Chào mừng các em học sinh lớp 11 đến với đề thi giữa kì 2 môn Toán theo chương trình Kết nối tri thức. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong giai đoạn giữa kì.
Giaitoan.edu.vn cung cấp đề thi với cấu trúc tương tự đề thi chính thức, giúp các em làm quen với dạng bài và rèn luyện kỹ năng giải quyết vấn đề.
Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có:
\({a^r} = {a^{\frac{m}{n}}} = \sqrt[{nm}]{a}\).
Chọn đáp án đúng
Cho a, b là những số thực dương, \(\alpha \) là số thực bất kì. Khi đó:
Chọn đáp án đúng:
Rút gọn biểu thức \({\left( {{a^{\sqrt 3 }}.{b^{\frac{{ - 6}}{{\sqrt 3 }}}}} \right)^{\frac{1}{{\sqrt 3 }}}}\) (với \(a,b > 0\)) được kết quả là:
Giá trị của biểu thức \({\left( {\sqrt 5 - 2} \right)^{2024}}.{\left( {\sqrt 5 + 2} \right)^{2025}}\)
Chọn đáp án đúng.
Với \(0 < a \ne 1,b,c > 0\) thì:
Chọn đáp án đúng.
Với a, b, c là các số dương và \(a \ne 1,b \ne 1\) thì:
Khẳng định nào sau đây đúng?
Tính \({\log _8}1250\) theo a biết \(a = {\log _2}5\).
Chọn đáp án đúng:
Đồ thị hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) đi qua điểm:
Hàm số nào dưới đây là hàm số lôgarit cơ số 2?
Hàm số nào dưới đây nghịch biến trên \(\mathbb{R}\)?
Tập giá trị của hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) là:
Tập xác định của hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) là:
Cho hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\). Biết rằng: \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = M,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = m\). Khi đó:
Với giá trị nào của b thì phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\) vô nghiệm?
Nghiệm của phương trình \({\left( {\sqrt 3 } \right)^x} = 3\) là:
Phương trình \({\log _2}x = - 2\) có nghiệm là:
Nghiệm của phương trình \(0,{2^{x - 1}} = \frac{1}{{\sqrt {125} }}\) là:
Tập nghiệm của phương trình \({\log _2}\left( {{{\log }_{16}}x} \right) = - 2\) là:
Bất phương trình \(2{\log _{\frac{1}{3}}}\left( {x + 1} \right) > {\log _{\frac{1}{3}}}\left( {3x + 7} \right)\) có nghiệm là:
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{\sqrt 2 }}} \right)^{2x - 4}} \ge \frac{1}{4}\) là:
Hai đường thẳng a, b được gọi là vuông góc với nhau nếu góc giữa chúng bằng:
Trong không gian, khẳng định nào sau đây là đúng?
Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a, \(SA = a\sqrt 3 \) và \(SA \bot BC\). Góc giữa SD và BC bằng:
Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a. Gọi I, J lần lượt là trung điểm của SA và SC. Góc giữa IJ và BD bằng:
Trong các khẳng định sau, khẳng định nào sai?
Tìm mệnh đề sai trong các mệnh đề sau:
Chọn đáp án đúng.
Trong không gian, cho đường thẳng d không nằm trong mặt phẳng (P), đường thẳng d được gọi là vuông góc với mặt phẳng (P) nếu d:
Cho đường thẳng a nằm trong mặt phẳng (P) và b là đường thẳng không nằm trong (P) và không vuông góc với (P). Gọi b’ là hình chiếu vuông góc của b trên (P). Khi đó, a vuông góc với b khi và chỉ khi…
Cụm từ thích hợp điền vào… để được đáp án đúng là:
Cho hình chóp S. ABC có ABC là tam giác cân tại C, SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và tam giác ABC vuông tại B. Kẻ \(AH \bot SB\left( {H \in SB} \right)\). Khẳng định nào dưới đây là sai?
Cho hình chóp S. ABCD có đáy ABCD là hình thoi tâm O. Biết rằng \(SA = SC,SB = SD\). Khẳng định nào sau đây là đúng?
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, \(SA \bot \left( {ABCD} \right)\). Hình chiếu vuông góc của điểm D trên mặt phẳng (SAB) là điểm:
Cho hàm số: \(y = \ln \left[ {\left( {2 - m} \right){x^2} - 2x + 1} \right]\).
a) Với \(m = 1\), hãy tìm tập xác định của hàm số trên.
b) Tìm tất cả các giá trị của tham số m để hàm số trên có tập xác định với mọi giá trị thực của x.
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Cạnh bên CC’ vuông góc với đáy và \(CC' = a\). Gọi M, I lần lượt là trung điểm của BB’, BC.
a) Chứng minh rằng: \(AM \bot BC'\).
b) Gọi K là điểm trên đoạn A’B’ sao cho \(B'K = \frac{a}{4}\) và J là trung điểm của B’C’. Chứng minh rằng: \(AM \bot MK\) và \(AM \bot KJ\).
Giải phương trình: \({\log _2}\left( {{4^x} + 4} \right) = x - {\log _{0,5}}\left( {{2^{x + 1}} - 3} \right)\).
Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có:
\({a^r} = {a^{\frac{m}{n}}} = \sqrt[{nm}]{a}\).
Đáp án : C
Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có: \({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\).
Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có: \({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\).
Chọn đáp án đúng
Cho a, b là những số thực dương, \(\alpha \) là số thực bất kì. Khi đó:
Đáp án : A
Cho a, b là những số thực dương, \(\alpha \) là số thực bất kì. Khi đó, \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\).
Cho a, b là những số thực dương, \(\alpha \) là số thực bất kì. Khi đó, \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\).
Đáp án A.
Chọn đáp án đúng:
Đáp án : D
\({\left( {\sqrt[n]{a}} \right)^m} = \sqrt[n]{{{a^m}}}\) (với các biểu thức đều có nghĩa).
Ta có: \({\left( {\sqrt[3]{5}} \right)^2} = \sqrt[3]{{{5^2}}}\).
Đáp án D.
Rút gọn biểu thức \({\left( {{a^{\sqrt 3 }}.{b^{\frac{{ - 6}}{{\sqrt 3 }}}}} \right)^{\frac{1}{{\sqrt 3 }}}}\) (với \(a,b > 0\)) được kết quả là:
Đáp án : B
\({\left( {{a^m}} \right)^n} = {a^{mn}},{a^{ - n}} = \frac{1}{{{a^n}}}\) (a khác 0).
\({\left( {{a^{\sqrt 3 }}.{b^{\frac{{ - 6}}{{\sqrt 3 }}}}} \right)^{\frac{1}{{\sqrt 3 }}}} = {\left( {{a^{\sqrt 3 }}} \right)^{\frac{1}{{\sqrt 3 }}}}.{\left( {{b^{\frac{{ - 6}}{{\sqrt 3 }}}}} \right)^{\frac{1}{{\sqrt 3 }}}} = a.{b^{\frac{{ - 6}}{3}}} = \frac{a}{{{b^2}}}\)
Đáp án B.
Giá trị của biểu thức \({\left( {\sqrt 5 - 2} \right)^{2024}}.{\left( {\sqrt 5 + 2} \right)^{2025}}\)
Đáp án : A
\({\left( {{a^m}} \right)^n} = {a^{mn}},{a^m}.{b^m} = {\left( {a.b} \right)^m},{a^m}.{a^n} = {a^{m + n}}\) (a khác 0).
\({\left( {\sqrt 5 - 2} \right)^{2024}}.{\left( {\sqrt 5 + 2} \right)^{2025}} = {\left( {\sqrt 5 - 2} \right)^{2024}}.{\left( {\sqrt 5 + 2} \right)^{2024}}.\left( {\sqrt 5 + 2} \right)\)
\( = {\left[ {\left( {\sqrt 5 - 2} \right)\left( {\sqrt 5 + 2} \right)} \right]^{2024}}.\left( {\sqrt 5 + 2} \right) = {\left( {5 - 4} \right)^{2024}}\left( {\sqrt 5 + 2} \right) = \sqrt 5 + 2\)
Đáp án A.
Chọn đáp án đúng.
Với \(0 < a \ne 1,b,c > 0\) thì:
Đáp án : A
Với \(0 < a \ne 1,b,c > 0\) thì \({\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\).
Với \(0 < a \ne 1,b,c > 0\) thì \({\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\).
Đáp án A.
Chọn đáp án đúng.
Với a, b, c là các số dương và \(a \ne 1,b \ne 1\) thì:
Đáp án : B
Với a, b, c là các số dương và \(a \ne 1,b \ne 1\) thì\({\log _a}c = \frac{{{{\log }_b}c}}{{{{\log }_b}a}}\).
Với a, b, c là các số dương và \(a \ne 1,b \ne 1\) thì\({\log _a}c = \frac{{{{\log }_b}c}}{{{{\log }_b}a}}\).
Đáp án B.
Khẳng định nào sau đây đúng?
Đáp án : D
Lôgarit cơ số e của số thực dương b được gọi là lôgarit tự nhiên của b và kí hiệu ln b.
Lôgarit tự nhiên của số thực dương a kí hiệu là \(\ln a\).
Đáp án D.
Tính \({\log _8}1250\) theo a biết \(a = {\log _2}5\).
Đáp án : B
Với a, b là số thực dương và \(a \ne 1\) thì \({\log _a}{b^\alpha } = \alpha {\log _a}b,\log {\,_a}a = 1\), \({\log _{{a^\alpha }}}b = \frac{1}{\alpha }{\log _a}b\)
Với a là số thực dương, \(a \ne 1\), \(M > 0,N > 0\) thì \({\log _a}MN = {\log _a}M + {\log _a}N\).
\({\log _8}1250 = {\log _{{2^3}}}\left( {{5^4}.2} \right) = \frac{1}{3}\left( {{{\log }_2}{5^4} + {{\log }_2}2} \right) = \frac{4}{3}{\log _2}5 + \frac{1}{3} = \frac{4}{3}a + \frac{1}{3}\)
Đáp án B.
Chọn đáp án đúng:
Đáp án : A
Với a, b là số thực dương và \(a \ne 1\) thì \(\log {\,_a}a = 1;{\log _a}{b^\alpha } = \alpha {\log _a}b,{\log _a}{a^\alpha } = \alpha \).
\({\log _a}\left( {{a^2}\sqrt[3]{{a\sqrt a }}} \right) = {\log _a}\left( {{a^2}{{\left( {a.{a^{\frac{1}{2}}}} \right)}^{\frac{1}{3}}}} \right) = {\log _a}\left( {{a^2}.{a^{\frac{1}{2}}}} \right) = {\log _a}{a^{\frac{5}{2}}} = \frac{5}{2}\)
Đáp án A.
Đồ thị hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) đi qua điểm:
Đáp án : A
Đồ thị hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) đi qua điểm \(\left( {1;0} \right)\) và điểm \(\left( {a;1} \right)\).
Đồ thị hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) đi qua điểm \(\left( {1;0} \right)\).
Đáp án A.
Hàm số nào dưới đây là hàm số lôgarit cơ số 2?
Đáp án : C
Hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) được gọi là hàm số lôgarit cơ số a.
Hàm số \(y = {\log _2}x\) có cơ số là 2.
Đáp án C.
Hàm số nào dưới đây nghịch biến trên \(\mathbb{R}\)?
Đáp án : B
Nếu \(0 < a < 1\) thì hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) nghịch biến trên \(\mathbb{R}\).
Vì \(0 < \frac{1}{2} < 1\) nên hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) nghịch biến trên \(\mathbb{R}\).
Đáp án B.
Tập giá trị của hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) là:
Đáp án : C
Tập giá trị của hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) là \(T = \left( {0; + \infty } \right)\).
Tập giá trị của hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) là \(T = \left( {0; + \infty } \right)\).
Đáp án C.
Tập xác định của hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) là:
Đáp án : B
Hàm số \(y = \sqrt {u\left( x \right)} \) xác định khi \(u\left( x \right) \ge 0\).
Hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) xác định khi \({x^2} - 4 \ge 0 \Leftrightarrow \left( {x - 2} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le - 2\end{array} \right.\)
Vậy tập xác định của hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) là: \(D = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\)
Đáp án B.
Cho hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\). Biết rằng: \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = M,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = m\). Khi đó:
Đáp án : B
Cho hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\):
+ Nếu \(a > 1\) thì hàm số đồng biến trên \(\left( {0; + \infty } \right)\).
+ Nếu \(0 < a < 1\) thì hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).
Hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\) có \(0 < \frac{1}{{\sqrt 3 }} < 1\) nên nghịch biến trên \(\left( {0; + \infty } \right)\).
Do đó, \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = f\left( {\frac{1}{3}} \right) = {\log _{\frac{1}{{\sqrt 3 }}}}\frac{1}{3} = 2,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = f\left( 3 \right) = {\log _{\frac{1}{{\sqrt 3 }}}}3 = - 2\)
Do đó, \(M.m = - 1\)
Đáp án B.
Với giá trị nào của b thì phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\) vô nghiệm?
Đáp án : C
Cho phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\): Nếu \(b \le 0\) thì phương trình vô nghiệm.
Phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\) vô nghiệm khi \(b \le 0\).
Do đó, \(b = 0\) thì phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\) vô nghiệm.
Đáp án C.
Nghiệm của phương trình \({\left( {\sqrt 3 } \right)^x} = 3\) là:
Đáp án : B
\({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
\({\left( {\sqrt 3 } \right)^x} = 3 \Leftrightarrow {\left( {\sqrt 3 } \right)^x} = {\left( {\sqrt 3 } \right)^2} \Leftrightarrow x = 2\)
Vậy phương trình đã cho có nghiệm \(x = 2\)
Đáp án B.
Phương trình \({\log _2}x = - 2\) có nghiệm là:
Đáp án : D
Phương trình \({\log _a}x = b\left( {a > 0,a \ne 1} \right)\) luôn có nghiệm duy nhất \(x = {a^b}\).
Điều kiện: \(x > 0\)
\({\log _2}x = - 2 \Leftrightarrow x = {2^{ - 2}} = \frac{1}{4}\) (thỏa mãn)
Vậy phương trình có nghiệm \(x = \frac{1}{4}\).
Đáp án D.
Nghiệm của phương trình \(0,{2^{x - 1}} = \frac{1}{{\sqrt {125} }}\) là:
Đáp án : A
\({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
\(0,{2^{x - 1}} = \frac{1}{{\sqrt {125} }} \Leftrightarrow {\left( {\frac{1}{{\sqrt 5 }}} \right)^{2\left( {x - 1} \right)}} = {\left( {\frac{1}{{\sqrt 5 }}} \right)^3} \Leftrightarrow 2x - 2 = 3 \Leftrightarrow x = \frac{5}{2}\)
Đáp án A.
Tập nghiệm của phương trình \({\log _2}\left( {{{\log }_{16}}x} \right) = - 2\) là:
Đáp án : B
Với \(a > 0,a \ne 1\) ta có: \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\).
Điều kiện: \(x > 0\)
\({\log _2}\left( {{{\log }_{16}}x} \right) = - 2 \Leftrightarrow {\log _{16}}x = {2^{ - 2}} = \frac{1}{4} \Leftrightarrow x = {16^{\frac{1}{4}}} = 2\)
Vậy tập nghiệm của bất phương trình đã cho là: \(S = \left\{ 2 \right\}\).
Đáp án B.
Bất phương trình \(2{\log _{\frac{1}{3}}}\left( {x + 1} \right) > {\log _{\frac{1}{3}}}\left( {3x + 7} \right)\) có nghiệm là:
Đáp án : D
Nếu \(0 < a < 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) < v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\)).
Điều kiện: \(x > - 1\)
\(2{\log _{\frac{1}{3}}}\left( {x + 1} \right) > {\log _{\frac{1}{3}}}\left( {3x + 7} \right) \Leftrightarrow {\log _{\frac{1}{3}}}{\left( {x + 1} \right)^2} > {\log _{\frac{1}{3}}}\left( {3x + 7} \right) \Leftrightarrow {\left( {x + 1} \right)^2} < 3x + 7 \Leftrightarrow {x^2} - x - 6 < 0\)
\( \Leftrightarrow \left( {x - 3} \right)\left( {x + 2} \right) < 0 \Leftrightarrow - 2 < x < 3\)
Kết hợp với điều kiện ta có: \( - 1 < x < 3\).
Đáp án D.
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{\sqrt 2 }}} \right)^{2x - 4}} \ge \frac{1}{4}\) là:
Đáp án : C
Với \(a > 1\) thì \({a^{u\left( x \right)}} \ge {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) \ge v\left( x \right)\).
\({\left( {\frac{1}{{\sqrt 2 }}} \right)^{2x - 4}} \ge \frac{1}{4} \Leftrightarrow {2^{\frac{{2x - 4}}{{ - 2}}}} \ge {2^{ - 2}} \Leftrightarrow - x + 2 \ge - 2 \Leftrightarrow x \le 4\)
Vậy tập nghiệm của bất phương trình đã cho là: \(S = \left( { - \infty ;4} \right]\).
Đáp án C.
Hai đường thẳng a, b được gọi là vuông góc với nhau nếu góc giữa chúng bằng:
Đáp án : C
Hai đường thẳng a, b được gọi là vuông góc với nhau nếu góc giữa chúng bằng 900.
Hai đường thẳng a, b được gọi là vuông góc với nhau nếu góc giữa chúng bằng 900.
Đáp án C.
Trong không gian, khẳng định nào sau đây là đúng?
Đáp án : A
Trong không gian, cho hai đường thẳng song song, đường thẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng còn lại.
Trong không gian, cho hai đường thẳng song song, đường thẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng còn lại.
Đáp án A.
Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a, \(SA = a\sqrt 3 \) và \(SA \bot BC\). Góc giữa SD và BC bằng:
Đáp án : B
+ Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm O và lần lượt song song (hoặc trùng) với a và b; kí hiệu \(\left( {a,b} \right)\) hoặc \(\widehat {\left( {a;b} \right)}\).
+ Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại.
Vì ABCD là hình thoi nên BC//AD. Do đó, \(\left( {SD,BC} \right) = \left( {SD,AD} \right) = \widehat {SDA}\)
Vì BC//AD, \(SA \bot BC\) nên \(SA \bot AD\). Do đó, tam giác SAD vuông tại A, suy ra:
\(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SDA} = {60^0}\)
Đáp án B.
Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a. Gọi I, J lần lượt là trung điểm của SA và SC. Góc giữa IJ và BD bằng:
Đáp án : B
Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại.
Vì I, J lần lượt là trung điểm của các cạnh SA và SC nên IJ là đường trung bình của tam giác SAC, do đó, IJ//AC.
Vì ABCD là hình thoi nên \(AC \bot BD\)
Vì \(AC \bot BD\), IJ//AC nên \(BD \bot IJ \Rightarrow \left( {BD,IJ} \right) = {90^0}\).
Đáp án B.
Trong các khẳng định sau, khẳng định nào sai?
Đáp án : B
Nếu đường thẳng d vuông góc với hai đường thẳng phân biệt nằm trong mặt phẳng (P) thì d vuông góc với mặt phẳng (P).
Câu saivì d phải vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng (P) thì d vuông góc với (P).
Các đáp án còn lại đều đúng.
Đáp án B.
Tìm mệnh đề sai trong các mệnh đề sau:
Đáp án : B
Qua một điểm O cho trước có vô số đường thẳng vuông góc với đường thẳng cho trước cho trước.
Qua một điểm O cho trước có vô số đường thẳng vuông góc với đường thẳng cho trước cho trước nên đáp án B sai.
Hình minh họa:
Các đáp án còn lại đều đúng.
Đáp án B.
Chọn đáp án đúng.
Trong không gian, cho đường thẳng d không nằm trong mặt phẳng (P), đường thẳng d được gọi là vuông góc với mặt phẳng (P) nếu d:
Đáp án : C
Trong không gian, cho đường thẳng d không nằm trong mặt phẳng (P), đường thẳng d được gọi là vuông góc với mặt phẳng (P) nếu d vuông góc với mọi đường thẳng nằm trong mặt phẳng (P).
Trong không gian, cho đường thẳng d không nằm trong mặt phẳng (P), đường thẳng d được gọi là vuông góc với mặt phẳng (P) nếu d vuông góc với mọi đường thẳng nằm trong mặt phẳng (P).
Đáp án C.
Cho đường thẳng a nằm trong mặt phẳng (P) và b là đường thẳng không nằm trong (P) và không vuông góc với (P). Gọi b’ là hình chiếu vuông góc của b trên (P). Khi đó, a vuông góc với b khi và chỉ khi…
Cụm từ thích hợp điền vào… để được đáp án đúng là:
Đáp án : A
Cho đường thẳng a nằm trong mặt phẳng (P) và b là đường thẳng không nằm trong (P) và không vuông góc với (P). Gọi b’ là hình chiếu vuông góc của b trên (P). Khi đó, a vuông góc với b khi và chỉ khi a vuông góc với \(b'\).
Cho đường thẳng a nằm trong mặt phẳng (P) và b là đường thẳng không nằm trong (P) và không vuông góc với (P). Gọi b’ là hình chiếu vuông góc của b trên (P). Khi đó, a vuông góc với b khi và chỉ khi a vuông góc với \(b'\).
Đáp án A.
Cho hình chóp S. ABC có ABC là tam giác cân tại C, SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?
Đáp án : D
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.
Vì H là trung điểm của AB, mà tam giác ABC cân tại C nên \(CH \bot AB\).
Ta có: \(SA \bot \left( {ABC} \right),CH \subset \left( {ABC} \right) \Rightarrow SA \bot CH\)
Ta có: \(CH \bot AB\), \(SA \bot CH\), SA và AB cắt nhau tại A và nằm trong mặt phẳng (SAB) nên \(CH \bot \left( {SAB} \right)\). Mà \(AK,SB \subset \left( {SAB} \right) \Rightarrow AK \bot CH,SB \bot CH\)
Do đó, đáp án sai là D.
Đáp án D.
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và tam giác ABC vuông tại B. Kẻ \(AH \bot SB\left( {H \in SB} \right)\). Khẳng định nào dưới đây là sai?
Đáp án : C
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.
Vì \(SA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow SA \bot BC\).
Tam giác ABC vuông tại B nên \(AB \bot BC\)
Ta có: \(SA \bot BC\), \(AB \bot BC\), SA và AB cắt nhau tại A và nằm trong mặt phẳng (SAB) nên \(BC \bot \left( {SAB} \right)\). Mà \(AH \subset \left( {SAB} \right) \Rightarrow BC \bot AH\)
Ta có: \(BC \bot AH,AH \bot SB\), SB và BC cắt nhau tại B và nằm trong mặt phẳng (SBC). Do đó, \(AH \bot \left( {SBC} \right)\), mà \(SC \subset \left( {SBC} \right) \Rightarrow SC \bot AH\)
Nếu \(AH \bot AC\), mà \(SA \bot AC \Rightarrow AC \bot \left( {SAH} \right) \Rightarrow AB \bot AC\) (vô lí)
Đáp án C.
Cho hình chóp S. ABCD có đáy ABCD là hình thoi tâm O. Biết rằng \(SA = SC,SB = SD\). Khẳng định nào sau đây là đúng?
Đáp án : D
Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
Vì \(SA = SC\) nên tam giác SAC cân tại S, mà SO là đường trung tuyến nên SO là đường cao của tam giác SAC. Do đó, \(SO \bot AC\) (1)
Vì \(SB = SD\) nên tam giác SBD cân tại S, mà SO là đường trung tuyến nên SO là đường cao của tam giác SBD. Do đó, \(SO \bot BD\) (2)
Lại có: BD và AC cắt nhau tại O và nằm trong mặt phẳng (ABCD) (3).
Từ (1), (2) và (3) ta có: \(SO \bot \left( {ABCD} \right)\).
Đáp án D.
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, \(SA \bot \left( {ABCD} \right)\). Hình chiếu vuông góc của điểm D trên mặt phẳng (SAB) là điểm:
Đáp án : B
Cho mặt phẳng (P). Xét một điểm M tùy ý trong không gian. Gọi d là đường thẳng đi qua điểm M và vuông góc với (P). Gọi M’ là giao điểm của đường thẳng d và mặt phẳng (P). Khi đó, điểm M’ được gọi là hình chiếu vuông góc của điểm M lên mặt phẳng (P).
Vì \(SA \bot \left( {ABCD} \right),AD \subset \left( {ABCD} \right) \Rightarrow SA \bot AD\)
Vì ABCD là hình chữ nhật nên \(AB \bot AD\).
Mà SA và AB cắt nhau tại A và nằm trong mặt phẳng (SAB). Do đó, \(AD \bot \left( {SAB} \right)\).
Do đó, A là hình chiếu vuông góc của điểm D trên mặt phẳng (SAB).
Đáp án B.
Cho hàm số: \(y = \ln \left[ {\left( {2 - m} \right){x^2} - 2x + 1} \right]\).
a) Với \(m = 1\), hãy tìm tập xác định của hàm số trên.
b) Tìm tất cả các giá trị của tham số m để hàm số trên có tập xác định với mọi giá trị thực của x.
Hàm số \(y = \ln u\left( x \right)\) xác định khi \(u\left( x \right) > 0\).
a) Với \(m = 1\) ta có: \(y = \ln \left( {{x^2} - 2x + 1} \right)\).
Hàm số \(y = \ln \left( {{x^2} - 2x + 1} \right)\) xác định khi \({x^2} - 2x + 1 > 0 \Leftrightarrow {\left( {x - 1} \right)^2} > 0 \Leftrightarrow x - 1 \ne 0 \Leftrightarrow x \ne 1\).
Vậy với \(m = 1\) thì tập xác định của hàm số là: \(D = \left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\).
b) Hàm số \(y = \ln \left[ {\left( {2 - m} \right){x^2} - 2x + 1} \right]\) xác định với mọi giá trị thực của x khi và chỉ khi \(f\left( x \right) = \left( {2 - m} \right){x^2} - 2x + 1 > 0\) với mọi \(x \in \mathbb{R}\)
Trường hợp 1: Với \(m = 2\) ta có: \(f\left( x \right) = - 2x + 1 > 0 \Leftrightarrow x < \frac{1}{2}\). Do đó, f(x) không xác định với mọi giá trị thực của x. Do đó, \(m = 2\) không thỏa mãn
Trường hợp 2: Với \(m \ne 2\). Hàm số \(f\left( x \right) = \left( {2 - m} \right){x^2} - 2x + 1 > 0\) với mọi \(x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ \begin{array}{l}2 - m > 0\\\Delta ' < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 2\\{\left( { - 1} \right)^2} - \left( {2 - m} \right).1 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 2\\m > 1\end{array} \right. \Leftrightarrow 1 < m < 2\)
Vậy với \(1 < m < 2\) thì hàm số \(y = \ln \left[ {\left( {2 - m} \right){x^2} - 2x + 1} \right]\) có tập xác định với mọi giá trị thực của x.
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Cạnh bên CC’ vuông góc với đáy và \(CC' = a\). Gọi M, I lần lượt là trung điểm của BB’, BC.
a) Chứng minh rằng: \(AM \bot BC'\).
b) Gọi K là điểm trên đoạn A’B’ sao cho \(B'K = \frac{a}{4}\) và J là trung điểm của B’C’. Chứng minh rằng: \(AM \bot MK\) và \(AM \bot KJ\).
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.
a) Vì tam giác ABC là tam giác đều và I là trung điểm của BC nên \(AI \bot BC\).
Mặt khác, \(AI \bot CC'\left( {do\;CC' \bot \left( {ABC} \right)} \right)\) và BC và CC’ cắt nhau tại C và nằm trong mặt phẳng (BCC’B’) nên \(AI \bot \left( {BCC'B'} \right) \Rightarrow AI \bot BC'\)
Dễ dàng chứng minh được tứ giác BCC’B’ là hình vuông nên \(BC' \bot B'C\).
Vì M, I lần lượt là trung điểm của BB’, BC nên MI là đường trung bình của tam giác BB’C. Do đó, MI//B’C. Mà \(BC' \bot B'C\) nên \(MI \bot BC'\).
Lại có: \(AI \bot BC'\) và MI và AI cắt nhau tại I và nằm trong mặt phẳng (AIM).
Do đó, \(BC' \bot \left( {AIM} \right) \Rightarrow BC' \bot AM\).
b) Tam giác KMB’ vuông tại B’ nên \(\tan \widehat {KMB'} = \frac{{KB'}}{{MB'}} = \frac{1}{2}\)
Tam giác AMB vuông tại B nên \(\tan \widehat {AMB} = \frac{{AB}}{{BM}} = 2\)
Do đó, \(\tan \widehat {KMB'} = \cot \widehat {AMB} \Rightarrow \widehat {KMB'} + \widehat {AMB} = {90^0}\)
Suy ra, \(\widehat {AMK} = {90^0} \Rightarrow AM \bot MK\)
Mặt khác: \(AM \bot BC'\left( {cmt} \right),MJ//BC'\) (do MJ là đường trung bình của tam giác B’C’B)\( \Rightarrow AM \bot MJ\)
Mà \(AM \bot MK\). Do đó, \(AM \bot \left( {MKJ} \right) \Rightarrow AM \bot KJ\).
Giải phương trình: \({\log _2}\left( {{4^x} + 4} \right) = x - {\log _{0,5}}\left( {{2^{x + 1}} - 3} \right)\).
Nếu \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))
Điều kiện:
\({\log _2}\left( {{4^x} + 4} \right) = x - {\log _{0,5}}\left( {{2^{x + 1}} - 3} \right) \Leftrightarrow {\log _2}\left( {{4^x} + 4} \right) = x + {\log _2}\left( {{2^{x + 1}} - 3} \right) \Leftrightarrow x = {\log _2}\frac{{{{\left( {{2^x}} \right)}^2} + 4}}{{{{2.2}^x} - 3}}\)
\( \Leftrightarrow \frac{{{{\left( {{2^x}} \right)}^2} + 4}}{{{{2.2}^x} - 3}} = {2^x} \Rightarrow {2^x}\left( {{{2.2}^x} - 3} \right) = {\left( {{2^x}} \right)^2} + 4 \Rightarrow {\left( {{2^x}} \right)^2} - {3.2^x} - 4 = 0\) (*)
Đặt \({2^x} = t\left( {t > 0} \right)\) thì phương trình (*) trở thành: \({t^2} - 3t - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\left( L \right)\\t = 4\left( {TM} \right)\end{array} \right.\)
Với \(t = 4\) thì \({2^x} = 4 \Leftrightarrow x = 2\) (thỏa mãn điều kiện)
Vậy phương trình có nghiệm là: \(x = 2\).
Đề thi giữa kì 2 Toán 11 Kết nối tri thức - Đề số 2 là một bài kiểm tra quan trọng, đánh giá mức độ nắm vững kiến thức và kỹ năng của học sinh sau nửa học kỳ. Đề thi bao gồm các dạng bài tập thuộc chương trình học kì 2, tập trung vào các chủ đề chính như hàm số lượng giác, phương trình lượng giác, bất phương trình lượng giác, và các ứng dụng của lượng giác trong thực tế.
Thông thường, đề thi giữa kì 2 Toán 11 Kết nối tri thức - Đề số 2 có cấu trúc gồm các phần sau:
Để đạt kết quả tốt trong kỳ thi giữa kì 2, học sinh cần nắm vững kiến thức cơ bản, luyện tập thường xuyên, và biết cách áp dụng các phương pháp giải toán phù hợp. Dưới đây là một số hướng dẫn giải chi tiết cho các dạng bài tập thường gặp trong đề thi:
Để giải phương trình lượng giác, học sinh cần sử dụng các công thức lượng giác cơ bản, các phương pháp biến đổi phương trình, và các nghiệm đặc biệt. Ví dụ, để giải phương trình sin(x) = a, ta cần xét các trường hợp a ∈ [-1; 1] và sử dụng công thức nghiệm tổng quát.
Giải bất phương trình lượng giác tương tự như giải phương trình lượng giác, nhưng cần chú ý đến dấu của bất đẳng thức và sử dụng các phương pháp so sánh, xét dấu, và vẽ đường tròn lượng giác.
Để chứng minh đẳng thức lượng giác, học sinh cần sử dụng các công thức lượng giác cơ bản, các phép biến đổi đại số, và các phương pháp chứng minh tương đương.
Để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác, học sinh cần sử dụng các phương pháp đạo hàm, biến đổi hàm số, và sử dụng các tính chất của hàm số lượng giác.
Để chuẩn bị tốt nhất cho kỳ thi giữa kì 2, học sinh nên:
Dưới đây là một số tài liệu tham khảo hữu ích cho học sinh:
Đề thi giữa kì 2 Toán 11 Kết nối tri thức - Đề số 2 là một cơ hội để học sinh đánh giá năng lực và kiến thức của mình. Bằng cách nắm vững kiến thức, luyện tập thường xuyên, và sử dụng các phương pháp giải toán hiệu quả, các em có thể đạt kết quả tốt nhất trong kỳ thi này.