{25}}t + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\\frac{\pi }{{25}}t + \frac{\pi }{3} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = - \frac{{25}}{6} + k50\\t = \frac{{25}}{2} + k50\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = - \frac{{25}}{6} + k50\\t = \frac{{25}}{2} + k50\end{array} \right.\)\((k \in \mathbb{Z})\).

      Ta thấy nghiệm dương nhỏ nhất là \(t = \frac{{25}}{2} = 12,5\) (giây) khi k = 0.

      Vậy sau 12,5 giây thì cabin đạt độ cao 40m lần đầu tiên.

      Câu 2 :

      Một cơ sở khoan giếng đưa ra định mức giá như sau: Giá của mét khoan đầu tiên là 100 nghìn đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 30 nghìn đồng so với giá của mét khoan ngay trước đó. Một người cần khoan một giếng sâu 20 m để lấy nước dùng cho sinh hoạt của gia đình. Hỏi sau khi hoàn thành việc khoan giếng, gia đình đó phải thanh toán cho cơ sở khoan giếng số tiền bao nhiêu nghìn đồng?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng công thức tổng n số hạng đầu của cấp số cộng: \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\).

      Lời giải chi tiết :

      Số tiền khoan mỗi mét lập thành một cấp số cộng với \({u_1} = 100\) và d = 30 (nghìn đồng).

      Tổng số tiền cần để khoan 20m giếng là:

      \({S_{20}} = \frac{{20.\left[ {2.100 + (20 - 1).30} \right]}}{2} = 7700\).

      Vậy số tiền cần thanh toán là 7700 nghìn đồng.

      Câu 3 :

      Tìm công bội của cấp số nhân thỏa \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 135\\{u_4} + {u_5} + {u_6} = 40\end{array} \right.\) là \(\frac{a}{b}\) là phân số tối giản. Giá trị a + b là bao nhiêu?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng công thức số hạng tổng quát của cấp số nhân \({u_n} = {u_1}{q^{n - 1}}\).

      Lời giải chi tiết :

      \(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}(1 + {q^4}) = 51\\{u_1}q(1 + {q^4}) = 102\end{array} \right. \Leftrightarrow q = \frac{{102}}{{51}} = 2\).

      Suy ra \({u_1} = \frac{{51}}{{1 + {2^4}}} = 3\).

      Vậy \({u_3} = {u_1}{q^2} = {3.2^2} = 12\).

      Câu 4 :

      Có bao nhiêu giá trị nguyên của tham số m để hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt x - 1}}{{{x^2} - 1}}\\{m^2}x\end{array} \right.\) \(\begin{array}{l}khi\\khi\end{array}\) \(\begin{array}{l}x \ne 1\\x = 1\end{array}\) liên tục tại điểm \({x_0} = 1\)?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Hàm số liên tục tại \({x_0}\) khi \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = f({x_0})\).

      Lời giải chi tiết :

      Ta có:

      \(f(1) = {m^2}.1 = {m^2}\mathop {\lim }\limits_{x \to \infty } \).

      \(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)\left( {x + 1} \right)}}\)

      \( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {\sqrt x + 1} \right)\left( {x + 1} \right)}} = \frac{1}{{\left( {\sqrt 1 + 1} \right)\left( {1 + 1} \right)}} = \frac{1}{4}\).

      Để hàm số liên tục tại \({x_0} = 1\) thì \(\mathop {\lim }\limits_{x \to 1} f(x) = f(1) \Leftrightarrow {m^2} = \frac{1}{4} \Leftrightarrow m = \pm \frac{1}{2}\).

      Vậy không có giá trị nguyên m nào để f(x) liên tục tại \({x_0} = 1\).

      Câu 5 :

      Cho tứ diện ABCD có I, J lần lượt là trung điểm của các cạnh BC và BD. Gọi (P) là mặt phẳng qua I, J và cắt hai cạnh AC và AD lần lượt tại M và N. Để IJNM là hình thoi thì AC = kAM và AB = mCD. Khi đó giá trị của k + m bằng bao nhiêu?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng tính chất đường trung bình, định lí Thales.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 1 5

      Vì IJ là đường trung bình của tam giác ABC nên IJ//CD và \(IJ = \frac{1}{2}CD\).

      Để IJNM là hình thoi thì IJNM phải là hình bình hành và có NM = MI.

      Để IJNM là hình bình hành thì cần MN//IJ và MN = IJ, hay MN//CD và \(MN = \frac{1}{2}CD\).

      Khi đó, MN là đường trung bình tam giác ACD, tức M, N lần lượt là trung điểm của AC, AD.

      Do đó AC = 2AM nên k = 2.

      Ta cũng có MI là đường trung bình tam giác ABC nên \(MI = \frac{1}{2}AB\).

      Để MN = MI thì AB = CD, suy ra m = 1.

      Vậy k + m = 2 + 1 = 3.

      Câu 6 :

      Thời gian (phút) truy cập internet mỗi buổi tối của một số học sinh được cho trong bảng sau:

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 1 6

      Tìm trung vị của mẫu số liệu ghép nhóm trên (kết quả viết dưới dạng số thập phân).

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      \({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.({u_{m + 1}} - {u_m})\).

      Lời giải chi tiết :

      Cỡ mẫu: n = 3 + 12 + 15 + 24 + 2 = 56.

      Gọi \({x_1};{x_2};...;{x_{33}}\) là thời gian học sinh truy cập internet sắp xếp theo thứ tự không giảm.

      Có \(\frac{n}{2} = \frac{{56}}{2} = 28\) nên \({Q_2} = \frac{{{x_{28}} + {x_{29}}}}{2} \in [15,5;18,5)\).

      \({Q_2} = 15,5 + \frac{{\frac{{56}}{2} - (3 + 12)}}{{15}}.(18,5 - 15,5) = 18,1\).

      Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8: Phân tích chi tiết và hướng dẫn giải

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 là một công cụ quan trọng giúp học sinh lớp 11 ôn tập và đánh giá kiến thức đã học trong nửa học kì đầu tiên. Đề thi này bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, bao phủ các chủ đề chính trong chương trình học.

      Cấu trúc đề thi

      Đề thi thường được chia thành các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng nhận biết các khái niệm toán học.
      • Phần tự luận: Đòi hỏi học sinh phải vận dụng kiến thức đã học để giải quyết các bài toán phức tạp hơn.

      Các chủ đề chính trong đề thi

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 thường tập trung vào các chủ đề sau:

      1. Nghiệp vụ logic và tập hợp: Các bài toán về mệnh đề, tập hợp, phép toán trên tập hợp.
      2. Hàm số bậc nhất và hàm số bậc hai: Xác định hàm số, vẽ đồ thị, tìm tập xác định, tập giá trị, điểm đồng biến, nghịch biến.
      3. Bất phương trình bậc nhất và bất phương trình bậc hai: Giải bất phương trình, biểu diễn nghiệm trên trục số.
      4. Hệ phương trình bậc nhất hai ẩn: Giải hệ phương trình bằng phương pháp thế, phương pháp cộng đại số.
      5. Vectơ: Các phép toán trên vectơ, ứng dụng của vectơ trong hình học.
      6. Tích vô hướng của hai vectơ: Tính tích vô hướng, ứng dụng của tích vô hướng trong chứng minh quan hệ vuông góc.

      Hướng dẫn giải một số dạng bài tập thường gặp

      Dạng 1: Giải phương trình bậc hai

      Để giải phương trình bậc hai ax2 + bx + c = 0, ta có thể sử dụng công thức nghiệm:

      x = (-b ± √(b2 - 4ac)) / 2a

      Nếu b2 - 4ac > 0, phương trình có hai nghiệm phân biệt.

      Nếu b2 - 4ac = 0, phương trình có nghiệm kép.

      Nếu b2 - 4ac < 0, phương trình vô nghiệm.

      Dạng 2: Giải bất phương trình bậc hai

      Để giải bất phương trình bậc hai ax2 + bx + c > 0 (hoặc ax2 + bx + c < 0), ta tìm nghiệm của phương trình ax2 + bx + c = 0. Sau đó, xét dấu của tam thức bậc hai trên các khoảng xác định bởi các nghiệm.

      Dạng 3: Tính góc giữa hai vectơ

      Cho hai vectơ ab, góc θ giữa hai vectơ được tính bằng công thức:

      cos θ = (a . b) / (||a|| . ||b||)

      Lời khuyên khi làm bài thi

      • Đọc kỹ đề bài trước khi làm.
      • Phân bổ thời gian hợp lý cho từng câu hỏi.
      • Kiểm tra lại bài làm sau khi hoàn thành.
      • Sử dụng máy tính bỏ túi khi cần thiết.

      Tài liệu tham khảo

      Sách giáo khoa Toán 11 Kết nối tri thức

      Sách bài tập Toán 11 Kết nối tri thức

      Các trang web học toán online uy tín như giaitoan.edu.vn

      Kết luận

      Đề thi học kì 1 Toán 11 Kết nối tri thức - Đề số 8 là một bài kiểm tra quan trọng giúp học sinh đánh giá năng lực của bản thân. Việc ôn tập kỹ lưỡng và làm quen với các dạng bài tập thường gặp sẽ giúp các em tự tin hơn khi bước vào phòng thi và đạt kết quả tốt nhất.

      Tài liệu, đề thi và đáp án Toán 11