Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 11 - Đề số 3

Đề thi học kì 2 Toán 11 - Đề số 3

Đề thi học kì 2 Toán 11 - Đề số 3: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 11 - Đề số 3, một công cụ hữu ích giúp các em học sinh ôn luyện và đánh giá năng lực bản thân trước kỳ thi quan trọng. Đề thi được biên soạn theo cấu trúc chuẩn của Bộ Giáo dục và Đào tạo, bao gồm nhiều dạng bài tập khác nhau, từ cơ bản đến nâng cao.

Với đáp án chi tiết đi kèm, các em có thể tự kiểm tra và rút kinh nghiệm sau khi làm bài, từ đó củng cố kiến thức và kỹ năng giải toán.

Đề bài

    Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Đạo hàm của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^3} + 2{x^2} + x + 4} - 2}}{{x + 1}}{\rm{ khi }}x \ne - 1\\0{\rm{ khi }}x = - 1\end{array} \right.\) tại \(x = - 1\) là:

    • A.
      0
    • B.
      Không tồn tại.
    • C.

      \( - \frac{1}{4}\)

    • D.

      \(\frac{1}{2}\)

    Câu 2 :

    Đạo hàm của hàm số \(y = \sqrt {4{x^2} + 3x + 1} \) là hàm số nào sau đây?

    • A.

      \(y = 12x + 3\).

    • B.

      \(y = \frac{{8x + 3}}{{\sqrt {4{x^2} + 3x + 1} }}\).

    • C.

      \(y = \frac{1}{{2\sqrt {4{x^2} + 3x + 1} }}\).

    • D.

      \(y = \frac{{8x + 3}}{{2\sqrt {4{x^2} + 3x + 1} }}\).

    Câu 3 :

    Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) với \(a,b,c,d \in R\);\(a > 0\) và \(\left\{ \begin{array}{l}d > 2021\\a + b + c + d - 2021 < 0\end{array} \right.\). Hỏi phương trình \(f\left( x \right) - 2021 = 0\) có mấy nghiệm phân biệt?

    • A.
      0
    • B.
      3
    • C.
      2
    • D.
      1
    Câu 4 :

    Cho hình chóp S.ABCSA (ABC)ΔABC vuông ở B. AH là đường cao của ΔSAB. Khẳng định nào sau đây sai ?

    • A.

      \(SA \bot BC\)

    • B.

      \(AH \bot BC\)

    • C.

      \(AH \bot AC\)

    • D.

      \(AH \bot SC\)

    Câu 5 :

    Cho hàm số \(y = \frac{{x - 1}}{{x - 2}}\), tiếp tuyến tại giao điểm của đồ thị hàm số với trục hoành có phương trình là:

    • A.
      \(y = - x + 1\)
    • B.
      \(y = - x + 2\)
    • C.
      \(y = - 2x + 1\)
    • D.
      \(y = - x - 1\)
    Câu 6 :

    Trong không gian, cho \(\alpha \) là góc giữa 2 mặt phẳng (P)(Q) nào đó. Hỏi góc \(\alpha \) thuộc đoạn nào?

    • A.
      \(\left[ {{0^0};{{90}^0}} \right]\)
    • B.
      \(\left[ {{0^0};{{180}^0}} \right]\)
    • C.
      \(\left[ {{{90}^0};{{180}^0}} \right]\)
    • D.
      \(\left[ { - {{90}^0};{{90}^0}} \right]\)
    Câu 7 :

    Cho hàm số \(f(x) = \frac{{2x - 3}}{{x - 1}}\) , các mệnh đề sau, mệnh đề nào sai?

    • A.
      Hàm số liên tục tại \(x = 2\)
    • B.
      Hàm số liên tục tại \(x = 3\)
    • C.
      Hàm số liên tục tại \(x = 1\)
    • D.
      Hàm số liên tục tại \(x = - 1\)
    Câu 8 :

    Biết rằng \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right) = 11\). Hỏi m thuộc khoảng nào trong các khoảng sau?

    • A.
      \(\left( {12;18} \right)\)
    • B.
      \(\left( {9;12} \right)\)
    • C.
      \(\left( {5;8} \right)\)
    • D.
      \(\left( {8;10} \right)\)
    Câu 9 :

    Cho hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x - 2x\). Bất phương trình \(y' < 0\) có tập nghiệm T là :

    • A.
      \(T = \left( {0;\frac{\pi }{2}} \right)\)
    • B.
      \(T = \left( {\frac{\pi }{2};2\pi } \right)\)
    • C.
      \(T = \left( { - 2\pi ;2\pi } \right)\)
    • D.
      \(T = R\)
    Câu 10 :

    Cho hình chóp S.ABCDSA (ABCD) và đáy ABCD là hình vuông. Hỏi mp(SCD) vuông góc với mặt phẳng nào trong các mặt phẳng sau ?

    • A.
      \(mp\left( {SBD} \right)\)
    • B.
      \(mp\left( {SAC} \right)\)
    • C.
      \(mp\left( {SAB} \right)\)
    • D.
      \(mp\left( {SAD} \right)\)
    Câu 11 :

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy ABCD và C. Hỏi khoảng cách từ điểm A tới mặt phẳng (SBC) bằng:

    • A.
      \(\frac{{a\sqrt 3 }}{3}\)
    • B.
      \(\frac{{a\sqrt 3 }}{2}\)
    • C.
      \(\frac{{a\sqrt 3 }}{4}\)
    • D.
      \(\frac{{a\sqrt 2 }}{2}\)
    Câu 12 :

    Cho hình chóp tứ giác đều S.ABCD. Đáy ABCD là hình vuông tâm O, gọi I là trung điểm của cạnh AD. Hỏi góc giữa 2 mặt phẳng (SAD)(ABCD) là:

    • A.
      \(\widehat {SIO}\)
    • B.
      \(\widehat {SOI}\)
    • C.
      \(\widehat {OSI}\)
    • D.
      \(\widehat {SAO}\)
    Phần II. Câu trắc nghiệm đúng sai
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Một chất điểm chuyển động có phương trình chuyển động là \(s = s(t) = 2{t^2} + t - 1\) (t được tính bằng giây, s được tính bẳng mét)

    a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \({t_0} + 4\)

    Đúng
    Sai

    b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 2\)là \(9\,(m/s)\)

    Đúng
    Sai

    c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là 12 \((m/s)\)

    Đúng
    Sai

    d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)là 5 (m/s)

    Đúng
    Sai
    Câu 2 :

    Cho hàm số có đồ thị (C): \(y = f(x) = {x^2} + 2x - 4(C)\)

    a) Hệ số góc của tiếp tuyến của \((C)\) tại điểm có hoành độ \({x_0} = 1\) thuộc \((C)\) là k = 2

    Đúng
    Sai

    b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ \({x_0} = 0\) thuộc \((C)\) là \(y = 2x - 4\)

    Đúng
    Sai

    c) Phương trình tiếp tuyến của (C) tại điểm có tung độ \({y_0} = - 1\) là: \(y = 4x - 5\) hoặc \(y = - 4x - 13\)

    Đúng
    Sai

    d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = - 4\) là \(y = - 4x - 13\)

    Đúng
    Sai
    Câu 3 :

    Cho hình chóp S.ABCD có đáy là hình vuông tâm O và SA vuông góc với đáy. Gọi H, I, K lần lượt là hình chiếu vuông góc của A lên SB, SC, SD

    a) \(CD \bot (SAD)\)

    Đúng
    Sai

    b) \(SC \bot (SAC)\)

    Đúng
    Sai

    c) \(SC \bot HK\)

    Đúng
    Sai

    d) \(HK \bot AI\)

    Đúng
    Sai
    Câu 4 :

    Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần.

    a) Không gian mẫu là Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)}.

    Đúng
    Sai

    b) Số phần tử của biến cố A: "Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10" là n(A) = 6 và số phần tử của biến cố B: "Mặt 5 chấm xuất hiện ít nhất một lần" là n(B) = 11.

    Đúng
    Sai

    c) Xác suất của biến cố A là \(P(A) = \frac{1}{6}\).

    Đúng
    Sai

    d) Xác suất của biến cố B là \(P(B) = \frac{5}{{36}}\).

    Đúng
    Sai
    Phần III. Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6
    Câu 1 :

    Tính giới hạn: \(I = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2x}}{{{x^2} - 3x + 2}}\)

    Câu 2 :

    Cho hàm số : \(f\left( x \right) = {\sin ^3}\left( {\frac{\pi }{3} - 2x} \right)\). Tính \(f'\left( {\frac{\pi }{3}} \right)\).

    Câu 3 :

    Sau khi đỗ Đại học bạn Nam được bố mua cho chiếc xe máy để sử dụng. Xe có giá trị ban đầu là 20 triệu, sau mỗi năm giá trị xe giảm 10% so với năm trước đó. Hỏi sau bao nhiêu năm thì giá trị của xe còn lại là 12 triệu.

    Câu 4 :

    Tìm a để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 2{x^2} + 3x - 2}}{{x - 1}};\,\,khi\,x \ne 1\\2x + a\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 1\end{array} \right.\)liên tục trên R

    Câu 5 :

    Cho hình chóp \(S.ABC\) có cạnh bên \(SA\) vuông góc với mặt phẳng \((ABC)\) và \(ABC\) là tam giác đều cạnh bằng \(a.\) Biết khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\) bàng \(a\sqrt {\frac{6}{{11}}} \) . Tính thể tích khối chóp \(S.ABC\)

    Câu 6 :

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B.\) Biết \(AD = 2a,\,AB = BC = SA = a.\) Cạnh bên \(SA\) vuông góc với mặt đáy, gọi \(M\) là trung điểm của \(AD.\) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {SCD} \right)\) theo \(a.\)

    Lời giải và đáp án

      Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Đạo hàm của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^3} + 2{x^2} + x + 4} - 2}}{{x + 1}}{\rm{ khi }}x \ne - 1\\0{\rm{ khi }}x = - 1\end{array} \right.\) tại \(x = - 1\) là:

      • A.
        0
      • B.
        Không tồn tại.
      • C.

        \( - \frac{1}{4}\)

      • D.

        \(\frac{1}{2}\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng Định nghĩa đạo hàm :

      \(f'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}\) hoặc \(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)

      Lời giải chi tiết :

      \(\begin{array}{l}f'( - 1) = \mathop {\lim }\limits_{x \to - 1} \frac{{f(x) - f( - 1)}}{{x - ( - 1)}} = \mathop {\lim }\limits_{x \to - 1} \frac{{\frac{{\sqrt {{x^3} + 2{x^2} + x + 4} - 2}}{{x + 1}} - 0}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{\sqrt {{x^3} + 2{x^2} + x + 4} - 2}}{{{{\left( {x + 1} \right)}^2}}}\\ = \mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} + 2{x^2} + x + 4 - 4}}{{{{\left( {x + 1} \right)}^2}(\sqrt {{x^3} + 2{x^2} + x + 4} + 2)}} = \mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} + 2{x^2} + x}}{{{{\left( {x + 1} \right)}^2}(\sqrt {{x^3} + 2{x^2} + x + 4} + 2)}}\\ = \mathop {\lim }\limits_{x \to - 1} \frac{{x({x^2} + 2x + 1)}}{{{{\left( {x + 1} \right)}^2}(\sqrt {{x^3} + 2{x^2} + x + 4} + 2)}} = \mathop {\lim }\limits_{x \to - 1} \frac{x}{{\sqrt {{x^3} + 2{x^2} + x + 4} + 2}} = \frac{{ - 1}}{4}\end{array}\)

      Đáp án C.

      Câu 2 :

      Đạo hàm của hàm số \(y = \sqrt {4{x^2} + 3x + 1} \) là hàm số nào sau đây?

      • A.

        \(y = 12x + 3\).

      • B.

        \(y = \frac{{8x + 3}}{{\sqrt {4{x^2} + 3x + 1} }}\).

      • C.

        \(y = \frac{1}{{2\sqrt {4{x^2} + 3x + 1} }}\).

      • D.

        \(y = \frac{{8x + 3}}{{2\sqrt {4{x^2} + 3x + 1} }}\).

      Đáp án : D

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp\(y' = \left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\)

      Lời giải chi tiết :

      \(y' = \left( {\sqrt {4{x^2} + 3x + 1} } \right)' = \frac{{\left( {4{x^2} + 3x + 1} \right)'}}{{2\sqrt {4{x^2} + 3x + 1} }} = \frac{{8x + 3}}{{2\sqrt {4{x^2} + 3x + 1} }}\)

      Đáp án D.

      Câu 3 :

      Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) với \(a,b,c,d \in R\);\(a > 0\) và \(\left\{ \begin{array}{l}d > 2021\\a + b + c + d - 2021 < 0\end{array} \right.\). Hỏi phương trình \(f\left( x \right) - 2021 = 0\) có mấy nghiệm phân biệt?

      • A.
        0
      • B.
        3
      • C.
        2
      • D.
        1

      Đáp án : B

      Phương pháp giải :

      Sử dụng ứng dụng tính liên tục của hàm số trong chứng minh phương trình có nghiệm

      Lời giải chi tiết :

      \(\begin{array}{l}g(x) = f(x) - 2021 = a{x^3} + b{x^2} + cx + d - 2021\\g(0) = d - 2021 > 0\\g(1) = a + b + c + d - 2021 < 0\end{array}\)

      Ta có: \(\mathop {\lim }\limits_{x \to \infty } \left( {a{x^3} + b{x^2} + cx + d - 2021} \right) = + \infty \)

      Suy ra, tồn tại giá trị \({x_1} > 1\) sao cho \(g\left( {{x_1}} \right) > 0\)

      Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \left( {a{x^3} + b{x^2} + cx + d - 2021} \right) = - \infty \)

      Suy ra, tồn tại \({x_2} < 0\) sao cho \(g\left( {{x_2}} \right) > 0\)

      Ta có: \(\left\{ \begin{array}{l}g\left( {{x_1}} \right).g(1) < 0\\g(0).g(1) < 0\\g\left( {{x_2}} \right).g(0) < 0\end{array} \right.\)

      Suy ra, \(g\left( x \right) = 0\) có ba nghiệm phân biệt

      Đáp án B.

      Câu 4 :

      Cho hình chóp S.ABCSA (ABC)ΔABC vuông ở B. AH là đường cao của ΔSAB. Khẳng định nào sau đây sai ?

      • A.

        \(SA \bot BC\)

      • B.

        \(AH \bot BC\)

      • C.

        \(AH \bot AC\)

      • D.

        \(AH \bot SC\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng định lý đường vuông góc với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 3 1 1

      Đáp án B,D.

      Ta có: \(\left\{ \begin{array}{l}BC \bot BA\\BC \bot SA\\SA,BA \subset (SAB)\\SA \cap BA\end{array} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH\)

      Mặt khác:

      \(\begin{array}{l}\left\{ \begin{array}{l}AH \bot BC\\AH \bot SB\\SB,BC \subset (SBC)\\SB \cap BC\end{array} \right. \Rightarrow AH \bot (SBC)\\ \Rightarrow AH \bot BC;\,AH \bot SC\end{array}\)

      Đáp án A: \(SA \bot (ABCD) \Rightarrow SA \bot BC\)

      Đáp án C.

      Câu 5 :

      Cho hàm số \(y = \frac{{x - 1}}{{x - 2}}\), tiếp tuyến tại giao điểm của đồ thị hàm số với trục hoành có phương trình là:

      • A.
        \(y = - x + 1\)
      • B.
        \(y = - x + 2\)
      • C.
        \(y = - 2x + 1\)
      • D.
        \(y = - x - 1\)

      Đáp án : A

      Phương pháp giải :

      Phương trình tiếp tuyến tại điểm \(M({x_0},f({x_0}))\) là:\(y = f'({x_0})(x - {x_0}) + f({x_0})\)

      Lời giải chi tiết :

      Giao điểm của đồ thị hàm số với trục hoành là \(M(1;0)\)

      \(\begin{array}{l}y' = \left( {\frac{{x - 1}}{{x - 2}}} \right)' = \frac{{ - 1}}{{{{\left( {x - 2} \right)}^2}}}\\y'(1) = - 1\end{array}\)

      Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là:

      \(\begin{array}{l}y = f'(1)(x - 1) + 0 = - 1(x - 1) + 0\\y = - x + 1\end{array}\)

      Đáp án A.

      Câu 6 :

      Trong không gian, cho \(\alpha \) là góc giữa 2 mặt phẳng (P)(Q) nào đó. Hỏi góc \(\alpha \) thuộc đoạn nào?

      • A.
        \(\left[ {{0^0};{{90}^0}} \right]\)
      • B.
        \(\left[ {{0^0};{{180}^0}} \right]\)
      • C.
        \(\left[ {{{90}^0};{{180}^0}} \right]\)
      • D.
        \(\left[ { - {{90}^0};{{90}^0}} \right]\)

      Đáp án : A

      Phương pháp giải :

      Dựa trên lý thuyết về góc giữa hai mặt phẳng và góc giữa hai đường thẳng:

      1. Cho hai mặt phẳng (P)(Q). Lấy các đường thẳng a, b tương ứng vuông góc với (P)(Q). Khi đó, góc giữa a b không phụ thuộc vào vị trí của a b và được gọi là góc giữa hai mặt phẳng (P)(Q).

      2. Với hai đường thẳng a, b bất kỳ: \({0^0} \le \left( {a,b} \right) \le {90^0}\)

      Lời giải chi tiết :

      Góc \(\alpha \in \left[ {{0^0};{{90}^0}} \right]\)

      Đáp án A.

      Câu 7 :

      Cho hàm số \(f(x) = \frac{{2x - 3}}{{x - 1}}\) , các mệnh đề sau, mệnh đề nào sai?

      • A.
        Hàm số liên tục tại \(x = 2\)
      • B.
        Hàm số liên tục tại \(x = 3\)
      • C.
        Hàm số liên tục tại \(x = 1\)
      • D.
        Hàm số liên tục tại \(x = - 1\)

      Đáp án : C

      Phương pháp giải :

      1.Hàm số \(y = f(x)\)xác định trên \(K,{x_0} \in K\). Khi đó, \(y = f(x)\)liên tục tại \({x_0}\)khi \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\)

      2. Hàm số \(y = f(x)\)gián đoạn (không liên tục) tại điểm \({x_0}\)khi tồn tại 1 điểm \({x_0}\)làm cho hàm số \(f({x_0})\) không liên tục.

      Lời giải chi tiết :

      Hàm số \(f(x) = \frac{{2x - 3}}{{x - 1}}\) xác định trên \(R\backslash \left\{ 1 \right\}\)

      Nên hàm số không liên tục tại \(x = 1\)

      Đáp án C.

      Câu 8 :

      Biết rằng \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right) = 11\). Hỏi m thuộc khoảng nào trong các khoảng sau?

      • A.
        \(\left( {12;18} \right)\)
      • B.
        \(\left( {9;12} \right)\)
      • C.
        \(\left( {5;8} \right)\)
      • D.
        \(\left( {8;10} \right)\)

      Đáp án : B

      Phương pháp giải :

      Tính \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right)\) theo m

      Lời giải chi tiết :

      \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right) = {2^2} - 2.2 + m + 1 = m + 1\)

      Ta có: \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right) = 11\) nên \(m + 1 = 11 \Leftrightarrow m = 10\)

      Đáp án B.

      Câu 9 :

      Cho hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x - 2x\). Bất phương trình \(y' < 0\) có tập nghiệm T là :

      • A.
        \(T = \left( {0;\frac{\pi }{2}} \right)\)
      • B.
        \(T = \left( {\frac{\pi }{2};2\pi } \right)\)
      • C.
        \(T = \left( { - 2\pi ;2\pi } \right)\)
      • D.
        \(T = R\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng công thức đạo hàm của hàm lượng giác và hàm hợp

      Lời giải chi tiết :

      \(\begin{array}{l}y' = \left( {{\mathop{\rm s}\nolimits} {\rm{in}}x - \cos x - 2x} \right)' = \cos x + \sin x - 2 < 0\\ \Leftrightarrow \sqrt 2 \sin (x + \frac{\pi }{4}) - 2 < 0\\ \Leftrightarrow \sin (x + \frac{\pi }{4}) < \sqrt 2 \end{array}\)

      Mặt khác, do \( - 1 \le \sin (x + \frac{\pi }{4}) \le 1,\forall x \in R\) nên \(\sin (x + \frac{\pi }{4}) < \sqrt 2 \) đúng \(\forall x \in R\)

      Vậy BPT nghiệm đúng \(\forall x \in R\)

      Đáp án D.

      Câu 10 :

      Cho hình chóp S.ABCDSA (ABCD) và đáy ABCD là hình vuông. Hỏi mp(SCD) vuông góc với mặt phẳng nào trong các mặt phẳng sau ?

      • A.
        \(mp\left( {SBD} \right)\)
      • B.
        \(mp\left( {SAC} \right)\)
      • C.
        \(mp\left( {SAB} \right)\)
      • D.
        \(mp\left( {SAD} \right)\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng định lý hai mặt phẳng vuông góc với nhau

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 3 1 2

      Ta có:

      \(\begin{array}{l}\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\\SA,AD \subset (SAD)\\SA \cap AD\end{array} \right. \Rightarrow CD \bot (SAD)\\CD \subset (SCD) \Rightarrow (SCD) \bot (SAD)\end{array}\)

      Đáp án D.

      Câu 11 :

      Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy ABCD và C. Hỏi khoảng cách từ điểm A tới mặt phẳng (SBC) bằng:

      • A.
        \(\frac{{a\sqrt 3 }}{3}\)
      • B.
        \(\frac{{a\sqrt 3 }}{2}\)
      • C.
        \(\frac{{a\sqrt 3 }}{4}\)
      • D.
        \(\frac{{a\sqrt 2 }}{2}\)

      Đáp án : B

      Phương pháp giải :

      Hạ \(AH \bot SB \Rightarrow d(A,(SBC)) = AH\)

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 3 1 3

      Ta có:

      \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\\AB,SA \subset (SAB)\\AB \cap SA\end{array} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH\)

      Mặt khác,

      \(\begin{array}{l}\left\{ \begin{array}{l}AH \bot SB\\AH \bot BC\\SB,BC \subset (SBC)\\SB \cap BC\end{array} \right. \Rightarrow AH \bot (SBC)\\ \Rightarrow d(AH,(SBC)) = AH\end{array}\)

      Xét tam giác SAB vuông tại A ta có :

      \(AH = \frac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{a\sqrt 3 .a}}{{\sqrt {{{(a\sqrt 3 )}^2} + {a^2}} }} = \frac{{a\sqrt 3 }}{2} \Rightarrow d(AH,(SBC)) = \frac{{a\sqrt 3 }}{2}\)

      Đáp án B.

      Câu 12 :

      Cho hình chóp tứ giác đều S.ABCD. Đáy ABCD là hình vuông tâm O, gọi I là trung điểm của cạnh AD. Hỏi góc giữa 2 mặt phẳng (SAD)(ABCD) là:

      • A.
        \(\widehat {SIO}\)
      • B.
        \(\widehat {SOI}\)
      • C.
        \(\widehat {OSI}\)
      • D.
        \(\widehat {SAO}\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng phương tính xác định góc giữa hai mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 3 1 4

      Xét tam giác ADC có: OI là đường trung bình

      Suy ra: \(OI//CD\) (tính chất đường trung bình)

      Do ABCD là hình vuông nên \(CD \bot AD\)

      Suy ra: \(OI \bot AD\)

      Ta có:

      \(\begin{array}{l}\left\{ \begin{array}{l}AD \bot OI - cmt\\AD \bot SO\,\,(SO \bot (ABCD))\\OI,SO \subset (SOI)\\OI \cap SO\end{array} \right. \Rightarrow AD \bot (SOI)\\ \Rightarrow AD \bot SI\end{array}\)

      Ta có:

      \(\left\{ \begin{array}{l}(SAD) \cap (ABCD) = AD\\SI \subset (SAD),SI \bot AD\\OI \subset (ABCD),OI \bot AD\end{array} \right. \Rightarrow \left( {(SAD),(ABCD)} \right) = (SI,OI)\)

      Xét tam giác SOI vuông tại O: \((SI,OI) = \widehat {SOI}\)

      Đáp án B.

      Phần II. Câu trắc nghiệm đúng sai
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Một chất điểm chuyển động có phương trình chuyển động là \(s = s(t) = 2{t^2} + t - 1\) (t được tính bằng giây, s được tính bẳng mét)

      a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \({t_0} + 4\)

      Đúng
      Sai

      b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 2\)là \(9\,(m/s)\)

      Đúng
      Sai

      c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là 12 \((m/s)\)

      Đúng
      Sai

      d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)là 5 (m/s)

      Đúng
      Sai
      Đáp án

      a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \({t_0} + 4\)

      Đúng
      Sai

      b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 2\)là \(9\,(m/s)\)

      Đúng
      Sai

      c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là 12 \((m/s)\)

      Đúng
      Sai

      d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)là 5 (m/s)

      Đúng
      Sai
      Phương pháp giải :

      Phương trình vận tốc của chất điểm: \(v(t) = s'(t)\)

      Phương trình gia tốc của chất điểm: \(a(t) = v'(t)\)

      Lời giải chi tiết :

      a) Đạo hàm của hàm số \(s(t)\)tại thời điểm \({t_0}\)

      Ta có:

       \(\begin{array}{l}f'({t_0}) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f(t) - f({t_0})}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{2{t^2} + t - 1 - (2{t_0}^2 + {t_0} - 1)}}{{t - {t_0}}}} \right)\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{(t - {t_0})\left[ {2\left( {t + {t_0}} \right) + 1} \right]}}{{t - {t_0}}}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \left[ {2\left( {t + {t_0}} \right) + 1} \right] = 4{t_0} + 1\end{array}\)

      b) Phương trình vận tốc của chất điểm là: \(v(t) = s' = s'(t) = 4t + 1\)

      Vận tốc tức thời của chuyển động tại thời điểm t = 2 (s) là: \(v(2) = 4.2 + 1 = 9\)\((m/s)\)

      c) Vận tốc tức thời của chuyển động tại thời điểm t = 5 (s) là: \(v(5) = 4.5 + 1 = 21\)\((m/s)\)

      d) Trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)thì chất điểm di chuyển được quãng đường: \(4.2 + 2 - 1 = 9(m)\)

      Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 2s kể từ thời điểm \(t = 0\) là:

      \(\overline v = \frac{{\Delta s}}{{\Delta t}} = \frac{{9 - 0}}{{2 - 0}} = 4,5(m/s)\)

      Câu 2 :

      Cho hàm số có đồ thị (C): \(y = f(x) = {x^2} + 2x - 4(C)\)

      a) Hệ số góc của tiếp tuyến của \((C)\) tại điểm có hoành độ \({x_0} = 1\) thuộc \((C)\) là k = 2

      Đúng
      Sai

      b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ \({x_0} = 0\) thuộc \((C)\) là \(y = 2x - 4\)

      Đúng
      Sai

      c) Phương trình tiếp tuyến của (C) tại điểm có tung độ \({y_0} = - 1\) là: \(y = 4x - 5\) hoặc \(y = - 4x - 13\)

      Đúng
      Sai

      d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = - 4\) là \(y = - 4x - 13\)

      Đúng
      Sai
      Đáp án

      a) Hệ số góc của tiếp tuyến của \((C)\) tại điểm có hoành độ \({x_0} = 1\) thuộc \((C)\) là k = 2

      Đúng
      Sai

      b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ \({x_0} = 0\) thuộc \((C)\) là \(y = 2x - 4\)

      Đúng
      Sai

      c) Phương trình tiếp tuyến của (C) tại điểm có tung độ \({y_0} = - 1\) là: \(y = 4x - 5\) hoặc \(y = - 4x - 13\)

      Đúng
      Sai

      d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = - 4\) là \(y = - 4x - 13\)

      Đúng
      Sai
      Phương pháp giải :

      Bước 1: Gọi M(x0; f(x0)) là tọa độ tiếp điểm của tiếp tuyến của (C) thì f'(x0) = k

      Bước 2: Giải phương trình f'(x0) = k với ẩn là x0.

      Bước 3:Phương trình tiếp tuyến của (C) có dạng y = k(x – x0) + f(x0).

      Lời giải chi tiết :

      \(y' = f'(x) = \left( {{x^2} + 2x - 4} \right)' = 2x + 2\)

      a) Hệ số góc của tiếp tuyến của \((C)\) tại điểm có hoành độ \({x_0} = 1\) là \(k = y'(1) = 4\)

      b) Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0} = 0\) thuộc \((C)\) là:

      \(y = y'(0)(x - 0) + y(0) \Leftrightarrow y = 2x - 4\)

      c) Với \({y_0} = - 1 \Rightarrow y = x_0^2 + 2{x_0} - 4 = - 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = - 3\end{array} \right.\). Vậy có hai tiếp điểm thuộc \((C)\) có tung độ \({y_0} = - 1\) là \(\left( {1; - 1} \right)\) và \(\left( { - 3; - 1} \right)\). Nên ta có:

      Phương trình tiếp tuyến tại điểm \(\left( {1; - 1} \right)\) là: \(y = y'(1)(x - 1) + y(1) \Leftrightarrow y = 4x - 5\)

      Phương trình tiếp tuyến tại điểm \(\left( { - 3; - 1} \right)\) là: \(y = y'( - 3)(x + 3) + y( - 3) \Leftrightarrow y = - 4x - 13\)

      d)Gọi \(M\left( {a;b} \right)\) là tiếp điểm của tiếp tuyến của đồ thị \((C)\) với hệ số góc \(k = - 4\)

      \( \Rightarrow y'(a) = - 4 \Leftrightarrow 2a + 2 = - 4 \Leftrightarrow a = - 3 \Rightarrow b = - 1\)

      Suy ra phương trình tiếp tuyến với hệ số góc \(k = - 4\) là \(y = - 4(x + 3) - 1 \Leftrightarrow y = - 4x - 13\)

      Câu 3 :

      Cho hình chóp S.ABCD có đáy là hình vuông tâm O và SA vuông góc với đáy. Gọi H, I, K lần lượt là hình chiếu vuông góc của A lên SB, SC, SD

      a) \(CD \bot (SAD)\)

      Đúng
      Sai

      b) \(SC \bot (SAC)\)

      Đúng
      Sai

      c) \(SC \bot HK\)

      Đúng
      Sai

      d) \(HK \bot AI\)

      Đúng
      Sai
      Đáp án

      a) \(CD \bot (SAD)\)

      Đúng
      Sai

      b) \(SC \bot (SAC)\)

      Đúng
      Sai

      c) \(SC \bot HK\)

      Đúng
      Sai

      d) \(HK \bot AI\)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 3 1 5

      a) Do ABCD là hình vuông nên \(CD \bot AD \subset (SAD)(1)\)

      \(SA \bot (ABCD) \Rightarrow SA \bot CD\,(2)\)

      Trong (SAD): \(SA \cap AD = A,(3)\)

      Từ (1), (2) và (3) nên \(CD \bot (SAD)\)

      b) Do ABCD là hình vuông nên \(BD \bot AC\,(4)\)

      \(SA \bot (ABCD);BD \subset (ABCD) \Rightarrow SA \bot BD\,\,(5)\)

      Trong (SAC): \(SA \cap AC = A,(6)\)

      Từ (4), (5) và (6) nên \(BD \bot (SAC)\)

      c)Ta có: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\\AB,SA \subset (SAB)\end{array} \right. \Rightarrow BC \bot (SAB)\) mà \(AH \subset (SAB) \Rightarrow AH \bot BC\)

      Lại có \(AH \bot SB\) nên theo hệ quả, ta được \(AH \bot SC\)

      Theo câu (a), \(CD \bot (SAD)\) mà \(AK \subset (SAD)\) nên \(AK \bot CD\)

      Lại có AK là đường cao của tam giác \(SAD \Rightarrow AK \bot SD\)

      Nên theo hệ quả \(AK \bot SC\)

      Trong tam giác AKH: \(AH \bot SC,AK \bot SC\) nên theo hệ quả \(HK \bot SC\)

      d)Ta có: \(\Delta SAB = \Delta SAD\,(c.g.c) \Rightarrow \frac{{SH}}{{SB}} = \frac{{SK}}{{SD}} \Rightarrow HK//BD\,(7)\)

      Theo câu (a), \(BD \bot (SAC)\) mà \(AI \subset (SAC) \Rightarrow BD \bot AI\,(8)\)

      Từ (7) và (8), \(HK \bot AI\)

      Câu 4 :

      Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần.

      a) Không gian mẫu là Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)}.

      Đúng
      Sai

      b) Số phần tử của biến cố A: "Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10" là n(A) = 6 và số phần tử của biến cố B: "Mặt 5 chấm xuất hiện ít nhất một lần" là n(B) = 11.

      Đúng
      Sai

      c) Xác suất của biến cố A là \(P(A) = \frac{1}{6}\).

      Đúng
      Sai

      d) Xác suất của biến cố B là \(P(B) = \frac{5}{{36}}\).

      Đúng
      Sai
      Đáp án

      a) Không gian mẫu là Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)}.

      Đúng
      Sai

      b) Số phần tử của biến cố A: "Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10" là n(A) = 6 và số phần tử của biến cố B: "Mặt 5 chấm xuất hiện ít nhất một lần" là n(B) = 11.

      Đúng
      Sai

      c) Xác suất của biến cố A là \(P(A) = \frac{1}{6}\).

      Đúng
      Sai

      d) Xác suất của biến cố B là \(P(B) = \frac{5}{{36}}\).

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng các quy tắc tính xác suất của biến cố.

      Lời giải chi tiết :

      a) Sai. Phép thử T: "Gieo một con xúc xắc cân đối và đồng chất hai lần".

      Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}.

      b) Đúng. A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} nên n(A) = 6.

      B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)} nên n(B) = 11.

      c) Đúng. \(P(A) = \frac{6}{{36}} = \frac{1}{6}\).

      d) Sai. \(P(B) = \frac{{11}}{{36}}\).

      Phần III. Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6
      Câu 1 :

      Tính giới hạn: \(I = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2x}}{{{x^2} - 3x + 2}}\)

      Phương pháp giải :

      Sử dụng phương pháp nhân liên hợp và phân tích thành nhân tử

      Lời giải chi tiết :

      \(I = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2x}}{{{x^2} - 3x + 2}} = I = \mathop {\lim }\limits_{x \to 1} \frac{{x + 3 - 4{x^2}}}{{\left( {\sqrt {x + 3} + 2x} \right)\left( {x - 1} \right)\left( {x - 2} \right)}}\)

      \(I = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( { - 4x - 3} \right)}}{{\left( {\sqrt {x + 3} + 2x} \right)\left( {x - 1} \right)\left( {x - 2} \right)}}\)

      \(I = \mathop {\lim }\limits_{x \to 1} \frac{{\left( { - 4x - 3} \right)}}{{\left( {\sqrt {x + 3} + 2x} \right)\left( {x - 2} \right)}}\)

      \(I = \frac{7}{4}\)

      Câu 2 :

      Cho hàm số : \(f\left( x \right) = {\sin ^3}\left( {\frac{\pi }{3} - 2x} \right)\). Tính \(f'\left( {\frac{\pi }{3}} \right)\).

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \(f'(x) = 3si{n^2}\left( {\frac{\pi }{3} - 2x} \right).cos\left( {\frac{\pi }{3} - 2x} \right).( - 2)\)

      \(f'(x) = - 6si{n^2}\left( {\frac{\pi }{3} - 2x} \right).cos\left( {\frac{\pi }{3} - 2x} \right)\)

      \(f'\left( {\frac{\pi }{3}} \right) = - \frac{9}{4}\)

      Câu 3 :

      Sau khi đỗ Đại học bạn Nam được bố mua cho chiếc xe máy để sử dụng. Xe có giá trị ban đầu là 20 triệu, sau mỗi năm giá trị xe giảm 10% so với năm trước đó. Hỏi sau bao nhiêu năm thì giá trị của xe còn lại là 12 triệu.

      Phương pháp giải :

      Gọi giá trị của xe năm thứ n là \({x_n} = 12.000.000\)đ, giá trị xe ban đầu là \({x_0} = 20.000.000\)đ và với hao mòn \(r = 10\% \)

      Sau một năm giá trị của xe còn lại là: \({x_1} = {x_0} - r{x_0} = {x_0}(1 - r)\)

      Sau hai năm, giá trị của còn lại là: \({x_2} = {x_1} - r{x_1} = {x_1}(1 - r) = {x_0}{(1 - r)^2}\)

      Sau n năm, giá trị của xe còn lại là: \({x_n} = {x_{n - 1}} - r{x_{n - 1}} = {x_{n - 1}}(1 - r) = {x_0}{(1 - r)^n}\)

      Do đó, ta có: \(n = {\log _{(1 - r)}}\frac{{{x_n}}}{{{x_0}}}\)

      Lời giải chi tiết :

      Gọi giá trị của xe năm thứ n là \({x_n} = 12.000.000\)đ, giá trị xe ban đầu là \({x_0} = 20.000.000\)đ và với hao mòn \(r = 10\% \)

      Sau một năm giá trị của xe còn lại là: \({x_1} = {x_0} - r{x_0} = {x_0}(1 - r)\)

      Sau hai năm, giá trị của còn lại là: \({x_2} = {x_1} - r{x_1} = {x_1}(1 - r) = {x_0}{(1 - r)^2}\)

      Sau n năm, giá trị của xe còn lại là: \({x_n} = {x_{n - 1}} - r{x_{n - 1}} = {x_{n - 1}}(1 - r) = {x_0}{(1 - r)^n}\)

      Do đó, ta có: \(n = {\log _{(1 - r)}}\frac{{{x_n}}}{{{x_0}}} = {\log _{(1 - 10\% )}}\frac{{12.000.000}}{{20.000.000}} = 4.848 \approx 5\)năm

      Vậy sau 5 năm thì giá trị còn lại của xe là \(12.000.000\)đ

      Câu 4 :

      Tìm a để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 2{x^2} + 3x - 2}}{{x - 1}};\,\,khi\,x \ne 1\\2x + a\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 1\end{array} \right.\)liên tục trên R

      Phương pháp giải :

      Bước 1:Tính \(f({x_0}) = {f_2}({x_0})\)

      Bước 2: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = \mathop {\lim }\limits_{x \to {x_0}} {f_1}(x) = L\)

      Bước 3: Nếu \({f_2}({x_0}) = L\) thì hàm số f(x) liên tục tại \({x_0}\)

       Nếu \({f_2}({x_0}) \ne L\)thì hàm số f(x) không liên tục tại \({x_0}\).

      (Đối với bài toán tìm tham số m để hàm số liên tục tại x0, ta thay bước 3 thành: Giải phương trình L = f2(x0), tìm m)

      Lời giải chi tiết :

      Ta có hàm số liên tục trên \(( - \infty ;1)\,\,va\,(1; + \infty )\).

      Để hs liên tục trên R thì phải liên tục tại \(x = 1 \Rightarrow \mathop {\lim f(x)}\limits_{x \to 1} = f(1)\)

      \(\mathop {\lim f(x)}\limits_{x \to 1} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 2{x^2} + 3x - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} ({x^2} - x + 2) = 2\)

      \(f(1) = 2 + a\)

      Ta có \(\mathop {\lim f(x)}\limits_{x \to 1} = f(1) \Leftrightarrow \)\(2 + a = 2 \Leftrightarrow a = 0\).

      Câu 5 :

      Cho hình chóp \(S.ABC\) có cạnh bên \(SA\) vuông góc với mặt phẳng \((ABC)\) và \(ABC\) là tam giác đều cạnh bằng \(a.\) Biết khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\) bàng \(a\sqrt {\frac{6}{{11}}} \) . Tính thể tích khối chóp \(S.ABC\)

      Phương pháp giải :

      Sử dụng phương pháp tính góc giữa hai mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 3 1 6

      Gọi M là trung điểm của BC thì \(AM \bot BC\)

      Dựng AH vuông góc với SM (H thuộc SM)

      Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\)

      Từ (1) và (2) \( \Rightarrow BC \bot \left( {SAM} \right)\) 

      \( \Rightarrow AH \bot BC\)

      Từ (a) và (b) \( \Rightarrow AH \bot \left( {SBC} \right)\)

      \( \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\)= \(a\sqrt {\frac{6}{{11}}} \)

      Xét \(\Delta SAM\) ta có

      \(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{{{\left( {AM} \right)}^2}}} \Leftrightarrow \frac{1}{{{{\left( {a\sqrt {\frac{6}{{11}}} } \right)}^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}\)

      \( \Rightarrow SA = \sqrt 2 a\)

      Vậy \({V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{1}{3}.\frac{{\sqrt 3 }}{4}{a^2}.\sqrt 2 a = \frac{{\sqrt 6 }}{{12}}{a^3}\)

      Câu 6 :

      Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B.\) Biết \(AD = 2a,\,AB = BC = SA = a.\) Cạnh bên \(SA\) vuông góc với mặt đáy, gọi \(M\) là trung điểm của \(AD.\) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {SCD} \right)\) theo \(a.\)

      Phương pháp giải :

      Sử dụng phương pháp tính khoảng cách từ điểm đến mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 3 1 7

      Ta có:

      \(\frac{{d\left( {M,\left( {SCD} \right)} \right)}}{{d\left( {A,\left( {SCD} \right)} \right)}} = \frac{{DM}}{{DA}} = \frac{1}{2} \Rightarrow d\left( {M,\left( {SCD} \right)} \right) = \frac{1}{2}d\left( {A,\left( {SCD} \right)} \right).\)

      Vì \(M\)là trung điểm của \(AD\) nên có: \(AM = MD = \frac{1}{2}AD = a.\)

      Tứ giác \(ABCM\) có: \(BC//AM\,\,\left( {gt} \right)\) và \(BC = AM = a\) nên nó là hình bình hành.

      Suy ra: \(CM = AB = a.\)

      Tam giác \(ACD\) có \(CM\) là đường trung tuyến và \(CM = AM = MD = \frac{1}{2}AD\) nên tam giác \(ACD\)là tam giác vuông tại \(C.\)

      Suy ra: \(CD \bot AC.\)

      Ta có:

      \(\left\{ \begin{array}{l}CD \bot AC\,\,\left( {cmt} \right)\\CD \bot SA\,\,\,\left( {do\,\,SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAC} \right).\)

      Ta có:

      \(\left\{ \begin{array}{l}CD \bot \left( {SAC} \right)\\CD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow \left( {SCD} \right) \bot \left( {SAC} \right).\)

      Trong mặt phẳng \(\left( {SAC} \right),\) kẻ \(AH \bot SC\,\,\left( {H \in SC} \right).\)

      Ta có:

      \(\left\{ \begin{array}{l}\left( {SCD} \right) \bot \left( {SAC} \right)\\\left( {SCD} \right) \cap \left( {SAC} \right) = SC\\AH \bot SC\\AH \subset \left( {SAC} \right)\end{array} \right. \Rightarrow AH \bot \left( {SCD} \right).\)

      Suy ra: \(d\left( {A,\left( {SCD} \right)} \right) = AH.\)

      Tam giác \(ABC\) vuông cân tại \(B\) có \(AB = BC = a\) nên \(AC = a\sqrt 2 .\)

      Tam giác \(SAC\) vuông tại \(A\,\,\left( {do\,SA \bot \left( {ABCD} \right)} \right)\) có :

      \(AH = \frac{{AS.AC}}{{\sqrt {A{S^2} + A{C^2}} }} = \frac{{a.\,a\sqrt 2 }}{{\sqrt {{a^2} + 2{a^2}} }} = \frac{{a\sqrt 6 }}{3}.\)

      Suy ra: \(d\left( {A,\left( {SCD} \right)} \right) = AH = \frac{{a\sqrt 6 }}{3}.\)

      Suy ra: \(d\left( {M,\left( {SCD} \right)} \right) = \frac{1}{2}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{6}.\)

      Vậy \(d\left( {M,\left( {SCD} \right)} \right) = \frac{{a\sqrt 6 }}{6}.\)

      Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Đề thi học kì 2 Toán 11 - Đề số 3 – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng môn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

      Đề thi học kì 2 Toán 11 - Đề số 3: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi học kì 2 Toán 11 là một bước quan trọng trong quá trình học tập của các em. Để đạt kết quả tốt nhất, việc ôn tập và làm quen với các dạng đề thi là vô cùng cần thiết. Đề thi học kì 2 Toán 11 - Đề số 3 mà giaitoan.edu.vn cung cấp là một lựa chọn hoàn hảo để các em chuẩn bị cho kỳ thi này.

      Cấu trúc đề thi

      Đề thi này bao gồm các phần chính sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng nhanh các công thức, định lý.
      • Phần tự luận: Đòi hỏi học sinh phải trình bày chi tiết các bước giải, thể hiện khả năng phân tích và suy luận logic.

      Nội dung đề thi

      Đề thi tập trung vào các chủ đề chính sau:

      • Hàm số lượng giác: Các dạng bài tập về tập xác định, tập giá trị, tính đơn điệu, cực trị của hàm số lượng giác.
      • Phương trình lượng giác: Giải các phương trình lượng giác cơ bản và nâng cao, sử dụng các công thức lượng giác.
      • Đạo hàm: Tính đạo hàm của hàm số, ứng dụng đạo hàm để giải các bài toán về cực trị, khoảng đơn điệu.
      • Tích phân: Tính tích phân xác định, ứng dụng tích phân để tính diện tích hình phẳng.
      • Số phức: Các phép toán trên số phức, phương trình bậc hai với hệ số thực.

      Hướng dẫn giải chi tiết

      Sau mỗi câu hỏi, chúng tôi cung cấp đáp án chi tiết và lời giải cụ thể, giúp các em hiểu rõ phương pháp giải và tránh những sai lầm thường gặp. Các lời giải được trình bày một cách dễ hiểu, logic, phù hợp với trình độ của học sinh lớp 11.

      Lợi ích khi luyện tập với đề thi này

      • Nâng cao kiến thức: Giúp các em củng cố kiến thức đã học, hiểu sâu hơn về các khái niệm và định lý.
      • Rèn luyện kỹ năng: Phát triển kỹ năng giải toán, tư duy logic và khả năng vận dụng kiến thức vào thực tế.
      • Làm quen với cấu trúc đề thi: Giúp các em làm quen với cấu trúc đề thi học kì 2 Toán 11, từ đó tự tin hơn khi bước vào phòng thi.
      • Đánh giá năng lực: Giúp các em đánh giá đúng năng lực bản thân, từ đó có kế hoạch ôn tập phù hợp.

      Ví dụ minh họa (một số câu hỏi tiêu biểu)

      Câu 1: (Trắc nghiệm) Hàm số y = sin(2x) có chu kỳ là?

      A. π B. 2π C. π/2 D. 4π

      Hướng dẫn giải: Chu kỳ của hàm số y = sin(ax) là T = 2π/|a|. Trong trường hợp này, a = 2, vậy T = 2π/2 = π. Đáp án đúng là A.

      Câu 2: (Tự luận) Giải phương trình: cos(x) = 1/2

      Hướng dẫn giải: Phương trình cos(x) = 1/2 có nghiệm là x = π/3 + k2π và x = -π/3 + k2π, với k là số nguyên.

      Lời khuyên khi ôn thi

      1. Học lý thuyết kỹ: Nắm vững các khái niệm, định lý và công thức.
      2. Làm nhiều bài tập: Luyện tập thường xuyên với nhiều dạng bài tập khác nhau.
      3. Hỏi thầy cô: Nếu gặp khó khăn, hãy hỏi thầy cô để được giải đáp.
      4. Giữ tinh thần thoải mái: Đừng quá căng thẳng, hãy giữ tinh thần thoải mái để đạt kết quả tốt nhất.

      Tài liệu tham khảo thêm

      Ngoài đề thi này, các em có thể tham khảo thêm các tài liệu sau:

      • Sách giáo khoa Toán 11
      • Sách bài tập Toán 11
      • Các đề thi thử Toán 11
      • Các trang web học toán online uy tín như giaitoan.edu.vn

      Giaitoan.edu.vn hy vọng rằng Đề thi học kì 2 Toán 11 - Đề số 3 sẽ là một công cụ hữu ích giúp các em đạt kết quả tốt nhất trong kỳ thi sắp tới. Chúc các em thành công!

      Tài liệu, đề thi và đáp án Toán 11