Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2

Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2

Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2, được biên soạn theo chương trình học mới nhất của Bộ Giáo dục và Đào tạo. Đề thi này là tài liệu ôn tập lý tưởng giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Đề thi bao gồm các dạng bài tập đa dạng, từ trắc nghiệm đến tự luận, bao phủ các kiến thức trọng tâm đã học trong học kì 1. Đáp án chi tiết đi kèm sẽ giúp học sinh tự đánh giá kết quả và rút kinh nghiệm.

Câu 1. Kí hiệu nào sau đây viết đúng mệnh đề: “(sqrt 2 ) không là số hữu tỉ” A. (sqrt 2 = mathbb{Q}) B. (sqrt 2 in mathbb{Q}) C. (sqrt 2 subset mathbb{Q}) D. (sqrt 2 notin mathbb{Q})

Đề bài

    I. PHẦN TRẮC NGHIỆM

    Câu 1. Kí hiệu nào sau đây viết đúng mệnh đề: “\(\sqrt 2 \) không là số hữu tỉ”

    A. \(\sqrt 2 = \mathbb{Q}\)B. \(\sqrt 2 \in \mathbb{Q}\) C. \(\sqrt 2 \subset \mathbb{Q}\) D. \(\sqrt 2 \notin \mathbb{Q}\)

    Câu 2. Trong các mệnh đề sau, mệnh đề nào đúng?

    A. \(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > - 2\). B. \(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > 2\). C. \(\forall x \in \mathbb{R},x > - 2 \Rightarrow {x^2} > 4\). D. \(\forall x \in \mathbb{R},x > 2 \Rightarrow {x^2} > 4\)

    Câu 3. Cho A là tập hợp các số tự nhiên chẵn, \(B = \{ n \in \mathbb{N}|n \le 8\} \) và \(C = \{ n \in \mathbb{N}|2 \le n \le 5\} \).

    Tìm tập hợp \(A \cap \left( {B \cap C} \right)\)

    A. \(\{ 2;4\} \) B. \(\{ 2\} \). C. \(\{ 4\} \). D. \(\emptyset \).

    Câu 4. Cho \(A = ( - 2;5]\) và \(B = (m; + \infty )\). Tìm \(m \in \mathbb{Z}\) để \(A{\rm{\backslash }}B\) chứa đúng 3 số nguyên là:

    A. \(0\). B. \(1\). C. \(2\) D. \(3\)

    Câu 5. Để chuẩn bị cho các tiết mục văn nghệ, lớp 10B cử ra 12 bạn tham gia tiết mục múa và 7 bạn vào tiết mục hát. Biết rằng có 3 bạn tham gia cả hai tiết mục và 22 bạn không tham gia văn nghệ. Số học sinh lớp 10B là:

    A. \(36\). B. \(38\). C. \(40\). D. \(45\).

    Câu 6. Miền nghiệm của bất phương trình \(x - 2y \ge 4\) là:

    A.Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 0 1 B.Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 0 2

    C.Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 0 3 D. Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 0 4

    Câu 7. Giá trị lớn nhất của \(F(x;y) = x - 3y\), với điều kiện \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

    A.\(2\) B. \( - 6\) C.\( - \frac{{34}}{3}\) D. \( - 15\)

    Câu 8. Tập xác định của hàm số \(y = \frac{{x - 2}}{{{x^2} - 9}}\)

    A.\(\mathbb{R}\). B. \(\mathbb{R}{\rm{\backslash }}\{ 3\} \) C. \(\mathbb{R}{\rm{\backslash }}\{ - 3;3\} \). D. \(\mathbb{R}{\rm{\backslash }}\{ - 3;2;3\} \).

    Câu 9. Parabol \((P):y = {x^2} - 6x + 5\) có số điểm chung với trục hoành là

    A.\(0\) B. \(1\). C. \(2\). D. \(3\).

    Câu 10. Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

    Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 0 5

     Khẳng định nào sau đây sai?

    A. \(f( - 3) > f( - 2)\) B. \(f(2) < f(\sqrt 5 )\) C. \(f(1) < f(0)\) D. \(f(2020) > f(2022)\)

    Câu 11. Đường thẳng nào dưới đây song song với đường thẳng \(y = \sqrt 2 x + 1\)

    A. \(y = - \sqrt 2 x + 1\) B\(y = \frac{{\sqrt 2 }}{2}x - 3\) C. \(y = \sqrt 2 x + 5\). D. \(y = \sqrt 2 - 5x\).

    Câu 12. Cho hàm số \(f(x) = {x^2} - 4x + 3\). Khẳng định nào sau đây đúng?

    A.Hàm số nghịch biến trên \(( - \infty ;2)\), đồng biến trên\((2; + \infty )\).

    B.Hàm số nghịch biến trên \((2; + \infty )\), đồng biến trên\(( - \infty ;2)\).

    C. Hàm số nghịch biến trên\(\mathbb{R}\).

    D. Hàm số đồng biến trên\(\mathbb{R}\).

    Câu 13Điểm \(A(1;2)\) thuộc miền nghiệm của hệ bất phương trình nào dưới đây?

    A. \(\left\{ \begin{array}{l}x + 2y > 7\\3x - y < 5\end{array} \right.\) B. \(\left\{ \begin{array}{l}2x - y > 7\\x + y \le 3\end{array} \right.\) C. \(\left\{ \begin{array}{l}3x + 4 \le 10\\4x - y > 3\end{array} \right.\) D.\(\left\{ \begin{array}{l}2x + 5y > 8\\x - 3y \le 4\end{array} \right.\)

    Câu 14Cho hàm số \(f(x) = \left\{ \begin{array}{l}\sqrt {x + 1} - 2\quad (x \ge 1)\\3{x^2} - x + 1\quad (x < 1)\end{array} \right.\). Giá trị của \(2.f( - 3) - 4.f(3)\) là:

    A. \(58\) B\(62\) C. \( - 1\). D. \(1\).

    Câu 15Cho bất phương trình \(2(2x - 3y) - (2x - y + 5) > x - 3y + 1\). Điểm nào dưới đây thuộc miền nghiệm của hệ đã cho?

    A. \(O(0;0)\) B. \(A(1;0)\). C. \(B(3; - 2)\). D. \(C(0;2)\)

    II. PHẦN TỰ LUẬN

    Câu 1. Xác định các tập hợp sau và biểu diễn chúng trên trục số.

    a) \(( - \infty ;3) \cap ( - 4; + \infty )\) b) \((1;6] \cup ( - 2;5]\) c) \([ - 3;7){\rm{\backslash }}(1; + \infty )\) d) \(\mathbb{R}{\rm{\backslash }}( - 1;8]\)

    Câu 2. Nhà cô Minh có mảnh vườn rộng \(8{m^2}\). Cô dự định trồng cà chua và cải bắp trên toàn bộ mảnh vườn đó. Nếu trồng cà chua thì cần 20 công và thu được 300 nghìn đồng trên mỗi \({m^2}\). Nếu trồng cải bắp thì cần 30 công và thu được 400 nghìn đồng trên mỗi \({m^2}\). Hỏi cần cần trồng mỗi loại cây trên diện tích bao nhiêu để tthu được nhiều tiền nhất mà tổng số công không quá 180?

    Câu 3.

    a) Xác định parabol (P) biết \((P):y = a{x^2} + bx + c\) đi qua A(0;5) và có đỉnh \(I(3; - 4)\)

    b) Xét sự biến thiên và vẽ đồ thị hàm số trên.

    Câu 4Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của hàm số: \(y = 2{x^2} - 4x + 3\) trên đoạn [-1;4].

    Lời giải chi tiết

      I. PHẦN TRẮC NGHIỆM

      1. D

      2. D

      3. A

      4. B

      5. B

      6. B

      7. A

      8. C

      9. C

      10. C

      11. C

      12. A

      13. D

      14. B

      15. C

      Câu 1:

      Cách giải:

      Tập hợp các số hữu tỉ: \(\mathbb{Q}\)

      “\(\sqrt 2 \) không là số hữu tỉ” viết là: \(\sqrt 2 \notin \mathbb{Q}\)

      Chọn D.

      Câu 2:

      Cách giải:

      Mệnh đề “\(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > - 2\)” sai, chẳng hạn \(x = - 3\) thì \({x^2} > 4\) nhưng \(x < - 2\)

      Mệnh đề “\(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > 2\)” sai, chẳng hạn \(x = - 3\) thì \({x^2} > 4\) nhưng \(x < 2\)

      Mệnh đề “\(\forall x \in \mathbb{R},x > - 2 \Rightarrow {x^2} > 4\)” sai, chẳng hạn \(x = 0 > - 2\) nhưng \({x^2} < 4\)

      Mệnh đề “\(\forall x \in \mathbb{R},x > 2 \Rightarrow {x^2} > 4\)” đúng

      Chọn D.

      Câu 3:

      Phương pháp:

      Cho A là tập hợp các số tự nhiên chẵn, \(B = \{ n \in \mathbb{N}|n \le 8\} \) và \(C = \{ n \in \mathbb{N}|2 \le n \le 5\} \).

      Tìm tập hợp \(A \cap \left( {B \cap C} \right)\)

      Cách giải:

      \(A = \{ 0;2;4;6;8;...\} \)

      \(B = \{ 0;1;2;3;4;5;6;7;8\} \)

      \(C = \{ 2;3;4;5\} \).

      Ta có: \(B \cap C = \{ 2;3;4;5\} = C \Rightarrow A \cap \left( {B \cap C} \right) = A \cap C = \{ 2;4\} \)

      Chọn A.

      Câu 4:

      Cách giải:

      + Nếu \(m \ge 5\) thì \(A{\rm{\backslash }}B = ( - 2;5]{\rm{\backslash }}(m; + \infty ) = A = ( - 2;5]\), chứa 7 số nguyên là -1 ; 0 ;1 ;2 ;3 ;4 ;5 (nhiều hơn 3) nên ta loại trường hợp m > 5.

      + Để \(A{\rm{\backslash }}B \ne \emptyset \) thì m>-2. Xét trường hợp -2<m<5, khi đó \(A{\rm{\backslash }}B = ( - 2;5]{\rm{\backslash }}(m; + \infty ) = ( - 2;m]\)

      Chứa 3 số nguyên -1 ;0 ;1 thì m=1.

      Chọn B.

      Câu 5:

      Phương pháp:

      Thay cặp số vào BPT, cặp số nào cho ta mệnh đề đúng thì cặp số đó là nghiệm của BPT đã cho.

      Để chuẩn bị cho các tiết mục văn nghệ, lớp 10B cử ra 12 bạn tham gia tiết mục múa và 7 bạn vào tiết mục hát. Biết rằng có 3 bạn tham gia cả hai tiết mục và 22 bạn không tham gia văn nghệ. Số học sinh lớp 10B là:

      Gọi A là tập hợp các học sinh tham gia tiết mục múa.

      B là là tập hợp các học sinh tham gia tiết mục hát.

      Cách giải:

      Gọi A là tập hợp các học sinh tham gia tiết mục múa.

      B là là tập hợp các học sinh tham gia tiết mục hát.

      Suy ra : \(A \cup B\) là tập hợp các học sinh tham gia văn nghệ.

      \(A \cap B\) là tập hợp các học sinh tham gia cả hai tiết mục.

      Ta có : \(n(A) = 12;n(B) = 7;n(A \cap B) = 3\)

      \( \Rightarrow \) Số học sinh tham gia văn nghệ là : \(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 12 + 7 - 3 = 16\) (học sinh)

      Số học sinh lớp 10B (gồm học sinh tham gia văn nghệ và các học sinh không tham gia văn nghệ) là : \(16 + 22 = 38\) (học sinh)

      Chọn B.

      Câu 6:

      Phương pháp:

      Xác định đường thẳng \(x - 2y = 4\) và xét một điểm (không thuộc đường thẳng) xem có thuộc miền nghiệm hay không.

      Cách giải:

      Đường thẳng \(x - 2y = 4\) đi qua điểm có tọa độ (4;0) và (0; -2) => Loại C, D.

      Xét điểm O(0;0), ta có: \(0 - 2.0 = 0 < 4\) nên O không thuộc miền nghiệm.

      Chọn B.

      Câu 7:

      Phương pháp:

      Bước 1: Biểu diễn miền nghiệm, xác định các đỉnh của miền nghiệm

      Bước 2: Thay tọa độ các đỉnh vào \(F(x;y) = x - 3y\), kết luận giá trị nhỏ nhất.

      Cách giải:

      Xét hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

      Biểu diễn miền nghiệm của hệ, ta được

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 1

      Miền nghiệm là miền tứ giác ABCD trong đó \(A\left( {0;2} \right),{\rm{ }}B\left( {0;5} \right),{\rm{ }}C\left( {\frac{{11}}{3};5} \right),D(2;0)\)

      Thay tọa độ các điểm A, B, C, D vào \(F(x;y) = x - 3y\) ta được

      \(F(0;2) = 0 - 3.2 = - 6\)

      \(F(0;5) = 0 - 3.5 = - 15\)

      \(F\left( {\frac{{11}}{3};5} \right) = \frac{{11}}{3} - 3.5 = - \frac{{34}}{3}\)

      \(F(2;0) = 2 - 3.0 = 2\)

      Vậy giá trị lớn nhất của F bằng 2.

      Chọn A.

      Câu 8:

      Phương pháp:

      \(\frac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\)

      Cách giải:

      Hàm số \(y = \frac{{x - 2}}{{{x^2} - 9}}\) xác định khi \({x^2} - 9 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x \ne - 3\end{array} \right.\)

      Tập xác định là \(\mathbb{R}{\rm{\backslash }}\{ - 3;3\} \)

      Chọn C.

      Câu 9:

      Phương pháp:

      Số giao điểm của Parabol \((P):y = f(x)\) với trục hoành là số nghiệm của phương trình \(f(x) = 0\).

      Cách giải:

      Xét phương trình hoành độ giao điểm của (P) với trục hoành là:

      \(\begin{array}{l}{x^2} - 6x + 5 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 1\end{array} \right.\end{array}\)

      PT có 2 nghiệm phân biệt nên parabol có đúng 2 điểm chung với trục hoành

      Chọn C.

      Câu 10:

      Cách giải:

      Từ bảng biến thiên ta suy ra

      Hàm số đồng biến trên \(( - 1;3)\)

      Hàm số nghịch biến trên \(( - \infty ; - 1)\) và \((3; + \infty )\)

      + Vì \( - 3, - 2 \in ( - \infty ;1)\) và \( - 3 < - 2\) nên \(f( - 3) > f( - 2)\) => A đúng.

      + Vì \(2,\sqrt 5 \in ( - 1;3)\) và \(2 < \sqrt 5 \) nên \(f(2) < f(\sqrt 5 )\) => B đúng.

      + Vì \(0,1 \in ( - 1;3)\) và \(0 < 1\) nên \(f(0) < f(1)\) => C sai.

      + Vì \(2000,2022 \in (3; + \infty )\) và \(2000 < 2022\) nên \(f(2020) > f(2022)\) => D đúng.

      Chọn C.

      Câu 11:

      Phương pháp:

      Đường thẳng song song với đường thẳng \(y = ax + b\) có dạng \(y = ax + b'\) với \(b \ne b'\)

      Cách giải:

      Đường thẳng song song với đường thẳng \(y = \sqrt 2 x + 1\) có dạng \(y = \sqrt 2 x + b'\) với \(b' \ne 1\)

      Chọn C.

      Câu 12:

      Cách giải:

      Xét hàm số \(f(x) = {x^2} - 4x + 3\), có \(a = 1 > 0,b = - 4,c = 3\)

      \( \Rightarrow \frac{{ - b}}{{2a}} = 2;\frac{{ - \Delta }}{{4a}} = \frac{{ - {{( - 4)}^2} + 4.1.3}}{4} = - 1\)

      Bảng biến thiên:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 2

      Hàm số đồng biến trên \((2; + \infty )\)và nghịch biến trên\(( - \infty ;2)\).

      Chọn A.

      Câu 13.

      Phương pháp:

      Thay tọa độ điểm A vào hệ BPT, hệ nào cho ta các mệnh đề đúng thì điểm A thuộc miền nghiệm của hệ BPT đó.

      Cách giải

      + Xét hệ \(\left\{ \begin{array}{l}x + 2y > 7\\3x - y < 5\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(1 + 2.2 > 7\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}2x - y > 7\\x + y \le 3\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(2.1 - 2 > 7\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}3x + 4 \le 10\\4x - y > 3\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(4.1 - 2 > 3\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}2x + 5y > 8\\x - 3y \le 4\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(\left\{ \begin{array}{l}2.1 + 5.2 > 8\\1 - 3.2 \le 4\end{array} \right.\) đúng nên A(1;2) thuộc miền nghiệm của hệ BPT.

      Chọn D.

      Câu 14:

      Cách giải:

      Tại \(x = - 3 < 1\) thì \(f( - 3) = 3.{( - 3)^2} - ( - 3) + 1 = 31\)

      Tại \(x = 2 \ge 1\) thì \(f(3) = \sqrt {3 + 1} - 2 = 0\)

      \( \Rightarrow 2.f( - 3) - 4.f(3) = 2.31 - 4.0 = 62\)

      Chọn B.

      Câu 15.

      Cách giải:

      Ta có: \(2(2x - 3y) - (2x - y + 5) > x - 3y + 1\)

      \(\begin{array}{l} \Leftrightarrow 4x - 6y - 2x + y - 5 - x + 3y - 1 > 0\\ \Leftrightarrow x - 2y - 6 > 0\end{array}\)

      Thay tọa độ các điểm vào BPT:

      + Vì \(0 - 2.0 - 6 = - 6 < 0\) nên \(O(0;0)\) không thuộc miền nghiệm

      + Vì \(1 - 2.0 - 6 = - 5 < 0\) nên \(A(1;0)\) không thuộc miền nghiệm

      + Vì \(3 - 2.( - 2) - 6 = 1 > 0\) nên \(B(3; - 2)\) thuộc miền nghiệm

      + Vì \(0 - 2.2 - 6 = - 10 < 0\) nên \(C(0;2)\) không thuộc miền nghiệm

      Chọn C

      II. PHẦN TỰ LUẬN

      Câu 1 (TH):

      Phương pháp:

      a) \(A \cap B = \{ x \in A|x \in B\} \)

      b) \(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)

      c) \(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)

      Cách giải:

      a) Biểu diễn hai tập \(( - \infty ;3)\) và \(( - 4; + \infty )\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 3

      Giao của hai tập hợp: \(( - \infty ;3) \cap ( - 4; + \infty ) = ( - 4;3)\)

      b) Biểu diễn hai tập \((1;6]\) và \(( - 2;5]\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 4

      Hợp của hai tập hợp: \((1;6] \cup ( - 2;5] = ( - 2;6]\)

      c) Biểu diễn hai tập \(( - 3;7]\) và \((1; + \infty )\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 5

      Hiệu của hai tập hợp: \([ - 3;7){\rm{\backslash }}(1; + \infty ) = [ - 3;1]\)

      d) Biểu diễn tập \(( - 1;8]\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 6

      Hiệu của hai tập hợp: \(\mathbb{R}{\rm{\backslash }}( - 1;8] = ( - \infty ; - 1] \cup (8; + \infty )\)

      Câu 2:

      Nhà cô Minh có mảnh vườn rộng \(8{m^2}\). Cô dự định trồng cà chua và cải bắp trên toàn bộ mảnh vườn đó. Nếu trồng cà chua thì cần 20 công và thu được 300 nghìn đồng trên mỗi \({m^2}\). Nếu trồng cải bắp thì cần 30 công và thu được 400 nghìn đồng trên mỗi \({m^2}\). Hỏi cần cần trồng mỗi loại cây trên diện tích bao nhiêu để tthu được nhiều tiền nhất mà tổng số công không quá 180?

      Cách giải:

      Gọi diện tích trồng cà chua và cải bắp lần lượt là x, y (đơn vị: \({m^2}\)). \((x,y \ge 0)\)

      Mảnh vườn rộng \(8{m^2}\) nên ta có: \(x + y \le 8\)

      Khi trồng x \({m^2}\) cà chua thì cần \(20x\) công và thu được \(300x\) nghìn đồng

      Khi trồng y \({m^2}\) cải bắp thì cần \(30x\) công và thu được \(400x\) nghìn đồng

      Tổng số công không quá 180 nên ta có: \(20x + 30y \le 180\) hay \(2x + 3y \le 18\)

      Tổng số tiền thu được là: \(F(x;y) = 300x + 400y\)

      Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 8\\0 \le y \le 8\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\)

      Biểu diễn miền nghiệm trên hệ trục Oxy, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 7

      Miền nghiệm là miền tứ giác ABCD (kể cả các cạnh) , trong đó \(A(0;6),B(6;2),C(8;0),O(0;0)\)

      Lần lượt thay tọa độ các điểm A, B, C, D vào biểu thức \(F(x;y) = 300x + 400y\) ta được:

      \(\begin{array}{l}F(0;0) = 300.0 + 400.0 = 0\\F(0;6) = 300.0 + 400.6 = 2400\\F(2;6) = 300.2 + 400.6 = 3000\\F(8;0) = 300.8 + 400.0 = 2400\end{array}\)

      Do đó F đạt giá trị lớn nhất bằng 3000 tại \(x = 2;y = 6\)

      Vậy cô Minh cần mua trồng \(2{m^2}\) cà chua và \(6{m^2}\) cải bắp.

      Câu 3:

      Cách giải:

      a) Parabol \((P):y = a{x^2} + bx + c\) đi qua A(0;5) nên \(5 = a{.0^2} + b.0 + c \Leftrightarrow c = - 5\)

      Lại có: (P) có đỉnh \(I(3; - 4)\)

      \( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = 3\\a{.3^2} + b.3 + 5 = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6a + b = 0\\9a + 3b = - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 6\end{array} \right.\)

      Vậy parabol đó là \((P):y = {x^2} - 6x + 5\)

      b) Parabol \((P):y = {x^2} - 6x + 5\) có \(a = 1 > 0,b = - 6\)

      Bảng biến thiên

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 8

      Hàm số đồng biến trên \((3; + \infty )\)và nghịch biến trên\(( - \infty ;3)\).

      + Vẽ đồ thị

      Đỉnh \(I(3; - 4)\)

      (P) giao Oy tại điểm \(A\left( {0;5} \right)\)

      (P) giao Ox tại \(B(1;0)\) và \(C(5;0)\)

      Điểm \(D(5;6)\) đối xứng với \(A\left( {0;5} \right)\) qua trục đối xứng.

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 9

      Câu 4Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của hàm số: \(y = 2{x^2} - 4x + 3\) trên đoạn [-1;4].

      Cách giải:

      Hàm số \(y = 2{x^2} - 4x + 3\) có \(a = 2 > 0,b = - 4 \Rightarrow - \frac{b}{{2a}} = 1;\;y(1) = 1\).

      Ta có bảng biến thiên

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 10

      Mà \(f( - 1) = 9,f(4) = 19,f(1) = 1\)

      \( \Rightarrow \) Trên [-1;4]

       Hàm số đạt GTLN bằng 19 tại \(x = 4\), đạt GTNN bằng 1 tại \(x = 1\).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải chi tiết
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      I. PHẦN TRẮC NGHIỆM

      Câu 1. Kí hiệu nào sau đây viết đúng mệnh đề: “\(\sqrt 2 \) không là số hữu tỉ”

      A. \(\sqrt 2 = \mathbb{Q}\)B. \(\sqrt 2 \in \mathbb{Q}\) C. \(\sqrt 2 \subset \mathbb{Q}\) D. \(\sqrt 2 \notin \mathbb{Q}\)

      Câu 2. Trong các mệnh đề sau, mệnh đề nào đúng?

      A. \(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > - 2\). B. \(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > 2\). C. \(\forall x \in \mathbb{R},x > - 2 \Rightarrow {x^2} > 4\). D. \(\forall x \in \mathbb{R},x > 2 \Rightarrow {x^2} > 4\)

      Câu 3. Cho A là tập hợp các số tự nhiên chẵn, \(B = \{ n \in \mathbb{N}|n \le 8\} \) và \(C = \{ n \in \mathbb{N}|2 \le n \le 5\} \).

      Tìm tập hợp \(A \cap \left( {B \cap C} \right)\)

      A. \(\{ 2;4\} \) B. \(\{ 2\} \). C. \(\{ 4\} \). D. \(\emptyset \).

      Câu 4. Cho \(A = ( - 2;5]\) và \(B = (m; + \infty )\). Tìm \(m \in \mathbb{Z}\) để \(A{\rm{\backslash }}B\) chứa đúng 3 số nguyên là:

      A. \(0\). B. \(1\). C. \(2\) D. \(3\)

      Câu 5. Để chuẩn bị cho các tiết mục văn nghệ, lớp 10B cử ra 12 bạn tham gia tiết mục múa và 7 bạn vào tiết mục hát. Biết rằng có 3 bạn tham gia cả hai tiết mục và 22 bạn không tham gia văn nghệ. Số học sinh lớp 10B là:

      A. \(36\). B. \(38\). C. \(40\). D. \(45\).

      Câu 6. Miền nghiệm của bất phương trình \(x - 2y \ge 4\) là:

      A.Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 1 B.Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 2

      C.Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 3 D. Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 4

      Câu 7. Giá trị lớn nhất của \(F(x;y) = x - 3y\), với điều kiện \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

      A.\(2\) B. \( - 6\) C.\( - \frac{{34}}{3}\) D. \( - 15\)

      Câu 8. Tập xác định của hàm số \(y = \frac{{x - 2}}{{{x^2} - 9}}\)

      A.\(\mathbb{R}\). B. \(\mathbb{R}{\rm{\backslash }}\{ 3\} \) C. \(\mathbb{R}{\rm{\backslash }}\{ - 3;3\} \). D. \(\mathbb{R}{\rm{\backslash }}\{ - 3;2;3\} \).

      Câu 9. Parabol \((P):y = {x^2} - 6x + 5\) có số điểm chung với trục hoành là

      A.\(0\) B. \(1\). C. \(2\). D. \(3\).

      Câu 10. Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 5

       Khẳng định nào sau đây sai?

      A. \(f( - 3) > f( - 2)\) B. \(f(2) < f(\sqrt 5 )\) C. \(f(1) < f(0)\) D. \(f(2020) > f(2022)\)

      Câu 11. Đường thẳng nào dưới đây song song với đường thẳng \(y = \sqrt 2 x + 1\)

      A. \(y = - \sqrt 2 x + 1\) B\(y = \frac{{\sqrt 2 }}{2}x - 3\) C. \(y = \sqrt 2 x + 5\). D. \(y = \sqrt 2 - 5x\).

      Câu 12. Cho hàm số \(f(x) = {x^2} - 4x + 3\). Khẳng định nào sau đây đúng?

      A.Hàm số nghịch biến trên \(( - \infty ;2)\), đồng biến trên\((2; + \infty )\).

      B.Hàm số nghịch biến trên \((2; + \infty )\), đồng biến trên\(( - \infty ;2)\).

      C. Hàm số nghịch biến trên\(\mathbb{R}\).

      D. Hàm số đồng biến trên\(\mathbb{R}\).

      Câu 13Điểm \(A(1;2)\) thuộc miền nghiệm của hệ bất phương trình nào dưới đây?

      A. \(\left\{ \begin{array}{l}x + 2y > 7\\3x - y < 5\end{array} \right.\) B. \(\left\{ \begin{array}{l}2x - y > 7\\x + y \le 3\end{array} \right.\) C. \(\left\{ \begin{array}{l}3x + 4 \le 10\\4x - y > 3\end{array} \right.\) D.\(\left\{ \begin{array}{l}2x + 5y > 8\\x - 3y \le 4\end{array} \right.\)

      Câu 14Cho hàm số \(f(x) = \left\{ \begin{array}{l}\sqrt {x + 1} - 2\quad (x \ge 1)\\3{x^2} - x + 1\quad (x < 1)\end{array} \right.\). Giá trị của \(2.f( - 3) - 4.f(3)\) là:

      A. \(58\) B\(62\) C. \( - 1\). D. \(1\).

      Câu 15Cho bất phương trình \(2(2x - 3y) - (2x - y + 5) > x - 3y + 1\). Điểm nào dưới đây thuộc miền nghiệm của hệ đã cho?

      A. \(O(0;0)\) B. \(A(1;0)\). C. \(B(3; - 2)\). D. \(C(0;2)\)

      II. PHẦN TỰ LUẬN

      Câu 1. Xác định các tập hợp sau và biểu diễn chúng trên trục số.

      a) \(( - \infty ;3) \cap ( - 4; + \infty )\) b) \((1;6] \cup ( - 2;5]\) c) \([ - 3;7){\rm{\backslash }}(1; + \infty )\) d) \(\mathbb{R}{\rm{\backslash }}( - 1;8]\)

      Câu 2. Nhà cô Minh có mảnh vườn rộng \(8{m^2}\). Cô dự định trồng cà chua và cải bắp trên toàn bộ mảnh vườn đó. Nếu trồng cà chua thì cần 20 công và thu được 300 nghìn đồng trên mỗi \({m^2}\). Nếu trồng cải bắp thì cần 30 công và thu được 400 nghìn đồng trên mỗi \({m^2}\). Hỏi cần cần trồng mỗi loại cây trên diện tích bao nhiêu để tthu được nhiều tiền nhất mà tổng số công không quá 180?

      Câu 3.

      a) Xác định parabol (P) biết \((P):y = a{x^2} + bx + c\) đi qua A(0;5) và có đỉnh \(I(3; - 4)\)

      b) Xét sự biến thiên và vẽ đồ thị hàm số trên.

      Câu 4Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của hàm số: \(y = 2{x^2} - 4x + 3\) trên đoạn [-1;4].

      I. PHẦN TRẮC NGHIỆM

      1. D

      2. D

      3. A

      4. B

      5. B

      6. B

      7. A

      8. C

      9. C

      10. C

      11. C

      12. A

      13. D

      14. B

      15. C

      Câu 1:

      Cách giải:

      Tập hợp các số hữu tỉ: \(\mathbb{Q}\)

      “\(\sqrt 2 \) không là số hữu tỉ” viết là: \(\sqrt 2 \notin \mathbb{Q}\)

      Chọn D.

      Câu 2:

      Cách giải:

      Mệnh đề “\(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > - 2\)” sai, chẳng hạn \(x = - 3\) thì \({x^2} > 4\) nhưng \(x < - 2\)

      Mệnh đề “\(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > 2\)” sai, chẳng hạn \(x = - 3\) thì \({x^2} > 4\) nhưng \(x < 2\)

      Mệnh đề “\(\forall x \in \mathbb{R},x > - 2 \Rightarrow {x^2} > 4\)” sai, chẳng hạn \(x = 0 > - 2\) nhưng \({x^2} < 4\)

      Mệnh đề “\(\forall x \in \mathbb{R},x > 2 \Rightarrow {x^2} > 4\)” đúng

      Chọn D.

      Câu 3:

      Phương pháp:

      Cho A là tập hợp các số tự nhiên chẵn, \(B = \{ n \in \mathbb{N}|n \le 8\} \) và \(C = \{ n \in \mathbb{N}|2 \le n \le 5\} \).

      Tìm tập hợp \(A \cap \left( {B \cap C} \right)\)

      Cách giải:

      \(A = \{ 0;2;4;6;8;...\} \)

      \(B = \{ 0;1;2;3;4;5;6;7;8\} \)

      \(C = \{ 2;3;4;5\} \).

      Ta có: \(B \cap C = \{ 2;3;4;5\} = C \Rightarrow A \cap \left( {B \cap C} \right) = A \cap C = \{ 2;4\} \)

      Chọn A.

      Câu 4:

      Cách giải:

      + Nếu \(m \ge 5\) thì \(A{\rm{\backslash }}B = ( - 2;5]{\rm{\backslash }}(m; + \infty ) = A = ( - 2;5]\), chứa 7 số nguyên là -1 ; 0 ;1 ;2 ;3 ;4 ;5 (nhiều hơn 3) nên ta loại trường hợp m > 5.

      + Để \(A{\rm{\backslash }}B \ne \emptyset \) thì m>-2. Xét trường hợp -2<m<5, khi đó \(A{\rm{\backslash }}B = ( - 2;5]{\rm{\backslash }}(m; + \infty ) = ( - 2;m]\)

      Chứa 3 số nguyên -1 ;0 ;1 thì m=1.

      Chọn B.

      Câu 5:

      Phương pháp:

      Thay cặp số vào BPT, cặp số nào cho ta mệnh đề đúng thì cặp số đó là nghiệm của BPT đã cho.

      Để chuẩn bị cho các tiết mục văn nghệ, lớp 10B cử ra 12 bạn tham gia tiết mục múa và 7 bạn vào tiết mục hát. Biết rằng có 3 bạn tham gia cả hai tiết mục và 22 bạn không tham gia văn nghệ. Số học sinh lớp 10B là:

      Gọi A là tập hợp các học sinh tham gia tiết mục múa.

      B là là tập hợp các học sinh tham gia tiết mục hát.

      Cách giải:

      Gọi A là tập hợp các học sinh tham gia tiết mục múa.

      B là là tập hợp các học sinh tham gia tiết mục hát.

      Suy ra : \(A \cup B\) là tập hợp các học sinh tham gia văn nghệ.

      \(A \cap B\) là tập hợp các học sinh tham gia cả hai tiết mục.

      Ta có : \(n(A) = 12;n(B) = 7;n(A \cap B) = 3\)

      \( \Rightarrow \) Số học sinh tham gia văn nghệ là : \(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 12 + 7 - 3 = 16\) (học sinh)

      Số học sinh lớp 10B (gồm học sinh tham gia văn nghệ và các học sinh không tham gia văn nghệ) là : \(16 + 22 = 38\) (học sinh)

      Chọn B.

      Câu 6:

      Phương pháp:

      Xác định đường thẳng \(x - 2y = 4\) và xét một điểm (không thuộc đường thẳng) xem có thuộc miền nghiệm hay không.

      Cách giải:

      Đường thẳng \(x - 2y = 4\) đi qua điểm có tọa độ (4;0) và (0; -2) => Loại C, D.

      Xét điểm O(0;0), ta có: \(0 - 2.0 = 0 < 4\) nên O không thuộc miền nghiệm.

      Chọn B.

      Câu 7:

      Phương pháp:

      Bước 1: Biểu diễn miền nghiệm, xác định các đỉnh của miền nghiệm

      Bước 2: Thay tọa độ các đỉnh vào \(F(x;y) = x - 3y\), kết luận giá trị nhỏ nhất.

      Cách giải:

      Xét hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

      Biểu diễn miền nghiệm của hệ, ta được

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 6

      Miền nghiệm là miền tứ giác ABCD trong đó \(A\left( {0;2} \right),{\rm{ }}B\left( {0;5} \right),{\rm{ }}C\left( {\frac{{11}}{3};5} \right),D(2;0)\)

      Thay tọa độ các điểm A, B, C, D vào \(F(x;y) = x - 3y\) ta được

      \(F(0;2) = 0 - 3.2 = - 6\)

      \(F(0;5) = 0 - 3.5 = - 15\)

      \(F\left( {\frac{{11}}{3};5} \right) = \frac{{11}}{3} - 3.5 = - \frac{{34}}{3}\)

      \(F(2;0) = 2 - 3.0 = 2\)

      Vậy giá trị lớn nhất của F bằng 2.

      Chọn A.

      Câu 8:

      Phương pháp:

      \(\frac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\)

      Cách giải:

      Hàm số \(y = \frac{{x - 2}}{{{x^2} - 9}}\) xác định khi \({x^2} - 9 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x \ne - 3\end{array} \right.\)

      Tập xác định là \(\mathbb{R}{\rm{\backslash }}\{ - 3;3\} \)

      Chọn C.

      Câu 9:

      Phương pháp:

      Số giao điểm của Parabol \((P):y = f(x)\) với trục hoành là số nghiệm của phương trình \(f(x) = 0\).

      Cách giải:

      Xét phương trình hoành độ giao điểm của (P) với trục hoành là:

      \(\begin{array}{l}{x^2} - 6x + 5 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 1\end{array} \right.\end{array}\)

      PT có 2 nghiệm phân biệt nên parabol có đúng 2 điểm chung với trục hoành

      Chọn C.

      Câu 10:

      Cách giải:

      Từ bảng biến thiên ta suy ra

      Hàm số đồng biến trên \(( - 1;3)\)

      Hàm số nghịch biến trên \(( - \infty ; - 1)\) và \((3; + \infty )\)

      + Vì \( - 3, - 2 \in ( - \infty ;1)\) và \( - 3 < - 2\) nên \(f( - 3) > f( - 2)\) => A đúng.

      + Vì \(2,\sqrt 5 \in ( - 1;3)\) và \(2 < \sqrt 5 \) nên \(f(2) < f(\sqrt 5 )\) => B đúng.

      + Vì \(0,1 \in ( - 1;3)\) và \(0 < 1\) nên \(f(0) < f(1)\) => C sai.

      + Vì \(2000,2022 \in (3; + \infty )\) và \(2000 < 2022\) nên \(f(2020) > f(2022)\) => D đúng.

      Chọn C.

      Câu 11:

      Phương pháp:

      Đường thẳng song song với đường thẳng \(y = ax + b\) có dạng \(y = ax + b'\) với \(b \ne b'\)

      Cách giải:

      Đường thẳng song song với đường thẳng \(y = \sqrt 2 x + 1\) có dạng \(y = \sqrt 2 x + b'\) với \(b' \ne 1\)

      Chọn C.

      Câu 12:

      Cách giải:

      Xét hàm số \(f(x) = {x^2} - 4x + 3\), có \(a = 1 > 0,b = - 4,c = 3\)

      \( \Rightarrow \frac{{ - b}}{{2a}} = 2;\frac{{ - \Delta }}{{4a}} = \frac{{ - {{( - 4)}^2} + 4.1.3}}{4} = - 1\)

      Bảng biến thiên:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 7

      Hàm số đồng biến trên \((2; + \infty )\)và nghịch biến trên\(( - \infty ;2)\).

      Chọn A.

      Câu 13.

      Phương pháp:

      Thay tọa độ điểm A vào hệ BPT, hệ nào cho ta các mệnh đề đúng thì điểm A thuộc miền nghiệm của hệ BPT đó.

      Cách giải

      + Xét hệ \(\left\{ \begin{array}{l}x + 2y > 7\\3x - y < 5\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(1 + 2.2 > 7\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}2x - y > 7\\x + y \le 3\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(2.1 - 2 > 7\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}3x + 4 \le 10\\4x - y > 3\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(4.1 - 2 > 3\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}2x + 5y > 8\\x - 3y \le 4\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(\left\{ \begin{array}{l}2.1 + 5.2 > 8\\1 - 3.2 \le 4\end{array} \right.\) đúng nên A(1;2) thuộc miền nghiệm của hệ BPT.

      Chọn D.

      Câu 14:

      Cách giải:

      Tại \(x = - 3 < 1\) thì \(f( - 3) = 3.{( - 3)^2} - ( - 3) + 1 = 31\)

      Tại \(x = 2 \ge 1\) thì \(f(3) = \sqrt {3 + 1} - 2 = 0\)

      \( \Rightarrow 2.f( - 3) - 4.f(3) = 2.31 - 4.0 = 62\)

      Chọn B.

      Câu 15.

      Cách giải:

      Ta có: \(2(2x - 3y) - (2x - y + 5) > x - 3y + 1\)

      \(\begin{array}{l} \Leftrightarrow 4x - 6y - 2x + y - 5 - x + 3y - 1 > 0\\ \Leftrightarrow x - 2y - 6 > 0\end{array}\)

      Thay tọa độ các điểm vào BPT:

      + Vì \(0 - 2.0 - 6 = - 6 < 0\) nên \(O(0;0)\) không thuộc miền nghiệm

      + Vì \(1 - 2.0 - 6 = - 5 < 0\) nên \(A(1;0)\) không thuộc miền nghiệm

      + Vì \(3 - 2.( - 2) - 6 = 1 > 0\) nên \(B(3; - 2)\) thuộc miền nghiệm

      + Vì \(0 - 2.2 - 6 = - 10 < 0\) nên \(C(0;2)\) không thuộc miền nghiệm

      Chọn C

      II. PHẦN TỰ LUẬN

      Câu 1 (TH):

      Phương pháp:

      a) \(A \cap B = \{ x \in A|x \in B\} \)

      b) \(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)

      c) \(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)

      Cách giải:

      a) Biểu diễn hai tập \(( - \infty ;3)\) và \(( - 4; + \infty )\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 8

      Giao của hai tập hợp: \(( - \infty ;3) \cap ( - 4; + \infty ) = ( - 4;3)\)

      b) Biểu diễn hai tập \((1;6]\) và \(( - 2;5]\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 9

      Hợp của hai tập hợp: \((1;6] \cup ( - 2;5] = ( - 2;6]\)

      c) Biểu diễn hai tập \(( - 3;7]\) và \((1; + \infty )\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 10

      Hiệu của hai tập hợp: \([ - 3;7){\rm{\backslash }}(1; + \infty ) = [ - 3;1]\)

      d) Biểu diễn tập \(( - 1;8]\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 11

      Hiệu của hai tập hợp: \(\mathbb{R}{\rm{\backslash }}( - 1;8] = ( - \infty ; - 1] \cup (8; + \infty )\)

      Câu 2:

      Nhà cô Minh có mảnh vườn rộng \(8{m^2}\). Cô dự định trồng cà chua và cải bắp trên toàn bộ mảnh vườn đó. Nếu trồng cà chua thì cần 20 công và thu được 300 nghìn đồng trên mỗi \({m^2}\). Nếu trồng cải bắp thì cần 30 công và thu được 400 nghìn đồng trên mỗi \({m^2}\). Hỏi cần cần trồng mỗi loại cây trên diện tích bao nhiêu để tthu được nhiều tiền nhất mà tổng số công không quá 180?

      Cách giải:

      Gọi diện tích trồng cà chua và cải bắp lần lượt là x, y (đơn vị: \({m^2}\)). \((x,y \ge 0)\)

      Mảnh vườn rộng \(8{m^2}\) nên ta có: \(x + y \le 8\)

      Khi trồng x \({m^2}\) cà chua thì cần \(20x\) công và thu được \(300x\) nghìn đồng

      Khi trồng y \({m^2}\) cải bắp thì cần \(30x\) công và thu được \(400x\) nghìn đồng

      Tổng số công không quá 180 nên ta có: \(20x + 30y \le 180\) hay \(2x + 3y \le 18\)

      Tổng số tiền thu được là: \(F(x;y) = 300x + 400y\)

      Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 8\\0 \le y \le 8\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\)

      Biểu diễn miền nghiệm trên hệ trục Oxy, ta được:

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 12

      Miền nghiệm là miền tứ giác ABCD (kể cả các cạnh) , trong đó \(A(0;6),B(6;2),C(8;0),O(0;0)\)

      Lần lượt thay tọa độ các điểm A, B, C, D vào biểu thức \(F(x;y) = 300x + 400y\) ta được:

      \(\begin{array}{l}F(0;0) = 300.0 + 400.0 = 0\\F(0;6) = 300.0 + 400.6 = 2400\\F(2;6) = 300.2 + 400.6 = 3000\\F(8;0) = 300.8 + 400.0 = 2400\end{array}\)

      Do đó F đạt giá trị lớn nhất bằng 3000 tại \(x = 2;y = 6\)

      Vậy cô Minh cần mua trồng \(2{m^2}\) cà chua và \(6{m^2}\) cải bắp.

      Câu 3:

      Cách giải:

      a) Parabol \((P):y = a{x^2} + bx + c\) đi qua A(0;5) nên \(5 = a{.0^2} + b.0 + c \Leftrightarrow c = - 5\)

      Lại có: (P) có đỉnh \(I(3; - 4)\)

      \( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = 3\\a{.3^2} + b.3 + 5 = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6a + b = 0\\9a + 3b = - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 6\end{array} \right.\)

      Vậy parabol đó là \((P):y = {x^2} - 6x + 5\)

      b) Parabol \((P):y = {x^2} - 6x + 5\) có \(a = 1 > 0,b = - 6\)

      Bảng biến thiên

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 13

      Hàm số đồng biến trên \((3; + \infty )\)và nghịch biến trên\(( - \infty ;3)\).

      + Vẽ đồ thị

      Đỉnh \(I(3; - 4)\)

      (P) giao Oy tại điểm \(A\left( {0;5} \right)\)

      (P) giao Ox tại \(B(1;0)\) và \(C(5;0)\)

      Điểm \(D(5;6)\) đối xứng với \(A\left( {0;5} \right)\) qua trục đối xứng.

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 14

      Câu 4Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của hàm số: \(y = 2{x^2} - 4x + 3\) trên đoạn [-1;4].

      Cách giải:

      Hàm số \(y = 2{x^2} - 4x + 3\) có \(a = 2 > 0,b = - 4 \Rightarrow - \frac{b}{{2a}} = 1;\;y(1) = 1\).

      Ta có bảng biến thiên

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 15

      Mà \(f( - 1) = 9,f(4) = 19,f(1) = 1\)

      \( \Rightarrow \) Trên [-1;4]

       Hàm số đạt GTLN bằng 19 tại \(x = 4\), đạt GTNN bằng 1 tại \(x = 1\).

      Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2: Tổng quan và hướng dẫn giải chi tiết

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 đóng vai trò quan trọng trong việc đánh giá năng lực học tập của học sinh sau một nửa học kì. Đề thi này không chỉ kiểm tra kiến thức lý thuyết mà còn đánh giá khả năng vận dụng kiến thức vào giải quyết các bài toán thực tế. Bài viết này sẽ cung cấp một cái nhìn tổng quan về đề thi, phân tích cấu trúc, các dạng bài tập thường gặp và hướng dẫn giải chi tiết một số câu hỏi điển hình.

      Cấu trúc đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2

      Thông thường, đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 có cấu trúc gồm hai phần chính:

      1. Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm. Các câu hỏi trắc nghiệm thường tập trung vào các khái niệm cơ bản, định nghĩa, tính chất và công thức đã học.
      2. Phần tự luận: Chiếm khoảng 60-70% tổng số điểm. Phần tự luận yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, đòi hỏi khả năng phân tích, suy luận và vận dụng kiến thức một cách linh hoạt.

      Các dạng bài tập thường gặp trong đề thi

      • Dạng 1: Đại số
        • Bài toán về tập hợp, số thực
        • Bài toán về phương trình bậc nhất, bậc hai
        • Bài toán về hệ phương trình
        • Bài toán về bất phương trình
      • Dạng 2: Hình học
        • Bài toán về vectơ
        • Bài toán về tích vô hướng của hai vectơ
        • Bài toán về phương trình đường thẳng
        • Bài toán về đường tròn
      • Dạng 3: Hàm số bậc nhất và bậc hai
        • Xác định hàm số
        • Vẽ đồ thị hàm số
        • Tìm giá trị của hàm số
        • Giải các bài toán liên quan đến hàm số

      Hướng dẫn giải chi tiết một số câu hỏi điển hình

      Ví dụ 1: Giải phương trình 2x + 3 = 7

      Lời giải:

      1. Chuyển 3 sang vế phải: 2x = 7 - 3
      2. Rút gọn: 2x = 4
      3. Chia cả hai vế cho 2: x = 2

      Vậy nghiệm của phương trình là x = 2.

      Ví dụ 2: Tìm giao điểm của hai đường thẳng d1: y = x + 1 và d2: y = -x + 3

      Lời giải:

      1. Để tìm giao điểm, ta giải hệ phương trình:
      2. y = x + 1
      3. y = -x + 3
      4. Thay y = x + 1 vào phương trình thứ hai: x + 1 = -x + 3
      5. Chuyển x sang vế phải và 1 sang vế trái: 2x = 2
      6. Chia cả hai vế cho 2: x = 1
      7. Thay x = 1 vào phương trình y = x + 1: y = 1 + 1 = 2

      Vậy giao điểm của hai đường thẳng là (1; 2).

      Lời khuyên để đạt kết quả tốt trong kỳ thi

      • Nắm vững kiến thức lý thuyết: Đọc kỹ sách giáo khoa, ghi chép bài giảng và làm bài tập đầy đủ.
      • Luyện tập thường xuyên: Giải nhiều dạng bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng đề thi.
      • Ôn tập theo cấu trúc đề thi: Luyện tập với các đề thi thử để làm quen với cấu trúc đề thi và phân bổ thời gian hợp lý.
      • Kiểm tra lại bài làm: Sau khi làm xong bài thi, hãy dành thời gian kiểm tra lại bài làm để phát hiện và sửa lỗi.

      Kết luận

      Đề thi giữa kì 1 Toán 10 Cánh diều - Đề số 2 là cơ hội để học sinh đánh giá năng lực học tập và chuẩn bị cho các kỳ thi tiếp theo. Bằng cách nắm vững kiến thức, luyện tập thường xuyên và áp dụng các kỹ năng giải bài tập hiệu quả, các em học sinh có thể đạt kết quả tốt nhất trong kỳ thi này.

      Tài liệu, đề thi và đáp án Toán 10