Logo Header
  1. Môn Toán
  2. Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều

Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều

Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều

Chào mừng các em học sinh đến với đề kiểm tra học kì 2 môn Toán 10, đề số 3, thuộc chương trình Cánh diều. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học hiệu quả và tự tin hơn trong kỳ thi sắp tới.

I. PHẦN TRẮC NGHIỆM ( 35 câu - 7,0 điểm ).

Đề bài

    I. PHẦN TRẮC NGHIỆM (7 Điểm)

    Câu 1. Lớp 10A có 20 bạn nữ và 18 bạn nam. Hỏi có bao nhiêu cách chọn một học sinh làm lớp trưởng?

    A. \(38\) cách. B. \(20\)cách. C. \(18\) cách. D. \(360\).

    Câu 2. Mã khoá số của chiếc Vali du lịch là một dãy số gồm ba chữ số. Mỗi chữ số có thể là một chữ số bất kì từ 0 đến 9. Hỏi có thể có bao nhiêu mã mở khoá khác nhau?

    A. \({10^3}\). B. \(720.\) C. \(900.\) D. \(30.\)

    Câu 3. Trong kì thi THPT Quốc gia năm 2022 tại một điểm thi có \(5\) sinh viên tình nguyện được phân công trực hướng dẫn thi sinh ở \(5\)vị trí khác nhau. Yêu cầu mỗi vị trí có đúng \(1\) sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 sinh viên đó?

    A.\(625\). B.\(3125\). C.\(120\). D.\(80\).

    Câu 4. Có thể tạo thành bao nhiêu véc-tơ khác vectơ không từ hai mươi điểm phân biệt trên mặt phẳng?

    A. \(20!\) B. \(C_{20}^2\) C. \(20\) D. \(A_{20}^2\)

    Câu 5. Một hộp đựng \(8\) quả cầu trắng và \(5\) quả cầu đỏ. Lấy ngẫu nhiên \(5\) quả. Có bao nhiêu cách để lấy ra được \(3\) quả đỏ?

    A. \(40\). B. \(13\). C. \(38\). D. \(280\).

    Câu 6. Một đề kiểm tra trắc nghiệm có 10 câu hỏi, mỗi câu hỏi chỉ có 1 đáp án đúng trong 4 đáp án. Giả sử các đáp án được chọn ngẫu nhiên. Số khả năng để bạn Uyên làm đúng 5 câu trong 10 câu hỏi của đề thi đó là:

    A. \(C_{10}^5\). B. \(A_{10}^5\). C. \({3^5}.C_{10}^5\). D. \(5.C_{10}^5\).

    Câu 7. Viết khai triển theo công thức nhị thức Niu-tơn của biểu thức \({\left( {x + 2} \right)^5}\). 

    A. \({x^5} + 10{x^4} + 40{x^3} + 80{x^2} + 80x + 32\).

    B. \({x^5} - 10{x^4} + 40{x^3} - 80{x^2} + 80x - 32\).

    C. \({x^5} - 10{x^4} - 40{x^3} - 80{x^2} - 80x + 32\).

    D. \({x^5} + 10{x^4} - 40{x^3} + 80{x^2} - 80x + 32\).

    Câu 8. Hệ số của \({x^3}\) trong khai triển biểu thức \({\left( {1 - 3x} \right)^8}\) là:

    A. \(1512\). B.\( - 1512\). C.\(56\). D. \(1215\).

    Câu 9. Tìm tổng \(T = C_n^1 + 3C_n^2 + {3^2}C_n^3 + ... + {3^{n - 1}}C_n^n\)

    A. \({4^n}\). B. \({4^n} + 1\). C. \({4^n} - 1\). D. \(\frac{{{4^n} - 1}}{3}\).

    Câu 10. Cho số gần đúng \(a = 23748023\) với độ chính xác \(d = 101\). Hãy viết số quy tròn của số a

    A. \(23749000\). B. \(23748000\). C. \(23746000.\) D. \(23747000\).

    Câu 11. Điểm trung bình thi học kỳ II môn Toán của một nhóm gồm \(N\) học sinh lớp 12A6 là \(8,1\). Biết rằng tổng điểm môn toán của nhóm này là \(72,9\). Tìm số học sinh của nhóm.

    A. \(20\). B. \(9\). C. \(8\). D. \(15\).

    Câu 12. Thống kê điểm kiểm tra \(15'\) môn Toán của lớp 10A1 trường THPT Chu Văn An được ghi lại như sau:

    Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 0 1

    Số trung vị của mẫu số liệu trên là

    A. \(8\). B. \(6\). C. \(7\). D. \(9\).

    Câu 13. Theo kết quả thống kê điểm thi học kỳ 1 môn toán khối 10 của trường THPT Chu Văn An, người ta tính được phương sai của bảng thống kê đó là \(s_x^2 = 0,679\). Độ lệch chuẩn của bảng thống kê đó bằng:

    A. \(0,812\). B. \(0,824\). C. \(0,936\). D. \(0,657\).

    Câu 14. Tính phương sai của dãy số liệu: \(1,3,3,5,7,9,10,11,11,11.\)

    A. \(\frac{{71}}{{10}}\).

    B. \(\frac{{1329}}{{10}}\).

    C. \(\frac{{710}}{{10}}\).

    D. \(\frac{{1329}}{{100}}\).

    Câu 15. Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:

    163 159 172 167 165 168 170 161.

    Khoảng biến thiên của mẫu số liệu trên là:

    A. \(10\). B. \(13\). C. \(12\). D. \(14\).

    Câu 16. Gieo một đồng xu cân đối và đồng chất liên tiếp \(3\) lần thì \(n(\Omega )\) là bao nhiêu?

    A. \(6\). B. \(8\). C. \(32\). D. \(16\).

    Câu 17. Gieo một con súc sắc. Xác suất để mặt lẻ chẵn xuất hiện là:

    A.0,2 B. 0,3 C.0,4. D. 0,5

    Câu 18. Gieo hai con súc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc xắc bằng 5 là:

    A. \(\frac{2}{9}\). B.\(\frac{1}{6}\). C. \(\frac{1}{9}\). D. \(\frac{5}{36}\).

    Câu 19. Gieo hai con xúc xắc một cách vô tư. Tính xác suất của biến cố “Các mặt xuất hiện có số chấm bằng nhau”.

    A. \(\frac{2}{9}\). B.\(\frac{1}{6}\). C. \(\frac{1}{9}\). D. \(\frac{5}{36}\).

    Câu 20. Gieo một con súc xắc cân đối và đồng chất hai lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm là

    A. \(\frac{{12}}{{36}}\). B. \(\frac{{11}}{{36}}\). C. \(\frac{6}{{36}}\). D. \(\frac{8}{{36}}\).

    Câu 21. Cho tập hợp \(X = \left\{ {1;2;3;4;5;6;7;8;9} \right\}\). Chọn ngẫu nhiên từ \(X\) ra ba số tự nhiên. Xác suất để chọn được ba số có tích là một số chẵn là:

    A. \(P = 1 - \frac{{C_4^3}}{{C_{10}^3}}\).

    B. \(P = 1 - \frac{{C_6^3}}{{C_{10}^3}}\).

    C. \(P = 1 - \frac{{C_5^3}}{{C_9^3}}\).

    D. \(P = \frac{{C_5^3}}{{C_9^3}}\).

    Câu 22. Trường THPT Cao Bá Quát có 23 lớp, trong đó khối 10 có 8 lớp, khối 11 có 8 lớp, khối 12 có 7 lớp, mỗi lớp có một chi đoàn, mỗi chi đoàn có một em làm bí thư. Các em bí thư đều giỏi và rất năng động nên Ban chấp hành Đoàn trường chọn ngẫu nhiên 9 em bí thư đi thi cán bộ đoàn giỏi cấp thành phố. Tính xác suất để 9 em được chọn có đủ cả ba khối?

    A. \(\frac{{7345}}{{7429}}\).

    B. \(\frac{{7012}}{{7429}}\).

    C. \(\frac{{7234}}{{7429}}\).

    D. \(\frac{{7123}}{{7429}}\).

    Câu 23. Trong mặt phẳng toạ độ \(Oxy\) cho hai điểm \(A\left( { - 1;3} \right),B\left( {2; - 5} \right)\).Toạ độ của vectơ \(\overrightarrow {AB} \) là:

    A. \(\left( {3;8} \right)\)

    B. \(\left( {1; - 8} \right)\)

    C. \(\left( {3; - 8} \right)\)

    D. \(\left( {3;1} \right)\)

    Câu 24. Trong mặt phẳng toạ độ \(Oxy\) cho \(\overrightarrow a = \left( {2;3} \right),\overrightarrow b = \left( {1; - 2} \right)\).Toạ độ của vectơ \(\overrightarrow u = 2\overrightarrow a + 3\overrightarrow b \) là:

    A. \(\left( {7;0} \right)\)

    B. \(\left( {7;12} \right)\)

    C. \(\left( {1;0} \right)\)

    D. \(\left( {3;1} \right)\)

    Câu 25. Cho tam giác \(ABC\) với \(A\left( {2;3} \right),B\left( { - 4;5} \right),C\left( {4; - 3} \right)\). Tìm toạ độ điểm \(M\)thuộc trục \(Oy\)để \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.

    A. \(M\left( {0;\frac{1}{3}} \right)\)

    B. \(M\left( {0; - \frac{5}{3}} \right)\)

    C. \(M\left( {0;\frac{2}{3}} \right)\)

    D. \(M\left( {0;\frac{5}{3}} \right)\)

    Câu 26. Vectơ nào dưới đây là một vectơ pháp tuyến của \(d:x - 2y + 2023 = 0\)?

    A.\(\overrightarrow {{n_1}} = \left( {0; - 2} \right)\).

    B. \(\overrightarrow {{n_2}} = \left( {1; - 2} \right)\).

    C. \(\overrightarrow {{n_3}} = \left( { - 2;0} \right)\).

    D. \(\overrightarrow {{n_4}} = \left( {2;1} \right)\).

    Câu 27. Đường thẳng \(d\) đi qua điểm \(M\left( { - 2;3} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {3;5} \right)\) có phương trình tham số là:

    A. \(d:\left\{ \begin{array}{l}x = 3 - 2t\\y = 5 + 3t\end{array} \right.\).

    B. \(d:\left\{ \begin{array}{l}x = - 2 + 3t\\y = 3 + 5t\end{array} \right.\).

    C. \(d:\left\{ \begin{array}{l}x = - 2 + 5t\\y = 3 - 3t\end{array} \right.\).

    D. \(d:\left\{ \begin{array}{l}x = 3 + 2t\\y = 5 + 3t\end{array} \right.\).

    Câu 28. Trong mặt phẳng với hệ tọa độ cho đường thẳng \({d_1}:3x + 4y - 5 = 0\)và đường thẳng \({d_2}:3x - 4y - 1 = 0\).Nêu vị trí tương đối của \({d_1}\) và \({d_2}\)

    A. Cắt nhau và không vuông góc.

    B. Vuông góc với nhau.

    C. Song song với nhau.

    D. Trùng nhau.

    Câu 29. Tìm tất cả các giá trị của tham số \(m\) để khoảng cách từ điểm \(A\left( {2; - 3} \right)\) đến đường thẳng \(\Delta :mx + y - m + 4 = 0\) bằng \(\sqrt 2 \).

    A. \(m = 2.\) B. \(m = - 1\). C. \(m = - \frac{1}{2}\). D. \(m = 1\).

    Câu 30. Trong mặt phẳng với hệ trục tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 2x + 6y - 4 = 0\). Gọi \(I\left( {a;b} \right)\)là tâm của đường tròn \(\left( C \right)\). Tính tổng \(S = a + b\)

    A. \(S = 4\). B. \(S = 1\). C. \(S = - 2\). D. \(S = 2\).

    Câu 31. Trong mặt phẳng với hệ trục tọa độ \(Oxy\) cho điểm \(I\left( { - 1;2} \right)\). Viết phương trình đường tròn tâm \(I\), bán kính \(R = 3\).

    A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

    B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

    C. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

    D. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

    Câu 32. Trong mặt phẳng với hệ tọa độ \(Oxy\) cho đường tròn \(\left( C \right)\) tâm \(I\left( {2;3} \right)\) tiếp xúc với đường thẳng \(\left( d \right):4x - 3y + 11 = 0\). Viết phương trình đường tròn \(\left( C \right)\).

    A. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 9\).

    B. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 4\).

    C. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 3\).

    D. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\).

    Câu 33. Trong mặt phẳng \(Oxy\) cho elip \(\left( E \right)\) có độ dài trục lớn bằng 10, độ dài tiêu cự bằng 8. Viết phương trình chính tắc của \(\left( E \right)\).

    A. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)

    B. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

    C. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)

    D. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{36}} = 1\)

    Câu 34. Trong mặt phẳng \(Oxy\), Hyperbol \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) có một tiêu điểm là điểm nào dưới đây?

    A. \(\left( { - 5;0} \right)\)

    B. \(\left( {0;\sqrt 7 } \right)\)

    C. \(\left( {\sqrt 7 ;0} \right)\)

    D. \(\left( {0;5} \right)\)

    Câu 35. Cho Parabol \(\left( P \right):\)\({y^2} = 64x\) và đường thẳng \(\left( \Delta \right):4x + 3y + 46 = 0\). Tìm điểm \(M \in (P)\) sao cho khoảng cách từ \(M\) đến \(\left( \Delta \right)\)là ngắn nhất.

    A. \(M\left( {9; - 24} \right)\)

    B. \(M\left( {9;24} \right)\)

    C. \(M\left( {24;9} \right)\)

    D. \(M\left( {9;2} \right)\)

    II. PHẦN TỰ LUẬN (3 Điểm)

    Câu 36. (1 điểm) Bạn An đo chiều dài của một sân bóng ghi được \(250 \pm 0,2m\). Bạn Bình đo chiều cao của một cột cờ được \(15 \pm 0,1m\). Trong 2 bạn A và B, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Câu 37. (1 điểm) Tìm tất cả các giá trị của tham số \(m\) sao cho hai đường thẳng \({d_1}:x - y + 3 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = - 2 + \left( {m + 1} \right)t\\y = 1 - 2t\end{array} \right.\) hợp với nhau một góc \(45^\circ \).

    Câu 38. (0,5 điểm) Cho đa giác đều \({A_1}{A_2}...{A_{2n}}\) nội tiếp trong đường tròn tâm \(O\). Biết rằng số tam giác có đỉnh là \(3\) trong \(2n\) điểm \({A_1};\,{A_2};\,...;\,{A_{2n}}\) gấp \(20\) lần so với số hình chữ nhật có đỉnh là \(4\) trong \(2n\) điểm \({A_1};\,{A_2};\,...;\,{A_{2n}}\). Tìm \(n\)?

    Câu 39. (0,5 điểm) Trong mặt phẳng với hệ toạ độ \(Oxy\), cho điểm \(M\left( {3;1} \right)\). Viết phương trình đường thẳng \(d\) đi qua \(M\) cắt các tia \(Ox,Oy\) tại \(A\) và \(B\) sao cho \(\left( {OA + 3OB} \right)\) nhỏ nhất.

    -----------------------------------------------------

    Lời giải

      HƯỚNG DẪN GIẢI CHI TIẾT

      THỰC HIỆN: BAN CHYÊN MÔN

      I. PHẦN TRẮC NGHIỆM (35 câu - 7,0 điểm).

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 1 1

      Câu 1. Lớp 10A có 20 bạn nữ và 18 bạn nam. Hỏi có bao nhiêu cách chọn một học sinh làm lớp trưởng?

      A. \(38\) cách. B. \(20\)cách. C. \(18\) cách. D. \(360\).

      Phương pháp

      Áp dụng quy tắc cộng

      Lời giải:

      ChọnA

      Chọn một học sinh trong số 20 hs nữ và 18 học sinh nam có: \(20 + 18 = 38\) cách.

      Câu 2. Mã khoá số của chiếc Vali du lịch là một dãy số gồm ba chữ số. Mỗi chữ số có thể là một chữ số bất kì từ 0 đến 9. Hỏi có thể có bao nhiêu mã mở khoá khác nhau?

      A. \({10^3}\). B. \(720.\) C. \(900.\) D. \(30.\)

      Phương pháp

      Áp dụng quy tắc nhân

      Lời giải:

      ChọnA

      Chữ số thứ nhất có 10 cách chọn

      Chữ số thứ hai có 10 cách chọn

      Chữ số thứ ba có 10 cách chọn

      Vậy có: \(10.10.10 = {10^3}\) (mã).

      Câu 3. Trong kì thi THPT Quốc gia năm 2022 tại một điểm thi có \(5\) sinh viên tình nguyện được phân công trực hướng dẫn thi sinh ở \(5\)vị trí khác nhau. Yêu cầu mỗi vị trí có đúng \(1\) sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 sinh viên đó?

      A.\(625\). B.\(3125\). C.\(120\). D.\(80\).

      Phương pháp

      Áp dụng công thức hoán vị

      Lời giải:

      Chọn C

      Mỗi cách phân công \(5\) sinh viên trực ở \(5\)vị trí khác nhau là\(1\) hoán vị của\(5\)phần tử.

      Vậy có tất cả là \(5! = 120\).

      Câu 4. Có thể tạo thành bao nhiêu véc-tơ khác vectơ không từ hai mươi điểm phân biệt trên mặt phẳng?

      A. \(20!\) B. \(C_{20}^2\) C. \(20\) D. \(A_{20}^2\)

      Phương pháp

      Áp dụng công thức chỉnh hợp

      Lời giải:

      Chọn D

      Mỗi vectơ khác vectơ không được tạo thành bằng cách lấy hai điểm từ hai mươi điểm đã cho và phân biệt thứ tự điểm đầu và điểm cuối. Như vậy, mỗi vectơ là một chỉnh hợp chập 2 của 20. Vậy số các vectơ tạo thành là: \(A_{20}^2\).

      Câu 5. Một hộp đựng \(8\) quả cầu trắng và \(5\) quả cầu đỏ. Lấy ngẫu nhiên \(5\) quả. Có bao nhiêu cách để lấy ra được \(3\) quả đỏ?

      A. \(40\). B. \(13\). C. \(38\). D. \(280\).

      Phương pháp

      Áp dụng công thức tổ hợp

      Lời giải:

      Chọn D

      Lấy \(5\) quả gồm \(3\) quả đỏ và \(2\) quả trắng,

      Với \(5\) quả cầu đỏ lấy \(3\) quả, ta có \(C_5^3\) cách.

      Với \(8\) quả cầu trắng lấy \(2\) quả, ta có \(C_8^2\) cách.

      Vậy có \(C_5^3.C_8^2 = 280\) cách.

      Câu 6. Một đề kiểm tra trắc nghiệm có 10 câu hỏi, mỗi câu hỏi chỉ có 1 đáp án đúng trong 4 đáp án. Giả sử các đáp án được chọn ngẫu nhiên. Số khả năng để bạn Uyên làm đúng 5 câu trong 10 câu hỏi của đề thi đó là:

      A. \(C_{10}^5\). B. \(A_{10}^5\). C. \({3^5}.C_{10}^5\). D. \(5.C_{10}^5\).

      Phương pháp

      Áp dụng công thức tổ hợp

      Lời giải:

      Chọn C

      Mỗi cách chọn 5 câu làm đúng trong 10 câu là một tổ hợp chập 5 của 10 phần tử nên có \(C_{10}^5\)

      Vì 5 câu còn lại làm sai, mỗi câu có 3 đáp án sai nên có \(3.3.3.3.3 = {3^5}\)

      Vậy có \({3^5}.C_{10}^5\)

      Câu 7. Viết khai triển theo công thức nhị thức Niu-tơn của biểu thức \({\left( {x + 2} \right)^5}\). 

      A. \({x^5} + 10{x^4} + 40{x^3} + 80{x^2} + 80x + 32\).

      B. \({x^5} - 10{x^4} + 40{x^3} - 80{x^2} + 80x - 32\).

      C. \({x^5} - 10{x^4} - 40{x^3} - 80{x^2} - 80x + 32\).

      D. \({x^5} + 10{x^4} - 40{x^3} + 80{x^2} - 80x + 32\).

      Phương pháp

      Áp dụng công thức nhị thức Newton

      Lời giải:

      Chọn A

      \({\left( {x + 2} \right)^5} = {x^5} + 10{x^4} + 40{x^3} + 80{x^2} + 80x + 32\)

      Câu 8. Hệ số của \({x^3}\) trong khai triển biểu thức \({\left( {1 - 3x} \right)^8}\) là:

      A. \(1512\). B.\( - 1512\). C.\(56\). D. \(1215\).

      Phương pháp

      Áp dụng công thức nhị thức Newton

      Lời giải:

      Chọn B

      Ta có \({\left( {1 - 3x} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k} {\left( { - 3} \right)^k}{x^k}\).

      \( \Rightarrow \) Hệ số của \({x^3}\) là \(C_8^3{\left( { - 3} \right)^3} = - 1512\).

      Câu 9. Tìm tổng \(T = C_n^1 + 3C_n^2 + {3^2}C_n^3 + ... + {3^{n - 1}}C_n^n\)

      A. \({4^n}\).

      B. \({4^n} + 1\).

      C. \({4^n} - 1\).

      D. \(\frac{{{4^n} - 1}}{3}\).

      Phương pháp

      Áp dụng công thức nhị thức Newton

      Lời giải:

      Chọn D

      Xét khai triển \({\left( {1 + x} \right)^n} = C_n^0 + xC_n^1 + {x^2}C_n^2 + {x^3}C_n^3 + ... + {x^n}C_n^n\)

      Cho \(x = 3\) ta có: \({4^n} = C_n^0 + 3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^n\)

      \( \Rightarrow {4^n} - C_n^0 = 3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^n\)

      \( \Leftrightarrow {4^n} - 1 = 3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^n\)

      \( \Leftrightarrow \frac{{{4^n} - 1}}{3} = C_n^1 + 3C_n^2 + {3^2}C_n^3 + ... + {3^{n - 1}}C_n^n\)

      \( \Rightarrow T = \frac{{{4^n} - 1}}{3}\)

      Câu 10. Cho số gần đúng \(a = 23748023\) với độ chính xác \(d = 101\). Hãy viết số quy tròn của số a

      A. \(23749000\). B. \(23748000\). C. \(23746000.\) D. \(23747000\).

      Phương pháp

      Khi thay số đúng bởi số quy tròn đến một hàng nào đó thì sai số tuyệt đối của số quy tròn không vượt quá nửa đơn vị của hàng quy tròn. Như vậy, độ chính sác của số quy tròn bằng nửa đơn vị của hàng quy tròn.

      Lời giải:

      Chọn B

      Số quy tròn của số \(a = 23748023\) là \(23748000\)

      Câu 11. Điểm trung bình thi học kỳ II môn Toán của một nhóm gồm \(N\) học sinh lớp 12A6 là \(8,1\). Biết rằng tổng điểm môn toán của nhóm này là \(72,9\). Tìm số học sinh của nhóm.

      A. \(20\). B. \(9\). C. \(8\). D. \(15\).

      Phương pháp

      Số trung bình cộng \(\overline x \) của mẫu số liệu \({x_1},{x_2},...,{x_n}\) là:

      \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}.\)

      Lời giải:

      Chọn B

      Ta có giá giá trị \(N = \frac{{72,9}}{{8,1}} = 9\) (học sinh).

      Câu 12. Thống kê điểm kiểm tra \(15'\) môn Toán của lớp 10A1 trường THPT Chu Văn An được ghi lại như sau:

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 1 2

      Số trung vị của mẫu số liệu trên là

      A. \(8\). B. \(6\). C. \(7\). D. \(9\).

      Phương pháp

      Sắp thứ tự mẫu số liệu gồm n số liệu thành một dãy không giảm ( hoặc không tăng).

      - Nếu n là lẻ thì số liệu đứng ở vị trí thứ \(\frac{{n + 1}}{2}\) ( số đứng chính giữa) gọi là trung vị

      - Nếu n là chẵn thì số trung bình cộng của hai số liệu đứng ở vị trí thứ \(\frac{n}{2}\) và \(\frac{n}{2} + 1\) gọi là trung vị

      Lời giải

      Chọn C

      Các số liệu đã được xếp theo thức tự tăng dần.

      Tổng số có 35 số liệu nên số trung vị là giá trị ở vị trí 18.

      Vậy số trung vị là 7.

      Câu 13. Theo kết quả thống kê điểm thi học kỳ 1 môn toán khối 10 của trường THPT Chu Văn An, người ta tính được phương sai của bảng thống kê đó là \(s_x^2 = 0,679\). Độ lệch chuẩn của bảng thống kê đó bằng:

      A. \(0,812\). B. \(0,824\). C. \(0,936\). D. \(0,657\).

      Phương pháp

      Căn bậc hai của phương sai gọi là Độ lệch chuẩn của mẫu số liệu thống kê

      Lời giải

      Chọn B

      Ta có công thức tính độ lệch chuẩn là \({s_x} = \sqrt {s_x^2} = \sqrt {0,679} \approx 0,824\).

      Câu 14. Tính phương sai của dãy số liệu: \(1,3,3,5,7,9,10,11,11,11.\)

      A. \(\frac{{71}}{{10}}\).

      B. \(\frac{{1329}}{{10}}\).

      C. \(\frac{{710}}{{10}}\).

      D. \(\frac{{1329}}{{100}}\).

      Phương sai

      Cho mẫu số liêu thống kê có n giá trị \({x_1},{x_2},...,{x_n}\) và số trung bình cộng \(\overline x \).

      Ta gọi số \({s^2} = \frac{{{{({x_1} - \overline x )}^2} + {{({x_2} - \overline x )}^2} + ... + {{({x_n} - \overline x )}^2}}}{n}\) là phương sai của mẫu số liệu

      Lời giải

      Chọn D

      Bảng phân bố tần số của dãy số liệu:

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 1 3

      Ta có \(\overline x = \frac{1}{{10}}\left( {1.1 + 3.2 + 5.1 + 7.1 + 9.1 + 10.1 + 11.3} \right) = \frac{{71}}{{10}}\).

      Phương sai là:

      \({S^2} = \frac{1}{{10}}\left[ {1.{{\left( {1 - \frac{{71}}{{10}}} \right)}^2} + 2.{{\left( {3 - \frac{{71}}{{10}}} \right)}^2} + 1.{{\left( {5 - \frac{{71}}{{10}}} \right)}^2} + 1.{{\left( {7 - \frac{{71}}{{10}}} \right)}^2} + 1.{{\left( {9 - \frac{{71}}{{10}}} \right)}^2} + 1.{{\left( {10 - \frac{{71}}{{10}}} \right)}^2}} \right.\)

      \(\left. { + 3.{{\left( {11 - \frac{{71}}{{10}}} \right)}^2}} \right] = 13,29\)

      Câu 15. Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:

      163 159 172 167 165 168 170 161.

      Khoảng biến thiên của mẫu số liệu trên là:

      A. \(10\). B. \(13\). C. \(12\). D. \(14\).

      Phương pháp

      Trong một mẫu số liệu, khoảng biến thiên là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đó.

      Ta có thể tính khoảng bến thiên R của mẫu số liệu theo công thức \(R = {x_{\max }} - {x_{\min }}\), trong đó \({x_{\max }}\) là giá trị lớn nhất, \({x_{\min }}\)là giá trị nhỏ nhất của mẫu số liệu đó.

      Lời giải

      Chọn B

      Chiều cao thấp nhất, cao nhất tương ứng là 159; 172.

      Do đó, khoảng biến thiên là: \(R = 172 - 159 = 13\).

      Câu 16. Gieo một đồng xu cân đối và đồng chất liên tiếp \(3\) lần thì \(n(\Omega )\) là bao nhiêu?

      A. \(6\). B. \(8\). C. \(32\). D. \(16\).

      Phương pháp

      Sử dụng các quy tắc đếm

      Lời giải

      Chọn C

       \(n(\Omega ) = {2^3} = 8\).

      Câu 17. Gieo một con súc sắc. Xác suất để mặt lẻ chẵn xuất hiện là:

      A.0,2. B. 0,3. C.0,4. D.0,5.

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn D

      Không gian mẫu: \(\Omega = \left\{ {1;2;3;4;5;6} \right\} \Rightarrow n\left( \Omega \right) = 6\)

      Biến cố xuất hiện mặt chẵn: \(A = \left\{ {1;3;5} \right\} \Rightarrow n\left( A \right) = 3\)

      Suy ra \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{1}{2}\)

      Câu 18. Gieo hai con súc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc xắc bằng 5 là:

      A. \(\frac{2}{9}\). B.\(\frac{1}{6}\). C. \(\frac{1}{9}\). D. \(\frac{5}{36}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn C

      Gọi A:”tổng số chấm trên mặt xuất hiện của hai con súc xắc bằng 5”.

      \(A = \left\{ {\left( {1;4} \right),\left( {4;1} \right),\left( {2;3} \right),\left( {3;2} \right)} \right\} \Rightarrow n\left( A \right) = 4\)

      Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{{36}} = \frac{1}{9}\) 

      Câu 19. Gieo hai con xúc xắc một cách vô tư. Tính xác suất của biến cố “Các mặt xuất hiện có số chấm bằng nhau”.

      A. \(\frac{2}{9}\). B.\(\frac{1}{6}\). C. \(\frac{7}{36}\). D. \(\frac{5}{36}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn B

      Ta có: \(n(\Omega ) = 6.6 = 36\).

      Số cách xuất hiện các mặt có số chấm bằng nhau là: \(\left( {1,1} \right)\left( {2,2} \right)\left( {3,3} \right)\left( {4,4} \right)\left( {5,5} \right)\left( {6,6} \right)\)

      Vậy \(n(A) = 6 \Rightarrow P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}\)

      Câu 20. Gieo một con súc xắc cân đối và đồng chất hai lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm là

      A. \(\frac{{12}}{{36}}\).

      B. \(\frac{{11}}{{36}}\).

      C. \(\frac{6}{{36}}\).

      D. \(\frac{8}{{36}}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn B

      \(n(\Omega ) = 6.6 = 36\). Gọi \(A\):”ít nhất một lần xuất hiện mặt sáu chấm”.

      Khi đó \(\overline A \):”không có lần nào xuất hiện mặt sáu chấm”.

      Ta có\(n(\overline A ) = 5.5 = 25\). Vậy \(P(A) = 1 - P(\overline A ) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\).

      Câu 21. Cho tập hợp \(X = \left\{ {1;2;3;4;5;6;7;8;9} \right\}\). Chọn ngẫu nhiên từ \(X\) ra ba số tự nhiên. Xác suất để chọn được ba số có tích là một số chẵn là:

      A. \(P = 1 - \frac{{C_4^3}}{{C_{10}^3}}\).

      B. \(P = 1 - \frac{{C_6^3}}{{C_{10}^3}}\).

      C. \(P = 1 - \frac{{C_5^3}}{{C_9^3}}\).

      D. \(P = \frac{{C_5^3}}{{C_9^3}}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn C

      Mỗi phần tử của không gian mẫu ứng với một tổ hợp chập 3 của 9 phần tử

      Ta có: \(n\left( \Omega \right) = C_9^3\) cách chọn.

      Tích ba số là một số chẵn thì ít nhất 1 trong 3 số phải là số chẵn.

      Gọi \(A\) là biến cố: 3 số được chọn có ít nhất một số chẵn;

      \(\overline A \) là biến cố: 3 số được chọn là 3 số lẻ. Suy ra \(n\left( {\overline A } \right) = C_5^3\) cách chọn.

      Vậy xác suất để chọn được ba số có tích là một số chẵn là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{C_5^3}}{{C_9^3}}\).

      Câu 22. Trường THPT Cao Bá Quát có 23 lớp, trong đó khối 10 có 8 lớp, khối 11 có 8 lớp, khối 12 có 7 lớp, mỗi lớp có một chi đoàn, mỗi chi đoàn có một em làm bí thư. Các em bí thư đều giỏi và rất năng động nên Ban chấp hành Đoàn trường chọn ngẫu nhiên 9 em bí thư đi thi cán bộ đoàn giỏi cấp thành phố. Tính xác suất để 9 em được chọn có đủ cả ba khối?

      A. \(\frac{{7345}}{{7429}}\).

      B. \(\frac{{7012}}{{7429}}\).

      C. \(\frac{{7234}}{{7429}}\).

      D. \(\frac{{7123}}{{7429}}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn C

      Số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{23}^9 = 817190\)

      Gọi A là biến cố “9 em được chọn có đủ cả ba khối”

      \( \Rightarrow \overline A \) “9 em được chọn không có đủ ba khối”

      Vì mỗi khối số bí thư đều nhỏ hơn 9 nên có các khả năng sau:

      TH1: Chỉ có học sinh ở khối 10 và 11. Có \(C_{16}^9\) cách.

      TH2: Chỉ có học sinh ở khối 11 và 12. Có \(C_{15}^9\) cách.

      TH3: Chỉ có học sinh ở khối 10 và 12. Có \(C_{15}^9\) cách.

      Số phần tử của biến cố \(\overline A \) là: \(n\left( {\overline A } \right) = C_{16}^9 + C_{15}^9 + C_{15}^9 = 21450\)

      Xác suất của biến cố \(\overline A \) là: \(P\left( {\overline A } \right) = \frac{{21450}}{{817190}} = \frac{{195}}{{7429}}\).

      Xác suất của biến cố A là: \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{195}}{{7429}} = \frac{{7234}}{{7429}}\).

      Câu 23. Trong mặt phẳng toạ độ \(Oxy\) cho hai điểm \(A\left( { - 1;3} \right),B\left( {2; - 5} \right)\).Toạ độ của vectơ \(\overrightarrow {AB} \) là:

      A. \(\left( {3;8} \right)\)

      B. \(\left( {1; - 8} \right)\)

      C. \(\left( {3; - 8} \right)\)

      D. \(\left( {3;1} \right)\)

      Phương pháp

      Với \(A({x_A};{y_A});B({x_B};{y_B})\) thì \(\overrightarrow {AB} = \left( {({x_B} - {x_A});({y_B} - {y_A})} \right)\)

      Lời giải

      Chọn C

       \(\overrightarrow {AB} = \left( {3; - 8} \right)\)

      Câu 24. Trong mặt phẳng toạ độ \(Oxy\) cho \(\overrightarrow a = \left( {2;3} \right),\overrightarrow b = \left( {1; - 2} \right)\).Toạ độ của vectơ \(\overrightarrow u = 2\overrightarrow a + 3\overrightarrow b \) là:

      A. \(\left( {7;0} \right)\)

      B. \(\left( {7;12} \right)\)

      C. \(\left( {1;0} \right)\)

      D. \(\left( {3;1} \right)\)

      Phương pháp

      Trong mặt phẳng \(Oxy\), cho \(\vec a = \left( {{a_1}\,;\,{a_2}} \right)\); \(\vec b = \left( {{b_1}\,;\,{b_2}} \right)\). Tọa độ vectơ \(k\overrightarrow a + t\overrightarrow b = (k{a_1} + t{b_1};k{a_2} + t{b_2})\)

      Lời giải

      Chọn A

      Ta có \(\overrightarrow a = \left( {2;3} \right) \Rightarrow 2\overrightarrow a = \left( {4;6} \right)\)

      \(\overrightarrow b = \left( {1; - 2} \right) \Rightarrow 3\overrightarrow b = \left( {3; - 6} \right)\)

      Vậy \(\overrightarrow u = 2\overrightarrow a + 3\overrightarrow b = \left( {7;0} \right)\)

      Câu 25. Cho tam giác \(ABC\) với \(A\left( {2;3} \right),B\left( { - 4;5} \right),C\left( {4; - 3} \right)\). Tìm toạ độ điểm \(M\)thuộc trục \(Oy\)để \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.

      A. \(M\left( {0;\frac{1}{3}} \right)\)

      B. \(M\left( {0; - \frac{5}{3}} \right)\)

      C. \(M\left( {0;\frac{2}{3}} \right)\)

      D. \(M\left( {0;\frac{5}{3}} \right)\)

      Phương pháp

      M là hình chiếu vuông góc của \(G\) lên \(Oy\) với \(G\) là trọng tâm tam giác \(ABC\)

      Lời giải

      Chọn D

      Gọi \(G\) là trọng tâm tam giác \(ABC \Rightarrow G\left( {\frac{2}{3};\frac{5}{3}} \right)\)

      Ta có \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)

      \( \Rightarrow \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {3\overrightarrow {MG} } \right| = 3MG\)

      \( \Rightarrow \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) nhỏ nhất khi \(MG\) nhỏ nhất

      mà \(M \in Oy \Rightarrow M\) là hình chiếu vuông góc của \(G\) lên \(Oy \Rightarrow M\left( {0;\frac{5}{3}} \right)\)

      Câu 26. Vectơ nào dưới đây là một vectơ pháp tuyến của \(d:x - 2y + 2023 = 0\)?

      A.\(\overrightarrow {{n_1}} = \left( {0; - 2} \right)\).

      B. \(\overrightarrow {{n_2}} = \left( {1; - 2} \right)\).

      C. \(\overrightarrow {{n_3}} = \left( { - 2;0} \right)\).

      D. \(\overrightarrow {{n_4}} = \left( {2;1} \right)\).

      Phương pháp

      Phương trình đường thẳng \(d:ax + by + c = 0\)có VTPT là \(\overrightarrow n = (a;b).\)

      Lời giải

      Chọn B

      (d:x - 2y + 2023 = 0 \Rightarrow VTPT\overrightarrow {{n_d}} = \left( {1; - 2} \right)\)

      Câu 27. Đường thẳng \(d\) đi qua điểm \(M\left( { - 2;3} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {3;5} \right)\) có phương trình tham số là:

      A. \(d:\left\{ \begin{array}{l}x = 3 - 2t\\y = 5 + 3t\end{array} \right.\).

      B. \(d:\left\{ \begin{array}{l}x = - 2 + 3t\\y = 3 + 5t\end{array} \right.\).

      C. \(d:\left\{ \begin{array}{l}x = - 2 + 5t\\y = 3 - 3t\end{array} \right.\).

      D. \(d:\left\{ \begin{array}{l}x = 3 + 2t\\y = 5 + 3t\end{array} \right.\).

      Phương pháp

      Phương trình tham số đường thẳng \(d\) đi qua điểm \(A({x_0},{y_0})\) và có VTCP \(\overrightarrow u = \left( {a;b} \right)\)là \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\end{array} \right.\)

      Lời giải

      Chọn B

      PTTS đường thẳng \(d\) đi qua điểm \(M\left( { - 2;3} \right)\) và có VTCP \(\overrightarrow u = \left( {3;5} \right)\)là \(\left\{ \begin{array}{l}x = - 2 + 3t\\y = 3 + 5t\end{array} \right.\)

      Câu 28. Trong mặt phẳng với hệ tọa độ cho đường thẳng \({d_1}:3x + 4y - 5 = 0\)và đường thẳng \({d_2}:3x - 4y - 1 = 0\).Nêu vị trí tương đối của \({d_1}\) và \({d_2}\)

      A. Cắt nhau và không vuông góc.

      B. Vuông góc với nhau.

      C. Song song với nhau.

      D. Trùng nhau.

      Phương pháp

      Vị trí tương đối giữa hai đường thẳng

      Lời giải

      Chọn A

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 1 4

      Câu 29. Tìm tất cả các giá trị của tham số \(m\) để khoảng cách từ điểm \(A\left( {2; - 3} \right)\) đến đường thẳng \(\Delta :mx + y - m + 4 = 0\) bằng \(\sqrt 2 \).

      A. \(m = 2.\)

      B. \(m = - 1\).

      C. \(m = - \frac{1}{2}\).

      D. \(m = 1\).

      Phương pháp

      Khoảng cách từ điểm \(A({x_0},{y_0})\) đến đường thẳng \(d:ax + by + c = 0\) là \(d\left( {A,d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

      Lời giải

      Chọn D

      \(d\left( {A,\Delta } \right) = \frac{{\left| {2m - 3 - m + 4} \right|}}{{\sqrt {{m^2} + 1} }} \Leftrightarrow \frac{{\left| {m + 1} \right|}}{{\sqrt {{m^2} + 1} }} = \sqrt 2 \Leftrightarrow \left| {m + 1} \right| = \sqrt 2 .\sqrt {{m^2} + 1} \)

      \( \Leftrightarrow {m^2} + 2m + 1 = 2\left( {{m^2} + 1} \right) \Leftrightarrow {m^2} - 2m + 1 = 0 \Leftrightarrow m = 1\)

      Câu 30. Trong mặt phẳng với hệ trục tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 2x + 6y - 4 = 0\). Gọi \(I\left( {a;b} \right)\)là tâm của đường tròn \(\left( C \right)\). Tính tổng \(S = a + b\)

      A. \(S = 4\). B. \(S = 1\). C. \(S = - 2\). D. \(S = 2\).

      Phương pháp

      Phương trình đường tròn có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\,\,\left( {{a^2} + {b^2} - c > 0} \right)\). và tọa độ tâm \(I(a,b)\), bán kính \(\,R = \sqrt {{a^2} + {b^2} - c} \)

      Lời giải

      Chọn C

      Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 3} \right)\) và bán kính \(R = \sqrt {1 + 9 + 4} = \sqrt {14} \)

      \(a = 1,b = - 3 \Rightarrow S = a + b = - 2\)

      Câu 31. Trong mặt phẳng với hệ trục tọa độ \(Oxy\) cho điểm \(I\left( { - 1;2} \right)\). Viết phương trình đường tròn tâm \(I\), bán kính \(R = 3\).

      A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

      B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

      C. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

      D. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

      Phương pháp

      Phương trình đường tròn (O) có tâm I(a,b) và bán kính R là :\({(x - a)^2} + {(y - b)^2} = {R^2}\)

      Lời giải

      Chọn A

      Đường tròn có tâm \(I\left( { - 1;2} \right)\) và bán kính \(R = 3\) có phương trình là: \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

      Câu 32. Trong mặt phẳng với hệ tọa độ \(Oxy\) cho đường tròn \(\left( C \right)\) tâm \(I\left( {2;3} \right)\) tiếp xúc với đường thẳng \(\left( d \right):4x - 3y + 11 = 0\). Viết phương trình đường tròn \(\left( C \right)\).

      A. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 9\).

      B. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 4\).

      C. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 3\).

      D. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\).

      Phương pháp

      Phương trình đường tròn (O) có tâm I(a,b) và bán kính R là :\({(x - a)^2} + {(y - b)^2} = {R^2}\)

      Lời giải

      Chọn D

      Do \(\left( C \right)\) tiếp xúc với \(\left( d \right)\) nên \(\left( C \right)\) có bán kính \(R = d\left( {I,d} \right) = \frac{{\left| {4.2 - 3.3 + 11} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 2\) .

      \( \Rightarrow \left( C \right):{\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\).

      Câu 33. Trong mặt phẳng \(Oxy\) cho elip \(\left( E \right)\) có độ dài trục lớn bằng 10, độ dài tiêu cự bằng 8. Viết phương trình chính tắc của \(\left( E \right)\).

      A. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)

      B. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

      C. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)

      D. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{36}} = 1\)

      Phương pháp

      Phương trình Elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) có hai tiêu điểm \({F_1} = \left( {c\,;\,0} \right)\); \({F_2} = \left( { - c\,;\,0} \right)\) với \(c = \sqrt {{a^2} - {b^2}} \)

      Lời giải

      Chọn D

       Ta có: \(2a = 10 \Rightarrow a = 5;2c = 8 \Rightarrow c = 4\). Độ dài trục bé: \(b = \sqrt {{a^2} - {c^2}} = 3\).

      Phương trình chính tắc của Elíp là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)

      Câu 34. Trong mặt phẳng \(Oxy\), Hyperbol \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) có một tiêu điểm là điểm nào dưới đây?

      A. \(\left( { - 5;0} \right)\)

      B. \(\left( {0;\sqrt 7 } \right)\)

      C. \(\left( {\sqrt 7 ;0} \right)\)

      D. \(\left( {0;5} \right)\)

      Phương pháp

      Phương trình Hypebol \(\left( H \right):\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) có hai tiêu điểm \({F_1} = \left( {c\,;\,0} \right)\); \({F_2} = \left( { - c\,;\,0} \right)\) với \(c = \sqrt {{a^2} + {b^2}} \)

      Lời giải

      Chọn A

      Ta có: \({a^2} = 16;{b^2} = 9 \Rightarrow {c^2} = {a^2} + {b^2} = 16 + 9 = 25\)

      Vậy hai tiêu điểm của hyperbol là \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\).

      Câu 35. Cho Parabol \(\left( P \right):\)\({y^2} = 64x\) và đường thẳng \(\left( \Delta \right):4x + 3y + 46 = 0\). Tìm điểm \(M \in (P)\) sao cho khoảng cách từ \(M\) đến \(\left( \Delta \right)\)là ngắn nhất.

      A. \(M\left( {9; - 24} \right)\)

      B. \(M\left( {9;24} \right)\)

      C. \(M\left( {24;9} \right)\)

      D. \(M\left( {9;2} \right)\)

      Phương pháp

      Khoảng cách từ điểm \(A({x_0},{y_0})\) đến đường thẳng \(d:ax + by + c = 0\) là \(d\left( {A,d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

      Lời giải

      Chọn A

      Gọi \(M\left( {\frac{{{m^2}}}{{64}};m} \right) \in (P)\)

      Ta có \(d\left( {M,d} \right) = \frac{{\left| {4.\frac{{{m^2}}}{{64}} + 3m + 46} \right|}}{{\sqrt {{4^2} + {3^3}} }} = \frac{{\left| {{m^2} + 48m + 736} \right|}}{{80}} = \frac{1}{{80}}\left| {{{\left( {m + 24} \right)}^2} + 160} \right| \ge 2\)

      \( \Rightarrow Min\,\,d(M,d) = 2 \Leftrightarrow m = - 24 \Rightarrow M\left( {9; - 24} \right)\)

      II. PHẦN TỰ LUẬN (3 Điểm)

      Câu 36. (1 điểm) Bạn An đo chiều dài của một sân bóng ghi được \(250 \pm 0,2m\). Bạn Bình đo chiều cao của một cột cờ được \(15 \pm 0,1m\). Trong 2 bạn A và B, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

      Phương pháp

      Ta nói a là số gần đúng của số đúng \(\overline a \) với độ chính xác d nếu \({\Delta _a} = \left| {\overline a - a} \right| \le d\) và quy ước viết gọn là \(\overline a = a \pm d\)

      Tỉ số \({\delta _a} = \frac{{{\Delta _a}}}{{\left| a \right|}}\) được gọi là sai số tương đối của số gần đúng a.

      Lời giải:

      Phép đo của bạn An có sai số tương đối \({\delta _1} \le \frac{{0,2}}{{250}} = 0,0008 = 0,08\% \)

      Phép đo của bạn Bình có sai số tương đối \({\delta _2} \le \frac{{0,1}}{{15}} = 0,0066 = 0,66\% \)

      Như vậy phép đo của bạn An có độ chính xác cao hơn.

      Câu 37. (1 điểm) Tìm tất cả các giá trị của tham số \(m\) sao cho hai đường thẳng \({d_1}:x - y + 3 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = - 2 + \left( {m + 1} \right)t\\y = 1 - 2t\end{array} \right.\) hợp với nhau một góc \(45^\circ \).

      Phương pháp

      Sử dụng công thức tính góc giữa hai đường thẳng

      Lời giải:

       \(\left( {{d_1}} \right)\) có VTPT \(\overrightarrow {{n_1}} = \left( {1; - 1} \right)\)

      \(\left( {{d_1}} \right)\) có VTCP \(\overrightarrow {{u_2}} = \left( {m + 1; - 2} \right)\)\( \Rightarrow \)VTPT \(\overrightarrow {{n_2}} = \left( {2;m + 1} \right)\)

      \(\cos \left( {{d_1},{d_2}} \right) = \cos {45^ \circ } \Leftrightarrow \frac{{\left| {2 - m - 1} \right|}}{{\sqrt 2 .\sqrt {{{\left( {m + 1} \right)}^2} + 4} }} = \frac{1}{{\sqrt 2 }} \Leftrightarrow \frac{1}{{\sqrt 2 }} = \frac{{\left| {1 - m} \right|}}{{\sqrt 2 .\sqrt {{m^2} + 2m + 5} }}\)

      \( \Leftrightarrow {m^2} + 2m + 5 = 1 - 2m + {m^2} \Leftrightarrow m = - 1\)

      Câu 38. (0,5 điểm) Cho đa giác đều \({A_1}{A_2}...{A_{2n}}\) nội tiếp trong đường tròn tâm \(O\). Biết rằng số tam giác có đỉnh là \(3\) trong \(2n\) điểm \({A_1};\,{A_2};\,...;\,{A_{2n}}\) gấp \(20\) lần so với số hình chữ nhật có đỉnh là \(4\) trong \(2n\) điểm \({A_1};\,{A_2};\,...;\,{A_{2n}}\). Tìm \(n\)?

      Phương pháp

      Sử dụng các quy tắc đếm

      Lời giải:

      Số tam giác có 3 đỉnh là \(3\) trong \(2n\) điểm \({A_1};{A_2};...;{A_{2n}}\) là \(C_{2n}^3\).

      Ứng với hai đường chéo đi qua tâm của đa giác \({A_1}{A_2}...{A_{2n}}\)cho tương ứng một hình chữ nhật có 4 đỉnh

      là \(4\) điểm trong \(2n\) điểm \({A_1};{A_2};...;{A_{2n}}\)và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra \(2\) đường chéo đi qua tâm\(O\) của đa giác.

      Mà số đường chéo đi qua tâm của đa giác đều \(2n\) đỉnh là \(n\) nên số hình chữ nhật có đỉnh là \(4\) trong \(2n\) điểm là \(C_n^2\)

      Theo đề bài ta có: \(C_{2n}^3 = 20C_n^2 \Leftrightarrow \frac{{2n\left( {2n - 1} \right)\left( {2n - 2} \right)}}{{3!}} = \frac{{20n\left( {n - 1} \right)}}{2} \Leftrightarrow n = 8\).

      Câu 39. (0,5 điểm) Trong mặt phẳng với hệ toạ độ \(Oxy\), cho điểm \(M\left( {3;1} \right)\). Viết phương trình đường thẳng \(d\) đi qua \(M\) cắt các tia \(Ox,Oy\) tại \(A\) và \(B\) sao cho \(\left( {OA + 3OB} \right)\) nhỏ nhất.

      Phương pháp

      PT đường thẳng \(d\) cắt tia \(Ox\) tại \(A\left( {a;0} \right)\), tia \(Oy\) tại \(B\left( {0;b} \right)\) có dạng: \(\frac{x}{a} + \frac{y}{b} = 1\)\(\left( {a,b > 0} \right)\)

      Lời giải:

      PT đường thẳng \(d\) cắt tia \(Ox\) tại \(A\left( {a;0} \right)\), tia \(Oy\) tại \(B\left( {0;b} \right)\) có dạng: \(\frac{x}{a} + \frac{y}{b} = 1\)\(\left( {a,b > 0} \right)\)

      \(M\left( {3;1} \right) \in d\) nên \(\frac{3}{a} + \frac{1}{b} = 1\).

      Mà \(1 = \frac{3}{a} + \frac{1}{b}\mathop \ge \limits^{Cô-si} 2\sqrt {\frac{3}{a}.\frac{1}{b}} \Rightarrow ab \ge 12\)

      Mà \(OA + 3OB = a + 3b \ge 2\sqrt {3ab} = 12\) \( \Rightarrow Min\left( {OA + 3OB} \right) = 12 \Leftrightarrow \left\{ \begin{array}{l}a = 3b\\\frac{3}{a} = \frac{1}{b} = \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 2\end{array} \right.\)

      Vậy phương trình đường thẳng \(d\) là: \(\frac{x}{6} + \frac{y}{2} = 1 \Leftrightarrow x + 3y - 6 = 0\)

      ------------------------------------------------

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      I. PHẦN TRẮC NGHIỆM (7 Điểm)

      Câu 1. Lớp 10A có 20 bạn nữ và 18 bạn nam. Hỏi có bao nhiêu cách chọn một học sinh làm lớp trưởng?

      A. \(38\) cách. B. \(20\)cách. C. \(18\) cách. D. \(360\).

      Câu 2. Mã khoá số của chiếc Vali du lịch là một dãy số gồm ba chữ số. Mỗi chữ số có thể là một chữ số bất kì từ 0 đến 9. Hỏi có thể có bao nhiêu mã mở khoá khác nhau?

      A. \({10^3}\). B. \(720.\) C. \(900.\) D. \(30.\)

      Câu 3. Trong kì thi THPT Quốc gia năm 2022 tại một điểm thi có \(5\) sinh viên tình nguyện được phân công trực hướng dẫn thi sinh ở \(5\)vị trí khác nhau. Yêu cầu mỗi vị trí có đúng \(1\) sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 sinh viên đó?

      A.\(625\). B.\(3125\). C.\(120\). D.\(80\).

      Câu 4. Có thể tạo thành bao nhiêu véc-tơ khác vectơ không từ hai mươi điểm phân biệt trên mặt phẳng?

      A. \(20!\) B. \(C_{20}^2\) C. \(20\) D. \(A_{20}^2\)

      Câu 5. Một hộp đựng \(8\) quả cầu trắng và \(5\) quả cầu đỏ. Lấy ngẫu nhiên \(5\) quả. Có bao nhiêu cách để lấy ra được \(3\) quả đỏ?

      A. \(40\). B. \(13\). C. \(38\). D. \(280\).

      Câu 6. Một đề kiểm tra trắc nghiệm có 10 câu hỏi, mỗi câu hỏi chỉ có 1 đáp án đúng trong 4 đáp án. Giả sử các đáp án được chọn ngẫu nhiên. Số khả năng để bạn Uyên làm đúng 5 câu trong 10 câu hỏi của đề thi đó là:

      A. \(C_{10}^5\). B. \(A_{10}^5\). C. \({3^5}.C_{10}^5\). D. \(5.C_{10}^5\).

      Câu 7. Viết khai triển theo công thức nhị thức Niu-tơn của biểu thức \({\left( {x + 2} \right)^5}\). 

      A. \({x^5} + 10{x^4} + 40{x^3} + 80{x^2} + 80x + 32\).

      B. \({x^5} - 10{x^4} + 40{x^3} - 80{x^2} + 80x - 32\).

      C. \({x^5} - 10{x^4} - 40{x^3} - 80{x^2} - 80x + 32\).

      D. \({x^5} + 10{x^4} - 40{x^3} + 80{x^2} - 80x + 32\).

      Câu 8. Hệ số của \({x^3}\) trong khai triển biểu thức \({\left( {1 - 3x} \right)^8}\) là:

      A. \(1512\). B.\( - 1512\). C.\(56\). D. \(1215\).

      Câu 9. Tìm tổng \(T = C_n^1 + 3C_n^2 + {3^2}C_n^3 + ... + {3^{n - 1}}C_n^n\)

      A. \({4^n}\). B. \({4^n} + 1\). C. \({4^n} - 1\). D. \(\frac{{{4^n} - 1}}{3}\).

      Câu 10. Cho số gần đúng \(a = 23748023\) với độ chính xác \(d = 101\). Hãy viết số quy tròn của số a

      A. \(23749000\). B. \(23748000\). C. \(23746000.\) D. \(23747000\).

      Câu 11. Điểm trung bình thi học kỳ II môn Toán của một nhóm gồm \(N\) học sinh lớp 12A6 là \(8,1\). Biết rằng tổng điểm môn toán của nhóm này là \(72,9\). Tìm số học sinh của nhóm.

      A. \(20\). B. \(9\). C. \(8\). D. \(15\).

      Câu 12. Thống kê điểm kiểm tra \(15'\) môn Toán của lớp 10A1 trường THPT Chu Văn An được ghi lại như sau:

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 1

      Số trung vị của mẫu số liệu trên là

      A. \(8\). B. \(6\). C. \(7\). D. \(9\).

      Câu 13. Theo kết quả thống kê điểm thi học kỳ 1 môn toán khối 10 của trường THPT Chu Văn An, người ta tính được phương sai của bảng thống kê đó là \(s_x^2 = 0,679\). Độ lệch chuẩn của bảng thống kê đó bằng:

      A. \(0,812\). B. \(0,824\). C. \(0,936\). D. \(0,657\).

      Câu 14. Tính phương sai của dãy số liệu: \(1,3,3,5,7,9,10,11,11,11.\)

      A. \(\frac{{71}}{{10}}\).

      B. \(\frac{{1329}}{{10}}\).

      C. \(\frac{{710}}{{10}}\).

      D. \(\frac{{1329}}{{100}}\).

      Câu 15. Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:

      163 159 172 167 165 168 170 161.

      Khoảng biến thiên của mẫu số liệu trên là:

      A. \(10\). B. \(13\). C. \(12\). D. \(14\).

      Câu 16. Gieo một đồng xu cân đối và đồng chất liên tiếp \(3\) lần thì \(n(\Omega )\) là bao nhiêu?

      A. \(6\). B. \(8\). C. \(32\). D. \(16\).

      Câu 17. Gieo một con súc sắc. Xác suất để mặt lẻ chẵn xuất hiện là:

      A.0,2 B. 0,3 C.0,4. D. 0,5

      Câu 18. Gieo hai con súc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc xắc bằng 5 là:

      A. \(\frac{2}{9}\). B.\(\frac{1}{6}\). C. \(\frac{1}{9}\). D. \(\frac{5}{36}\).

      Câu 19. Gieo hai con xúc xắc một cách vô tư. Tính xác suất của biến cố “Các mặt xuất hiện có số chấm bằng nhau”.

      A. \(\frac{2}{9}\). B.\(\frac{1}{6}\). C. \(\frac{1}{9}\). D. \(\frac{5}{36}\).

      Câu 20. Gieo một con súc xắc cân đối và đồng chất hai lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm là

      A. \(\frac{{12}}{{36}}\). B. \(\frac{{11}}{{36}}\). C. \(\frac{6}{{36}}\). D. \(\frac{8}{{36}}\).

      Câu 21. Cho tập hợp \(X = \left\{ {1;2;3;4;5;6;7;8;9} \right\}\). Chọn ngẫu nhiên từ \(X\) ra ba số tự nhiên. Xác suất để chọn được ba số có tích là một số chẵn là:

      A. \(P = 1 - \frac{{C_4^3}}{{C_{10}^3}}\).

      B. \(P = 1 - \frac{{C_6^3}}{{C_{10}^3}}\).

      C. \(P = 1 - \frac{{C_5^3}}{{C_9^3}}\).

      D. \(P = \frac{{C_5^3}}{{C_9^3}}\).

      Câu 22. Trường THPT Cao Bá Quát có 23 lớp, trong đó khối 10 có 8 lớp, khối 11 có 8 lớp, khối 12 có 7 lớp, mỗi lớp có một chi đoàn, mỗi chi đoàn có một em làm bí thư. Các em bí thư đều giỏi và rất năng động nên Ban chấp hành Đoàn trường chọn ngẫu nhiên 9 em bí thư đi thi cán bộ đoàn giỏi cấp thành phố. Tính xác suất để 9 em được chọn có đủ cả ba khối?

      A. \(\frac{{7345}}{{7429}}\).

      B. \(\frac{{7012}}{{7429}}\).

      C. \(\frac{{7234}}{{7429}}\).

      D. \(\frac{{7123}}{{7429}}\).

      Câu 23. Trong mặt phẳng toạ độ \(Oxy\) cho hai điểm \(A\left( { - 1;3} \right),B\left( {2; - 5} \right)\).Toạ độ của vectơ \(\overrightarrow {AB} \) là:

      A. \(\left( {3;8} \right)\)

      B. \(\left( {1; - 8} \right)\)

      C. \(\left( {3; - 8} \right)\)

      D. \(\left( {3;1} \right)\)

      Câu 24. Trong mặt phẳng toạ độ \(Oxy\) cho \(\overrightarrow a = \left( {2;3} \right),\overrightarrow b = \left( {1; - 2} \right)\).Toạ độ của vectơ \(\overrightarrow u = 2\overrightarrow a + 3\overrightarrow b \) là:

      A. \(\left( {7;0} \right)\)

      B. \(\left( {7;12} \right)\)

      C. \(\left( {1;0} \right)\)

      D. \(\left( {3;1} \right)\)

      Câu 25. Cho tam giác \(ABC\) với \(A\left( {2;3} \right),B\left( { - 4;5} \right),C\left( {4; - 3} \right)\). Tìm toạ độ điểm \(M\)thuộc trục \(Oy\)để \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.

      A. \(M\left( {0;\frac{1}{3}} \right)\)

      B. \(M\left( {0; - \frac{5}{3}} \right)\)

      C. \(M\left( {0;\frac{2}{3}} \right)\)

      D. \(M\left( {0;\frac{5}{3}} \right)\)

      Câu 26. Vectơ nào dưới đây là một vectơ pháp tuyến của \(d:x - 2y + 2023 = 0\)?

      A.\(\overrightarrow {{n_1}} = \left( {0; - 2} \right)\).

      B. \(\overrightarrow {{n_2}} = \left( {1; - 2} \right)\).

      C. \(\overrightarrow {{n_3}} = \left( { - 2;0} \right)\).

      D. \(\overrightarrow {{n_4}} = \left( {2;1} \right)\).

      Câu 27. Đường thẳng \(d\) đi qua điểm \(M\left( { - 2;3} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {3;5} \right)\) có phương trình tham số là:

      A. \(d:\left\{ \begin{array}{l}x = 3 - 2t\\y = 5 + 3t\end{array} \right.\).

      B. \(d:\left\{ \begin{array}{l}x = - 2 + 3t\\y = 3 + 5t\end{array} \right.\).

      C. \(d:\left\{ \begin{array}{l}x = - 2 + 5t\\y = 3 - 3t\end{array} \right.\).

      D. \(d:\left\{ \begin{array}{l}x = 3 + 2t\\y = 5 + 3t\end{array} \right.\).

      Câu 28. Trong mặt phẳng với hệ tọa độ cho đường thẳng \({d_1}:3x + 4y - 5 = 0\)và đường thẳng \({d_2}:3x - 4y - 1 = 0\).Nêu vị trí tương đối của \({d_1}\) và \({d_2}\)

      A. Cắt nhau và không vuông góc.

      B. Vuông góc với nhau.

      C. Song song với nhau.

      D. Trùng nhau.

      Câu 29. Tìm tất cả các giá trị của tham số \(m\) để khoảng cách từ điểm \(A\left( {2; - 3} \right)\) đến đường thẳng \(\Delta :mx + y - m + 4 = 0\) bằng \(\sqrt 2 \).

      A. \(m = 2.\) B. \(m = - 1\). C. \(m = - \frac{1}{2}\). D. \(m = 1\).

      Câu 30. Trong mặt phẳng với hệ trục tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 2x + 6y - 4 = 0\). Gọi \(I\left( {a;b} \right)\)là tâm của đường tròn \(\left( C \right)\). Tính tổng \(S = a + b\)

      A. \(S = 4\). B. \(S = 1\). C. \(S = - 2\). D. \(S = 2\).

      Câu 31. Trong mặt phẳng với hệ trục tọa độ \(Oxy\) cho điểm \(I\left( { - 1;2} \right)\). Viết phương trình đường tròn tâm \(I\), bán kính \(R = 3\).

      A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

      B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

      C. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

      D. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

      Câu 32. Trong mặt phẳng với hệ tọa độ \(Oxy\) cho đường tròn \(\left( C \right)\) tâm \(I\left( {2;3} \right)\) tiếp xúc với đường thẳng \(\left( d \right):4x - 3y + 11 = 0\). Viết phương trình đường tròn \(\left( C \right)\).

      A. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 9\).

      B. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 4\).

      C. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 3\).

      D. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\).

      Câu 33. Trong mặt phẳng \(Oxy\) cho elip \(\left( E \right)\) có độ dài trục lớn bằng 10, độ dài tiêu cự bằng 8. Viết phương trình chính tắc của \(\left( E \right)\).

      A. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)

      B. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

      C. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)

      D. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{36}} = 1\)

      Câu 34. Trong mặt phẳng \(Oxy\), Hyperbol \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) có một tiêu điểm là điểm nào dưới đây?

      A. \(\left( { - 5;0} \right)\)

      B. \(\left( {0;\sqrt 7 } \right)\)

      C. \(\left( {\sqrt 7 ;0} \right)\)

      D. \(\left( {0;5} \right)\)

      Câu 35. Cho Parabol \(\left( P \right):\)\({y^2} = 64x\) và đường thẳng \(\left( \Delta \right):4x + 3y + 46 = 0\). Tìm điểm \(M \in (P)\) sao cho khoảng cách từ \(M\) đến \(\left( \Delta \right)\)là ngắn nhất.

      A. \(M\left( {9; - 24} \right)\)

      B. \(M\left( {9;24} \right)\)

      C. \(M\left( {24;9} \right)\)

      D. \(M\left( {9;2} \right)\)

      II. PHẦN TỰ LUẬN (3 Điểm)

      Câu 36. (1 điểm) Bạn An đo chiều dài của một sân bóng ghi được \(250 \pm 0,2m\). Bạn Bình đo chiều cao của một cột cờ được \(15 \pm 0,1m\). Trong 2 bạn A và B, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

      Câu 37. (1 điểm) Tìm tất cả các giá trị của tham số \(m\) sao cho hai đường thẳng \({d_1}:x - y + 3 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = - 2 + \left( {m + 1} \right)t\\y = 1 - 2t\end{array} \right.\) hợp với nhau một góc \(45^\circ \).

      Câu 38. (0,5 điểm) Cho đa giác đều \({A_1}{A_2}...{A_{2n}}\) nội tiếp trong đường tròn tâm \(O\). Biết rằng số tam giác có đỉnh là \(3\) trong \(2n\) điểm \({A_1};\,{A_2};\,...;\,{A_{2n}}\) gấp \(20\) lần so với số hình chữ nhật có đỉnh là \(4\) trong \(2n\) điểm \({A_1};\,{A_2};\,...;\,{A_{2n}}\). Tìm \(n\)?

      Câu 39. (0,5 điểm) Trong mặt phẳng với hệ toạ độ \(Oxy\), cho điểm \(M\left( {3;1} \right)\). Viết phương trình đường thẳng \(d\) đi qua \(M\) cắt các tia \(Ox,Oy\) tại \(A\) và \(B\) sao cho \(\left( {OA + 3OB} \right)\) nhỏ nhất.

      -----------------------------------------------------

      HƯỚNG DẪN GIẢI CHI TIẾT

      THỰC HIỆN: BAN CHYÊN MÔN

      I. PHẦN TRẮC NGHIỆM (35 câu - 7,0 điểm).

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 2

      Câu 1. Lớp 10A có 20 bạn nữ và 18 bạn nam. Hỏi có bao nhiêu cách chọn một học sinh làm lớp trưởng?

      A. \(38\) cách. B. \(20\)cách. C. \(18\) cách. D. \(360\).

      Phương pháp

      Áp dụng quy tắc cộng

      Lời giải:

      ChọnA

      Chọn một học sinh trong số 20 hs nữ và 18 học sinh nam có: \(20 + 18 = 38\) cách.

      Câu 2. Mã khoá số của chiếc Vali du lịch là một dãy số gồm ba chữ số. Mỗi chữ số có thể là một chữ số bất kì từ 0 đến 9. Hỏi có thể có bao nhiêu mã mở khoá khác nhau?

      A. \({10^3}\). B. \(720.\) C. \(900.\) D. \(30.\)

      Phương pháp

      Áp dụng quy tắc nhân

      Lời giải:

      ChọnA

      Chữ số thứ nhất có 10 cách chọn

      Chữ số thứ hai có 10 cách chọn

      Chữ số thứ ba có 10 cách chọn

      Vậy có: \(10.10.10 = {10^3}\) (mã).

      Câu 3. Trong kì thi THPT Quốc gia năm 2022 tại một điểm thi có \(5\) sinh viên tình nguyện được phân công trực hướng dẫn thi sinh ở \(5\)vị trí khác nhau. Yêu cầu mỗi vị trí có đúng \(1\) sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 sinh viên đó?

      A.\(625\). B.\(3125\). C.\(120\). D.\(80\).

      Phương pháp

      Áp dụng công thức hoán vị

      Lời giải:

      Chọn C

      Mỗi cách phân công \(5\) sinh viên trực ở \(5\)vị trí khác nhau là\(1\) hoán vị của\(5\)phần tử.

      Vậy có tất cả là \(5! = 120\).

      Câu 4. Có thể tạo thành bao nhiêu véc-tơ khác vectơ không từ hai mươi điểm phân biệt trên mặt phẳng?

      A. \(20!\) B. \(C_{20}^2\) C. \(20\) D. \(A_{20}^2\)

      Phương pháp

      Áp dụng công thức chỉnh hợp

      Lời giải:

      Chọn D

      Mỗi vectơ khác vectơ không được tạo thành bằng cách lấy hai điểm từ hai mươi điểm đã cho và phân biệt thứ tự điểm đầu và điểm cuối. Như vậy, mỗi vectơ là một chỉnh hợp chập 2 của 20. Vậy số các vectơ tạo thành là: \(A_{20}^2\).

      Câu 5. Một hộp đựng \(8\) quả cầu trắng và \(5\) quả cầu đỏ. Lấy ngẫu nhiên \(5\) quả. Có bao nhiêu cách để lấy ra được \(3\) quả đỏ?

      A. \(40\). B. \(13\). C. \(38\). D. \(280\).

      Phương pháp

      Áp dụng công thức tổ hợp

      Lời giải:

      Chọn D

      Lấy \(5\) quả gồm \(3\) quả đỏ và \(2\) quả trắng,

      Với \(5\) quả cầu đỏ lấy \(3\) quả, ta có \(C_5^3\) cách.

      Với \(8\) quả cầu trắng lấy \(2\) quả, ta có \(C_8^2\) cách.

      Vậy có \(C_5^3.C_8^2 = 280\) cách.

      Câu 6. Một đề kiểm tra trắc nghiệm có 10 câu hỏi, mỗi câu hỏi chỉ có 1 đáp án đúng trong 4 đáp án. Giả sử các đáp án được chọn ngẫu nhiên. Số khả năng để bạn Uyên làm đúng 5 câu trong 10 câu hỏi của đề thi đó là:

      A. \(C_{10}^5\). B. \(A_{10}^5\). C. \({3^5}.C_{10}^5\). D. \(5.C_{10}^5\).

      Phương pháp

      Áp dụng công thức tổ hợp

      Lời giải:

      Chọn C

      Mỗi cách chọn 5 câu làm đúng trong 10 câu là một tổ hợp chập 5 của 10 phần tử nên có \(C_{10}^5\)

      Vì 5 câu còn lại làm sai, mỗi câu có 3 đáp án sai nên có \(3.3.3.3.3 = {3^5}\)

      Vậy có \({3^5}.C_{10}^5\)

      Câu 7. Viết khai triển theo công thức nhị thức Niu-tơn của biểu thức \({\left( {x + 2} \right)^5}\). 

      A. \({x^5} + 10{x^4} + 40{x^3} + 80{x^2} + 80x + 32\).

      B. \({x^5} - 10{x^4} + 40{x^3} - 80{x^2} + 80x - 32\).

      C. \({x^5} - 10{x^4} - 40{x^3} - 80{x^2} - 80x + 32\).

      D. \({x^5} + 10{x^4} - 40{x^3} + 80{x^2} - 80x + 32\).

      Phương pháp

      Áp dụng công thức nhị thức Newton

      Lời giải:

      Chọn A

      \({\left( {x + 2} \right)^5} = {x^5} + 10{x^4} + 40{x^3} + 80{x^2} + 80x + 32\)

      Câu 8. Hệ số của \({x^3}\) trong khai triển biểu thức \({\left( {1 - 3x} \right)^8}\) là:

      A. \(1512\). B.\( - 1512\). C.\(56\). D. \(1215\).

      Phương pháp

      Áp dụng công thức nhị thức Newton

      Lời giải:

      Chọn B

      Ta có \({\left( {1 - 3x} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k} {\left( { - 3} \right)^k}{x^k}\).

      \( \Rightarrow \) Hệ số của \({x^3}\) là \(C_8^3{\left( { - 3} \right)^3} = - 1512\).

      Câu 9. Tìm tổng \(T = C_n^1 + 3C_n^2 + {3^2}C_n^3 + ... + {3^{n - 1}}C_n^n\)

      A. \({4^n}\).

      B. \({4^n} + 1\).

      C. \({4^n} - 1\).

      D. \(\frac{{{4^n} - 1}}{3}\).

      Phương pháp

      Áp dụng công thức nhị thức Newton

      Lời giải:

      Chọn D

      Xét khai triển \({\left( {1 + x} \right)^n} = C_n^0 + xC_n^1 + {x^2}C_n^2 + {x^3}C_n^3 + ... + {x^n}C_n^n\)

      Cho \(x = 3\) ta có: \({4^n} = C_n^0 + 3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^n\)

      \( \Rightarrow {4^n} - C_n^0 = 3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^n\)

      \( \Leftrightarrow {4^n} - 1 = 3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^n\)

      \( \Leftrightarrow \frac{{{4^n} - 1}}{3} = C_n^1 + 3C_n^2 + {3^2}C_n^3 + ... + {3^{n - 1}}C_n^n\)

      \( \Rightarrow T = \frac{{{4^n} - 1}}{3}\)

      Câu 10. Cho số gần đúng \(a = 23748023\) với độ chính xác \(d = 101\). Hãy viết số quy tròn của số a

      A. \(23749000\). B. \(23748000\). C. \(23746000.\) D. \(23747000\).

      Phương pháp

      Khi thay số đúng bởi số quy tròn đến một hàng nào đó thì sai số tuyệt đối của số quy tròn không vượt quá nửa đơn vị của hàng quy tròn. Như vậy, độ chính sác của số quy tròn bằng nửa đơn vị của hàng quy tròn.

      Lời giải:

      Chọn B

      Số quy tròn của số \(a = 23748023\) là \(23748000\)

      Câu 11. Điểm trung bình thi học kỳ II môn Toán của một nhóm gồm \(N\) học sinh lớp 12A6 là \(8,1\). Biết rằng tổng điểm môn toán của nhóm này là \(72,9\). Tìm số học sinh của nhóm.

      A. \(20\). B. \(9\). C. \(8\). D. \(15\).

      Phương pháp

      Số trung bình cộng \(\overline x \) của mẫu số liệu \({x_1},{x_2},...,{x_n}\) là:

      \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}.\)

      Lời giải:

      Chọn B

      Ta có giá giá trị \(N = \frac{{72,9}}{{8,1}} = 9\) (học sinh).

      Câu 12. Thống kê điểm kiểm tra \(15'\) môn Toán của lớp 10A1 trường THPT Chu Văn An được ghi lại như sau:

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 3

      Số trung vị của mẫu số liệu trên là

      A. \(8\). B. \(6\). C. \(7\). D. \(9\).

      Phương pháp

      Sắp thứ tự mẫu số liệu gồm n số liệu thành một dãy không giảm ( hoặc không tăng).

      - Nếu n là lẻ thì số liệu đứng ở vị trí thứ \(\frac{{n + 1}}{2}\) ( số đứng chính giữa) gọi là trung vị

      - Nếu n là chẵn thì số trung bình cộng của hai số liệu đứng ở vị trí thứ \(\frac{n}{2}\) và \(\frac{n}{2} + 1\) gọi là trung vị

      Lời giải

      Chọn C

      Các số liệu đã được xếp theo thức tự tăng dần.

      Tổng số có 35 số liệu nên số trung vị là giá trị ở vị trí 18.

      Vậy số trung vị là 7.

      Câu 13. Theo kết quả thống kê điểm thi học kỳ 1 môn toán khối 10 của trường THPT Chu Văn An, người ta tính được phương sai của bảng thống kê đó là \(s_x^2 = 0,679\). Độ lệch chuẩn của bảng thống kê đó bằng:

      A. \(0,812\). B. \(0,824\). C. \(0,936\). D. \(0,657\).

      Phương pháp

      Căn bậc hai của phương sai gọi là Độ lệch chuẩn của mẫu số liệu thống kê

      Lời giải

      Chọn B

      Ta có công thức tính độ lệch chuẩn là \({s_x} = \sqrt {s_x^2} = \sqrt {0,679} \approx 0,824\).

      Câu 14. Tính phương sai của dãy số liệu: \(1,3,3,5,7,9,10,11,11,11.\)

      A. \(\frac{{71}}{{10}}\).

      B. \(\frac{{1329}}{{10}}\).

      C. \(\frac{{710}}{{10}}\).

      D. \(\frac{{1329}}{{100}}\).

      Phương sai

      Cho mẫu số liêu thống kê có n giá trị \({x_1},{x_2},...,{x_n}\) và số trung bình cộng \(\overline x \).

      Ta gọi số \({s^2} = \frac{{{{({x_1} - \overline x )}^2} + {{({x_2} - \overline x )}^2} + ... + {{({x_n} - \overline x )}^2}}}{n}\) là phương sai của mẫu số liệu

      Lời giải

      Chọn D

      Bảng phân bố tần số của dãy số liệu:

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 4

      Ta có \(\overline x = \frac{1}{{10}}\left( {1.1 + 3.2 + 5.1 + 7.1 + 9.1 + 10.1 + 11.3} \right) = \frac{{71}}{{10}}\).

      Phương sai là:

      \({S^2} = \frac{1}{{10}}\left[ {1.{{\left( {1 - \frac{{71}}{{10}}} \right)}^2} + 2.{{\left( {3 - \frac{{71}}{{10}}} \right)}^2} + 1.{{\left( {5 - \frac{{71}}{{10}}} \right)}^2} + 1.{{\left( {7 - \frac{{71}}{{10}}} \right)}^2} + 1.{{\left( {9 - \frac{{71}}{{10}}} \right)}^2} + 1.{{\left( {10 - \frac{{71}}{{10}}} \right)}^2}} \right.\)

      \(\left. { + 3.{{\left( {11 - \frac{{71}}{{10}}} \right)}^2}} \right] = 13,29\)

      Câu 15. Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:

      163 159 172 167 165 168 170 161.

      Khoảng biến thiên của mẫu số liệu trên là:

      A. \(10\). B. \(13\). C. \(12\). D. \(14\).

      Phương pháp

      Trong một mẫu số liệu, khoảng biến thiên là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đó.

      Ta có thể tính khoảng bến thiên R của mẫu số liệu theo công thức \(R = {x_{\max }} - {x_{\min }}\), trong đó \({x_{\max }}\) là giá trị lớn nhất, \({x_{\min }}\)là giá trị nhỏ nhất của mẫu số liệu đó.

      Lời giải

      Chọn B

      Chiều cao thấp nhất, cao nhất tương ứng là 159; 172.

      Do đó, khoảng biến thiên là: \(R = 172 - 159 = 13\).

      Câu 16. Gieo một đồng xu cân đối và đồng chất liên tiếp \(3\) lần thì \(n(\Omega )\) là bao nhiêu?

      A. \(6\). B. \(8\). C. \(32\). D. \(16\).

      Phương pháp

      Sử dụng các quy tắc đếm

      Lời giải

      Chọn C

       \(n(\Omega ) = {2^3} = 8\).

      Câu 17. Gieo một con súc sắc. Xác suất để mặt lẻ chẵn xuất hiện là:

      A.0,2. B. 0,3. C.0,4. D.0,5.

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn D

      Không gian mẫu: \(\Omega = \left\{ {1;2;3;4;5;6} \right\} \Rightarrow n\left( \Omega \right) = 6\)

      Biến cố xuất hiện mặt chẵn: \(A = \left\{ {1;3;5} \right\} \Rightarrow n\left( A \right) = 3\)

      Suy ra \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{1}{2}\)

      Câu 18. Gieo hai con súc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc xắc bằng 5 là:

      A. \(\frac{2}{9}\). B.\(\frac{1}{6}\). C. \(\frac{1}{9}\). D. \(\frac{5}{36}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn C

      Gọi A:”tổng số chấm trên mặt xuất hiện của hai con súc xắc bằng 5”.

      \(A = \left\{ {\left( {1;4} \right),\left( {4;1} \right),\left( {2;3} \right),\left( {3;2} \right)} \right\} \Rightarrow n\left( A \right) = 4\)

      Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{{36}} = \frac{1}{9}\) 

      Câu 19. Gieo hai con xúc xắc một cách vô tư. Tính xác suất của biến cố “Các mặt xuất hiện có số chấm bằng nhau”.

      A. \(\frac{2}{9}\). B.\(\frac{1}{6}\). C. \(\frac{7}{36}\). D. \(\frac{5}{36}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn B

      Ta có: \(n(\Omega ) = 6.6 = 36\).

      Số cách xuất hiện các mặt có số chấm bằng nhau là: \(\left( {1,1} \right)\left( {2,2} \right)\left( {3,3} \right)\left( {4,4} \right)\left( {5,5} \right)\left( {6,6} \right)\)

      Vậy \(n(A) = 6 \Rightarrow P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}\)

      Câu 20. Gieo một con súc xắc cân đối và đồng chất hai lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm là

      A. \(\frac{{12}}{{36}}\).

      B. \(\frac{{11}}{{36}}\).

      C. \(\frac{6}{{36}}\).

      D. \(\frac{8}{{36}}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn B

      \(n(\Omega ) = 6.6 = 36\). Gọi \(A\):”ít nhất một lần xuất hiện mặt sáu chấm”.

      Khi đó \(\overline A \):”không có lần nào xuất hiện mặt sáu chấm”.

      Ta có\(n(\overline A ) = 5.5 = 25\). Vậy \(P(A) = 1 - P(\overline A ) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\).

      Câu 21. Cho tập hợp \(X = \left\{ {1;2;3;4;5;6;7;8;9} \right\}\). Chọn ngẫu nhiên từ \(X\) ra ba số tự nhiên. Xác suất để chọn được ba số có tích là một số chẵn là:

      A. \(P = 1 - \frac{{C_4^3}}{{C_{10}^3}}\).

      B. \(P = 1 - \frac{{C_6^3}}{{C_{10}^3}}\).

      C. \(P = 1 - \frac{{C_5^3}}{{C_9^3}}\).

      D. \(P = \frac{{C_5^3}}{{C_9^3}}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn C

      Mỗi phần tử của không gian mẫu ứng với một tổ hợp chập 3 của 9 phần tử

      Ta có: \(n\left( \Omega \right) = C_9^3\) cách chọn.

      Tích ba số là một số chẵn thì ít nhất 1 trong 3 số phải là số chẵn.

      Gọi \(A\) là biến cố: 3 số được chọn có ít nhất một số chẵn;

      \(\overline A \) là biến cố: 3 số được chọn là 3 số lẻ. Suy ra \(n\left( {\overline A } \right) = C_5^3\) cách chọn.

      Vậy xác suất để chọn được ba số có tích là một số chẵn là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{C_5^3}}{{C_9^3}}\).

      Câu 22. Trường THPT Cao Bá Quát có 23 lớp, trong đó khối 10 có 8 lớp, khối 11 có 8 lớp, khối 12 có 7 lớp, mỗi lớp có một chi đoàn, mỗi chi đoàn có một em làm bí thư. Các em bí thư đều giỏi và rất năng động nên Ban chấp hành Đoàn trường chọn ngẫu nhiên 9 em bí thư đi thi cán bộ đoàn giỏi cấp thành phố. Tính xác suất để 9 em được chọn có đủ cả ba khối?

      A. \(\frac{{7345}}{{7429}}\).

      B. \(\frac{{7012}}{{7429}}\).

      C. \(\frac{{7234}}{{7429}}\).

      D. \(\frac{{7123}}{{7429}}\).

      Phương pháp

      Áp dụng công thức tính xác suất

      Lời giải

      Chọn C

      Số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{23}^9 = 817190\)

      Gọi A là biến cố “9 em được chọn có đủ cả ba khối”

      \( \Rightarrow \overline A \) “9 em được chọn không có đủ ba khối”

      Vì mỗi khối số bí thư đều nhỏ hơn 9 nên có các khả năng sau:

      TH1: Chỉ có học sinh ở khối 10 và 11. Có \(C_{16}^9\) cách.

      TH2: Chỉ có học sinh ở khối 11 và 12. Có \(C_{15}^9\) cách.

      TH3: Chỉ có học sinh ở khối 10 và 12. Có \(C_{15}^9\) cách.

      Số phần tử của biến cố \(\overline A \) là: \(n\left( {\overline A } \right) = C_{16}^9 + C_{15}^9 + C_{15}^9 = 21450\)

      Xác suất của biến cố \(\overline A \) là: \(P\left( {\overline A } \right) = \frac{{21450}}{{817190}} = \frac{{195}}{{7429}}\).

      Xác suất của biến cố A là: \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{195}}{{7429}} = \frac{{7234}}{{7429}}\).

      Câu 23. Trong mặt phẳng toạ độ \(Oxy\) cho hai điểm \(A\left( { - 1;3} \right),B\left( {2; - 5} \right)\).Toạ độ của vectơ \(\overrightarrow {AB} \) là:

      A. \(\left( {3;8} \right)\)

      B. \(\left( {1; - 8} \right)\)

      C. \(\left( {3; - 8} \right)\)

      D. \(\left( {3;1} \right)\)

      Phương pháp

      Với \(A({x_A};{y_A});B({x_B};{y_B})\) thì \(\overrightarrow {AB} = \left( {({x_B} - {x_A});({y_B} - {y_A})} \right)\)

      Lời giải

      Chọn C

       \(\overrightarrow {AB} = \left( {3; - 8} \right)\)

      Câu 24. Trong mặt phẳng toạ độ \(Oxy\) cho \(\overrightarrow a = \left( {2;3} \right),\overrightarrow b = \left( {1; - 2} \right)\).Toạ độ của vectơ \(\overrightarrow u = 2\overrightarrow a + 3\overrightarrow b \) là:

      A. \(\left( {7;0} \right)\)

      B. \(\left( {7;12} \right)\)

      C. \(\left( {1;0} \right)\)

      D. \(\left( {3;1} \right)\)

      Phương pháp

      Trong mặt phẳng \(Oxy\), cho \(\vec a = \left( {{a_1}\,;\,{a_2}} \right)\); \(\vec b = \left( {{b_1}\,;\,{b_2}} \right)\). Tọa độ vectơ \(k\overrightarrow a + t\overrightarrow b = (k{a_1} + t{b_1};k{a_2} + t{b_2})\)

      Lời giải

      Chọn A

      Ta có \(\overrightarrow a = \left( {2;3} \right) \Rightarrow 2\overrightarrow a = \left( {4;6} \right)\)

      \(\overrightarrow b = \left( {1; - 2} \right) \Rightarrow 3\overrightarrow b = \left( {3; - 6} \right)\)

      Vậy \(\overrightarrow u = 2\overrightarrow a + 3\overrightarrow b = \left( {7;0} \right)\)

      Câu 25. Cho tam giác \(ABC\) với \(A\left( {2;3} \right),B\left( { - 4;5} \right),C\left( {4; - 3} \right)\). Tìm toạ độ điểm \(M\)thuộc trục \(Oy\)để \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.

      A. \(M\left( {0;\frac{1}{3}} \right)\)

      B. \(M\left( {0; - \frac{5}{3}} \right)\)

      C. \(M\left( {0;\frac{2}{3}} \right)\)

      D. \(M\left( {0;\frac{5}{3}} \right)\)

      Phương pháp

      M là hình chiếu vuông góc của \(G\) lên \(Oy\) với \(G\) là trọng tâm tam giác \(ABC\)

      Lời giải

      Chọn D

      Gọi \(G\) là trọng tâm tam giác \(ABC \Rightarrow G\left( {\frac{2}{3};\frac{5}{3}} \right)\)

      Ta có \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)

      \( \Rightarrow \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {3\overrightarrow {MG} } \right| = 3MG\)

      \( \Rightarrow \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) nhỏ nhất khi \(MG\) nhỏ nhất

      mà \(M \in Oy \Rightarrow M\) là hình chiếu vuông góc của \(G\) lên \(Oy \Rightarrow M\left( {0;\frac{5}{3}} \right)\)

      Câu 26. Vectơ nào dưới đây là một vectơ pháp tuyến của \(d:x - 2y + 2023 = 0\)?

      A.\(\overrightarrow {{n_1}} = \left( {0; - 2} \right)\).

      B. \(\overrightarrow {{n_2}} = \left( {1; - 2} \right)\).

      C. \(\overrightarrow {{n_3}} = \left( { - 2;0} \right)\).

      D. \(\overrightarrow {{n_4}} = \left( {2;1} \right)\).

      Phương pháp

      Phương trình đường thẳng \(d:ax + by + c = 0\)có VTPT là \(\overrightarrow n = (a;b).\)

      Lời giải

      Chọn B

      (d:x - 2y + 2023 = 0 \Rightarrow VTPT\overrightarrow {{n_d}} = \left( {1; - 2} \right)\)

      Câu 27. Đường thẳng \(d\) đi qua điểm \(M\left( { - 2;3} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {3;5} \right)\) có phương trình tham số là:

      A. \(d:\left\{ \begin{array}{l}x = 3 - 2t\\y = 5 + 3t\end{array} \right.\).

      B. \(d:\left\{ \begin{array}{l}x = - 2 + 3t\\y = 3 + 5t\end{array} \right.\).

      C. \(d:\left\{ \begin{array}{l}x = - 2 + 5t\\y = 3 - 3t\end{array} \right.\).

      D. \(d:\left\{ \begin{array}{l}x = 3 + 2t\\y = 5 + 3t\end{array} \right.\).

      Phương pháp

      Phương trình tham số đường thẳng \(d\) đi qua điểm \(A({x_0},{y_0})\) và có VTCP \(\overrightarrow u = \left( {a;b} \right)\)là \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\end{array} \right.\)

      Lời giải

      Chọn B

      PTTS đường thẳng \(d\) đi qua điểm \(M\left( { - 2;3} \right)\) và có VTCP \(\overrightarrow u = \left( {3;5} \right)\)là \(\left\{ \begin{array}{l}x = - 2 + 3t\\y = 3 + 5t\end{array} \right.\)

      Câu 28. Trong mặt phẳng với hệ tọa độ cho đường thẳng \({d_1}:3x + 4y - 5 = 0\)và đường thẳng \({d_2}:3x - 4y - 1 = 0\).Nêu vị trí tương đối của \({d_1}\) và \({d_2}\)

      A. Cắt nhau và không vuông góc.

      B. Vuông góc với nhau.

      C. Song song với nhau.

      D. Trùng nhau.

      Phương pháp

      Vị trí tương đối giữa hai đường thẳng

      Lời giải

      Chọn A

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều 5

      Câu 29. Tìm tất cả các giá trị của tham số \(m\) để khoảng cách từ điểm \(A\left( {2; - 3} \right)\) đến đường thẳng \(\Delta :mx + y - m + 4 = 0\) bằng \(\sqrt 2 \).

      A. \(m = 2.\)

      B. \(m = - 1\).

      C. \(m = - \frac{1}{2}\).

      D. \(m = 1\).

      Phương pháp

      Khoảng cách từ điểm \(A({x_0},{y_0})\) đến đường thẳng \(d:ax + by + c = 0\) là \(d\left( {A,d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

      Lời giải

      Chọn D

      \(d\left( {A,\Delta } \right) = \frac{{\left| {2m - 3 - m + 4} \right|}}{{\sqrt {{m^2} + 1} }} \Leftrightarrow \frac{{\left| {m + 1} \right|}}{{\sqrt {{m^2} + 1} }} = \sqrt 2 \Leftrightarrow \left| {m + 1} \right| = \sqrt 2 .\sqrt {{m^2} + 1} \)

      \( \Leftrightarrow {m^2} + 2m + 1 = 2\left( {{m^2} + 1} \right) \Leftrightarrow {m^2} - 2m + 1 = 0 \Leftrightarrow m = 1\)

      Câu 30. Trong mặt phẳng với hệ trục tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 2x + 6y - 4 = 0\). Gọi \(I\left( {a;b} \right)\)là tâm của đường tròn \(\left( C \right)\). Tính tổng \(S = a + b\)

      A. \(S = 4\). B. \(S = 1\). C. \(S = - 2\). D. \(S = 2\).

      Phương pháp

      Phương trình đường tròn có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\,\,\left( {{a^2} + {b^2} - c > 0} \right)\). và tọa độ tâm \(I(a,b)\), bán kính \(\,R = \sqrt {{a^2} + {b^2} - c} \)

      Lời giải

      Chọn C

      Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 3} \right)\) và bán kính \(R = \sqrt {1 + 9 + 4} = \sqrt {14} \)

      \(a = 1,b = - 3 \Rightarrow S = a + b = - 2\)

      Câu 31. Trong mặt phẳng với hệ trục tọa độ \(Oxy\) cho điểm \(I\left( { - 1;2} \right)\). Viết phương trình đường tròn tâm \(I\), bán kính \(R = 3\).

      A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

      B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

      C. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

      D. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

      Phương pháp

      Phương trình đường tròn (O) có tâm I(a,b) và bán kính R là :\({(x - a)^2} + {(y - b)^2} = {R^2}\)

      Lời giải

      Chọn A

      Đường tròn có tâm \(I\left( { - 1;2} \right)\) và bán kính \(R = 3\) có phương trình là: \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

      Câu 32. Trong mặt phẳng với hệ tọa độ \(Oxy\) cho đường tròn \(\left( C \right)\) tâm \(I\left( {2;3} \right)\) tiếp xúc với đường thẳng \(\left( d \right):4x - 3y + 11 = 0\). Viết phương trình đường tròn \(\left( C \right)\).

      A. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 9\).

      B. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 4\).

      C. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 3\).

      D. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\).

      Phương pháp

      Phương trình đường tròn (O) có tâm I(a,b) và bán kính R là :\({(x - a)^2} + {(y - b)^2} = {R^2}\)

      Lời giải

      Chọn D

      Do \(\left( C \right)\) tiếp xúc với \(\left( d \right)\) nên \(\left( C \right)\) có bán kính \(R = d\left( {I,d} \right) = \frac{{\left| {4.2 - 3.3 + 11} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 2\) .

      \( \Rightarrow \left( C \right):{\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\).

      Câu 33. Trong mặt phẳng \(Oxy\) cho elip \(\left( E \right)\) có độ dài trục lớn bằng 10, độ dài tiêu cự bằng 8. Viết phương trình chính tắc của \(\left( E \right)\).

      A. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)

      B. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

      C. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)

      D. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{36}} = 1\)

      Phương pháp

      Phương trình Elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) có hai tiêu điểm \({F_1} = \left( {c\,;\,0} \right)\); \({F_2} = \left( { - c\,;\,0} \right)\) với \(c = \sqrt {{a^2} - {b^2}} \)

      Lời giải

      Chọn D

       Ta có: \(2a = 10 \Rightarrow a = 5;2c = 8 \Rightarrow c = 4\). Độ dài trục bé: \(b = \sqrt {{a^2} - {c^2}} = 3\).

      Phương trình chính tắc của Elíp là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)

      Câu 34. Trong mặt phẳng \(Oxy\), Hyperbol \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) có một tiêu điểm là điểm nào dưới đây?

      A. \(\left( { - 5;0} \right)\)

      B. \(\left( {0;\sqrt 7 } \right)\)

      C. \(\left( {\sqrt 7 ;0} \right)\)

      D. \(\left( {0;5} \right)\)

      Phương pháp

      Phương trình Hypebol \(\left( H \right):\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) có hai tiêu điểm \({F_1} = \left( {c\,;\,0} \right)\); \({F_2} = \left( { - c\,;\,0} \right)\) với \(c = \sqrt {{a^2} + {b^2}} \)

      Lời giải

      Chọn A

      Ta có: \({a^2} = 16;{b^2} = 9 \Rightarrow {c^2} = {a^2} + {b^2} = 16 + 9 = 25\)

      Vậy hai tiêu điểm của hyperbol là \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\).

      Câu 35. Cho Parabol \(\left( P \right):\)\({y^2} = 64x\) và đường thẳng \(\left( \Delta \right):4x + 3y + 46 = 0\). Tìm điểm \(M \in (P)\) sao cho khoảng cách từ \(M\) đến \(\left( \Delta \right)\)là ngắn nhất.

      A. \(M\left( {9; - 24} \right)\)

      B. \(M\left( {9;24} \right)\)

      C. \(M\left( {24;9} \right)\)

      D. \(M\left( {9;2} \right)\)

      Phương pháp

      Khoảng cách từ điểm \(A({x_0},{y_0})\) đến đường thẳng \(d:ax + by + c = 0\) là \(d\left( {A,d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

      Lời giải

      Chọn A

      Gọi \(M\left( {\frac{{{m^2}}}{{64}};m} \right) \in (P)\)

      Ta có \(d\left( {M,d} \right) = \frac{{\left| {4.\frac{{{m^2}}}{{64}} + 3m + 46} \right|}}{{\sqrt {{4^2} + {3^3}} }} = \frac{{\left| {{m^2} + 48m + 736} \right|}}{{80}} = \frac{1}{{80}}\left| {{{\left( {m + 24} \right)}^2} + 160} \right| \ge 2\)

      \( \Rightarrow Min\,\,d(M,d) = 2 \Leftrightarrow m = - 24 \Rightarrow M\left( {9; - 24} \right)\)

      II. PHẦN TỰ LUẬN (3 Điểm)

      Câu 36. (1 điểm) Bạn An đo chiều dài của một sân bóng ghi được \(250 \pm 0,2m\). Bạn Bình đo chiều cao của một cột cờ được \(15 \pm 0,1m\). Trong 2 bạn A và B, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

      Phương pháp

      Ta nói a là số gần đúng của số đúng \(\overline a \) với độ chính xác d nếu \({\Delta _a} = \left| {\overline a - a} \right| \le d\) và quy ước viết gọn là \(\overline a = a \pm d\)

      Tỉ số \({\delta _a} = \frac{{{\Delta _a}}}{{\left| a \right|}}\) được gọi là sai số tương đối của số gần đúng a.

      Lời giải:

      Phép đo của bạn An có sai số tương đối \({\delta _1} \le \frac{{0,2}}{{250}} = 0,0008 = 0,08\% \)

      Phép đo của bạn Bình có sai số tương đối \({\delta _2} \le \frac{{0,1}}{{15}} = 0,0066 = 0,66\% \)

      Như vậy phép đo của bạn An có độ chính xác cao hơn.

      Câu 37. (1 điểm) Tìm tất cả các giá trị của tham số \(m\) sao cho hai đường thẳng \({d_1}:x - y + 3 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = - 2 + \left( {m + 1} \right)t\\y = 1 - 2t\end{array} \right.\) hợp với nhau một góc \(45^\circ \).

      Phương pháp

      Sử dụng công thức tính góc giữa hai đường thẳng

      Lời giải:

       \(\left( {{d_1}} \right)\) có VTPT \(\overrightarrow {{n_1}} = \left( {1; - 1} \right)\)

      \(\left( {{d_1}} \right)\) có VTCP \(\overrightarrow {{u_2}} = \left( {m + 1; - 2} \right)\)\( \Rightarrow \)VTPT \(\overrightarrow {{n_2}} = \left( {2;m + 1} \right)\)

      \(\cos \left( {{d_1},{d_2}} \right) = \cos {45^ \circ } \Leftrightarrow \frac{{\left| {2 - m - 1} \right|}}{{\sqrt 2 .\sqrt {{{\left( {m + 1} \right)}^2} + 4} }} = \frac{1}{{\sqrt 2 }} \Leftrightarrow \frac{1}{{\sqrt 2 }} = \frac{{\left| {1 - m} \right|}}{{\sqrt 2 .\sqrt {{m^2} + 2m + 5} }}\)

      \( \Leftrightarrow {m^2} + 2m + 5 = 1 - 2m + {m^2} \Leftrightarrow m = - 1\)

      Câu 38. (0,5 điểm) Cho đa giác đều \({A_1}{A_2}...{A_{2n}}\) nội tiếp trong đường tròn tâm \(O\). Biết rằng số tam giác có đỉnh là \(3\) trong \(2n\) điểm \({A_1};\,{A_2};\,...;\,{A_{2n}}\) gấp \(20\) lần so với số hình chữ nhật có đỉnh là \(4\) trong \(2n\) điểm \({A_1};\,{A_2};\,...;\,{A_{2n}}\). Tìm \(n\)?

      Phương pháp

      Sử dụng các quy tắc đếm

      Lời giải:

      Số tam giác có 3 đỉnh là \(3\) trong \(2n\) điểm \({A_1};{A_2};...;{A_{2n}}\) là \(C_{2n}^3\).

      Ứng với hai đường chéo đi qua tâm của đa giác \({A_1}{A_2}...{A_{2n}}\)cho tương ứng một hình chữ nhật có 4 đỉnh

      là \(4\) điểm trong \(2n\) điểm \({A_1};{A_2};...;{A_{2n}}\)và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra \(2\) đường chéo đi qua tâm\(O\) của đa giác.

      Mà số đường chéo đi qua tâm của đa giác đều \(2n\) đỉnh là \(n\) nên số hình chữ nhật có đỉnh là \(4\) trong \(2n\) điểm là \(C_n^2\)

      Theo đề bài ta có: \(C_{2n}^3 = 20C_n^2 \Leftrightarrow \frac{{2n\left( {2n - 1} \right)\left( {2n - 2} \right)}}{{3!}} = \frac{{20n\left( {n - 1} \right)}}{2} \Leftrightarrow n = 8\).

      Câu 39. (0,5 điểm) Trong mặt phẳng với hệ toạ độ \(Oxy\), cho điểm \(M\left( {3;1} \right)\). Viết phương trình đường thẳng \(d\) đi qua \(M\) cắt các tia \(Ox,Oy\) tại \(A\) và \(B\) sao cho \(\left( {OA + 3OB} \right)\) nhỏ nhất.

      Phương pháp

      PT đường thẳng \(d\) cắt tia \(Ox\) tại \(A\left( {a;0} \right)\), tia \(Oy\) tại \(B\left( {0;b} \right)\) có dạng: \(\frac{x}{a} + \frac{y}{b} = 1\)\(\left( {a,b > 0} \right)\)

      Lời giải:

      PT đường thẳng \(d\) cắt tia \(Ox\) tại \(A\left( {a;0} \right)\), tia \(Oy\) tại \(B\left( {0;b} \right)\) có dạng: \(\frac{x}{a} + \frac{y}{b} = 1\)\(\left( {a,b > 0} \right)\)

      \(M\left( {3;1} \right) \in d\) nên \(\frac{3}{a} + \frac{1}{b} = 1\).

      Mà \(1 = \frac{3}{a} + \frac{1}{b}\mathop \ge \limits^{Cô-si} 2\sqrt {\frac{3}{a}.\frac{1}{b}} \Rightarrow ab \ge 12\)

      Mà \(OA + 3OB = a + 3b \ge 2\sqrt {3ab} = 12\) \( \Rightarrow Min\left( {OA + 3OB} \right) = 12 \Leftrightarrow \left\{ \begin{array}{l}a = 3b\\\frac{3}{a} = \frac{1}{b} = \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 2\end{array} \right.\)

      Vậy phương trình đường thẳng \(d\) là: \(\frac{x}{6} + \frac{y}{2} = 1 \Leftrightarrow x + 3y - 6 = 0\)

      ------------------------------------------------

      Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều: Tổng quan và Hướng dẫn Giải Chi Tiết

      Đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều là một công cụ quan trọng giúp học sinh lớp 10 ôn tập và củng cố kiến thức đã học trong suốt học kì. Đề thi bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, bao phủ các chủ đề chính trong chương trình Toán 10 như hàm số, phương trình, bất phương trình, hình học phẳng và không gian.

      Cấu trúc Đề thi

      Đề thi thường được chia thành các phần sau:

      • Phần trắc nghiệm: Kiểm tra khả năng nắm vững kiến thức cơ bản và vận dụng nhanh các công thức, định lý.
      • Phần tự luận: Đòi hỏi học sinh phải trình bày lời giải chi tiết, chứng minh các kết quả và áp dụng kiến thức vào giải quyết các bài toán thực tế.

      Nội dung Đề thi

      Các chủ đề thường xuất hiện trong đề thi bao gồm:

      1. Hàm số: Hàm số bậc nhất, hàm số bậc hai, hàm số mũ, hàm số logarit.
      2. Phương trình và Bất phương trình: Phương trình bậc nhất, phương trình bậc hai, bất phương trình bậc nhất, bất phương trình bậc hai.
      3. Hình học phẳng: Vectơ, tích vô hướng, đường thẳng, đường tròn, tam giác.
      4. Hình học không gian: Đường thẳng và mặt phẳng trong không gian.

      Hướng dẫn Giải Đề thi

      Để giải đề thi hiệu quả, học sinh cần:

      • Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý, công thức và phương pháp giải các bài toán cơ bản.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
      • Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
      • Trình bày lời giải rõ ràng: Viết lời giải một cách logic, dễ hiểu và đầy đủ các bước.
      • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

      Ví dụ Bài Toán và Giải Chi Tiết

      Bài toán: Giải phương trình 2x2 - 5x + 2 = 0

      Giải:

      Phương trình 2x2 - 5x + 2 = 0 có dạng ax2 + bx + c = 0 với a = 2, b = -5, c = 2.

      Tính delta (Δ) = b2 - 4ac = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9

      Vì Δ > 0, phương trình có hai nghiệm phân biệt:

      x1 = (-b + √Δ) / 2a = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2

      x2 = (-b - √Δ) / 2a = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5

      Vậy, phương trình có hai nghiệm là x1 = 2 và x2 = 0.5

      Tầm quan trọng của việc luyện tập với Đề thi

      Việc luyện tập với đề kiểm tra học kì 2 Toán 10 - Đề số 3 - Cánh diều không chỉ giúp học sinh làm quen với cấu trúc đề thi mà còn giúp các em:

      • Đánh giá năng lực: Xác định điểm mạnh, điểm yếu của bản thân để có kế hoạch ôn tập phù hợp.
      • Rèn luyện kỹ năng: Nâng cao kỹ năng giải toán, tư duy logic và khả năng áp dụng kiến thức vào thực tế.
      • Tăng sự tự tin: Chuẩn bị tâm lý tốt cho kỳ thi sắp tới.

      Giaitoan.edu.vn: Nguồn tài liệu học tập Toán 10 uy tín

      Giaitoan.edu.vn là một website cung cấp các tài liệu học tập Toán 10 chất lượng, bao gồm:

      • Đề thi: Đề kiểm tra, đề thi thử, đề thi chính thức.
      • Bài giảng: Bài giảng chi tiết, dễ hiểu.
      • Bài tập: Bài tập luyện tập, bài tập nâng cao.
      • Giải bài tập: Giải bài tập chi tiết, dễ hiểu.

      Hãy truy cập giaitoan.edu.vn để có thêm nhiều tài liệu học tập Toán 10 hữu ích và đạt kết quả tốt nhất trong kỳ thi sắp tới!

      Tài liệu, đề thi và đáp án Toán 10