Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1, được biên soạn theo chương trình học mới nhất. Đề thi này là tài liệu ôn tập và luyện thi vô cùng hữu ích cho các em học sinh lớp 10.

Đề thi bao gồm các dạng bài tập đa dạng, bám sát kiến thức trọng tâm và có đáp án chi tiết giúp các em tự đánh giá năng lực và cải thiện kết quả học tập.

Câu 1. Mệnh đề nào sau đây là phủ định của mệnh đề: “(exists x in mathbb{R}|{x^2} - 3x + 2 > 0)”

Đề bài

I. PHẦN TRẮC NGHIỆM

Câu 1. Mệnh đề nào sau đây là phủ định của mệnh đề: “\(\exists x \in \mathbb{R}|{x^2} - 3x + 2 > 0\)”

A. \(\exists x \in \mathbb{R}|{x^2} - 3x + 2 < 0\)

B. \(\exists x \in \mathbb{R}|{x^2} - 3x + 2 \le 0\)

C. \(\forall x \in \mathbb{R}|{x^2} - 3x + 2 \le 0\)

D. \(\forall x \in \mathbb{R}|{x^2} - 3x + 2 > 0\)

Câu 2. Cho tập hợp \(A = \{ 1;2;5;7;8\} \) và \(B = \{ x \in \mathbb{N}|x \le 3\} \). Tập hợp \(A \cap B\) là:

A. \(\{ 1;2\} \). B. \(\{ 1\} \). C. \(\{ 2\} \). D. \(\emptyset \)

Câu 3. Mỗi học sinh của lớp 10A đều thích môn Toán hoặc môn Tiếng Anh, biết rằng có 30 học sinh thích môn Toán, 25 học sinh thích môn Tiếng Anh và 15 em học sinh thích cả hai môn. Hỏi lớp 10A có tất cả bao nhiêu học sinh?

A. \(70\). B. \(60\). C. \(50\). D. \(40\).

Câu 4. Số tập hợp con của tập hợp A có 5 phần tử là :

A. \(20\). B. \(25\). C. \(32\) D. \(35\).

Câu 5. Cặp số nào sau đây là nghiệm của bất phương trình \(3(x - 1) + 4(y - 2) < 5x + 3\)

A. \((2;5)\). B. \(( - 2;3)\). C. \((0;6)\). D. \((4;5)\).

Câu 6. Miền nghiệm của bất phương trình \(x - 2y < 4\) là:

A.Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 1 B.Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 2

C. Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 3 D. Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 4

Câu 7. Giá trị nhỏ nhất của \(F(x;y) = x - 3y\), với điều kiện \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\) 

A.\(2\) B. \( - 6\) C.\( - \frac{{34}}{3}\) D. \( - 15\)

Câu 8. Tập xác định của hàm số \(y = \frac{{x + 1}}{{{x^2} - 4}}\)

A.\(\mathbb{R}\). B. \(\mathbb{R}{\rm{\backslash }}\{ 2\} \) C. \(\mathbb{R}{\rm{\backslash }}\{ - 2;2\} \). D. \(\mathbb{R}{\rm{\backslash }}\{ - 2; - 1;2\} \).

Câu 9. Parabol \((P):y = {x^2} - 6x + 9\) có số điểm chung với trục hoành là

A.\(0\) B. \(1\). C. \(2\). D. \(3\).

Câu 10. Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 5

Khẳng định nào sau đây đúng?

A. \(f( - 3) > f( - 2)\) B. \(f(2) < f(\sqrt 5 )\)

C. \(f(1) < f(0)\) D. \(f(2020) > f(2022)\)

Câu 11. Đường thẳng nào dưới đây song song với đường thẳng \(y = \sqrt 3 x + 1\)

A. \(y = - \sqrt 3 x + 1\) B. \(y = \frac{{\sqrt 3 }}{3}x - 2\) C. \(y = \sqrt 3 x + 5\). D. \(y = \sqrt 3 - 5x\).

Câu 12. Cho hàm số \(f(x) = {x^2} - 4x + 10\). Khẳng định nào sau đây đúng?

A.Hàm số nghịch biến trên \(( - \infty ;2)\), đồng biến trên\((2; + \infty )\).

B. Hàm số nghịch biến trên\(\mathbb{R}\).

C. Hàm số nghịch biến trên \((2; + \infty )\), đồng biến trên\(( - \infty ;2)\).

D. Hàm số đồng biến trên\(\mathbb{R}\).

II. PHẦN TỰ LUẬN

Câu 1. Xác định các tập hợp sau và biểu diễn chúng trên trục số.

a) \(( - \infty ;1) \cap ( - 2; + \infty )\) b) \((3;7] \cup ( - 1;5]\) c) \(( - 4;7]{\rm{\backslash }}[2; + \infty )\)

Câu 2. Cô Lan dự định mua tối đa 210 bông hoa gồm hoa tươi và hoa sáp về bán ngày lễ. Biết số hoa tươi cần mua ít nhất là 50 bông, số hoa sáp tối đa là 100 bông và số hoa sáp chiếm ít nhất \(\frac{1}{3}\) tổng số hoa. Lợi nhuận trung bình là 4 nghìn với một bông hoa tươi và 3 nghìn cho một bông hoa sáp. Vậy cô Lan cần mua bao nhiêu hoa mỗi loại để lợi nhuận thu được là lớn nhất?

Câu 3.

a) Xác định parabol (P) biết \((P):y = a{x^2} + bx + 2\) đi qua A(1;0) và có trục đối xứng \(x = \frac{3}{2}\)

b) Xét sự biến thiên và vẽ đồ thị hàm số trên.

Lời giải chi tiết

 HƯỚNG DẪN GIẢI CHI TIẾT

THỰC HIỆN: BAN CHUYÊN MÔN

I. PHẦN TRẮC NGHIỆM

1. C

2. A

3. D

4. C

5. D

6. A

7. D

8. C

9. B

10. C

11. C

12. A

Câu 1:

Phương pháp:

Mệnh đề phủ định của mệnh đề “\(\exists x \in \mathbb{R}|P(x)\)” là “\(\forall x \in \mathbb{R}|\overline {P(x)} \)”

Cách giải:

Mệnh đề phủ định của mệnh đề: “\(\exists x \in \mathbb{R}|{x^2} - 3x + 2 > 0\)” là “\(\forall x \in \mathbb{R}|{x^2} - 3x + 2 \le 0\)”

Chọn C.

Câu 2:

Phương pháp:

Tập hợp \(A \cap B = \{ x \in A|x \in B\} \)

Cách giải:

\(A = \{ 1;2;5;7;8\} \) và \(B = \{ x \in \mathbb{N}|x \le 3\} = \{ 0;1;2;3\} \).

Tập hợp \(A \cap B = \{ 1;2\} \)

Chọn A.

Câu 3:

Phương pháp:

Gọi A là tập hợp các học sinh thích môn Toán của lớp 10A.

B là là tập hợp các học sinh thích môn Tiếng Anh của lớp 10A.

Cách giải:

Gọi A là tập hợp các học sinh thích môn Toán của lớp 10A.

B là là tập hợp các học sinh thích môn Tiếng Anh của lớp 10A.

Suy ra : \(A \cup B\) là tập hợp các học sinh thích môn Toán và Tiếng Anh (hay là tập hợp HS lớp 10A)

\(A \cap B\) là tập hợp các học sinh thích cả hai môn Toán và Tiếng Anh

Ta có : \(n(A) = 30;n(B) = 25;n(A \cap B) = 15\)

\( \Rightarrow \) Số học sinh lớp 10A là : \(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 30 + 25 - 15 = 40\)

Vậy lớp 10A có 40 học sinh.

Chọn D.

Câu 4:

Phương pháp:

Số tập hợp con của tập hợp A có n phần tử là : \({2^n}\)

Cách giải:

Số tập hợp con của tập hợp A có 5 phần tử là : \({2^5} = 32\)

Chọn C.

Câu 5:

Phương pháp:

Thay cặp số vào BPT, cặp số nào cho ta mệnh đề đúng thì cặp số đó là nghiệm của BPT đã cho.

Cách giải:

Xét bất phương trình :\(3(x - 1) + 4(y - 2) < 5x + 3\)

 \(\begin{array}{l} \Leftrightarrow 3x - 3 + 4y - 8 - 5x - 3 < 0\\ \Leftrightarrow - 2x + 4y - 14 < 0\\ \Leftrightarrow x - 2y + 7 > 0\end{array}\)

Lần lượt thay các cặp số vào BPT, ta được:

+ \(2 - 2.5 + 7 = - 1 > 0\)sai nên \((2;5)\) không là nghiệm của bất phương trình

+ \( - 2 - 2.3 + 7 = - 1 > 0\) sai nên \(( - 2;3)\) không là nghiệm của bất phương trình

+ \(0 - 2.6 + 7 = - 5 > 0\) sai nên \((0;6)\) không là nghiệm của bất phương trình

+ \(4 - 2.5 + 7 = 1 > 0\) đúng nên \((4;5)\) là nghiệm của bất phương trình

Chọn D.

Câu 6:

Phương pháp:

Xác định đường thẳng \(x - 2y = 4\) và xét một điểm (không thuộc đường thẳng) xem có thuộc miền nghiệm hay không.

Cách giải:

Miền nghiệm của bất phương trình \(x - 2y < 4\) là:

Đường thẳng \(x - 2y = 4\) đi qua điểm có tọa độ (4;0) và (0; -2) => Loại C, D.

Xét điểm O(0;0), ta có: \(0 - 2.0 = 0 < 4\) nên O thuộc miền nghiệm.

Chọn A.

Câu 7:

Phương pháp:

Bước 1: Biểu diễn miền nghiệm, xác định các đỉnh của miền nghiệm

Bước 2: Thay tọa độ các đỉnh vào \(F(x;y) = x - 3y\), kết luận giá trị nhỏ nhất.

Cách giải:

Xét hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

Biểu diễn miền nghiệm của hệ, ta được

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 6

Miền nghiệm là miền tứ giác ABCD trong đó \(A\left( {0;2} \right),{\rm{ }}B\left( {0;5} \right),{\rm{ }}C\left( {\frac{{11}}{3};5} \right),D(2;0)\)

Thay tọa độ các điểm A, B, C, D vào \(F(x;y) = x - 3y\) ta được

\(F(0;2) = 0 - 3.2 = - 6\)

\(F(0;5) = 0 - 3.5 = - 15\)

\(F\left( {\frac{{11}}{3};5} \right) = \frac{{11}}{3} - 3.5 = - \frac{{34}}{3}\)

\(F(2;0) = 2 - 3.0 = 2\)

Vậy giá trị nhỏ nhất của F bằng -15.

Chọn D.

Câu 8:

Phương pháp:

\(\frac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\)

Cách giải:

Hàm số \(y = \frac{{x + 1}}{{{x^2} - 4}}\) xác định khi \({x^2} - 4 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne - 2\end{array} \right.\)

Tập xác định là \(\mathbb{R}{\rm{\backslash }}\{ - 2;2\} \)

Chọn C.

Câu 9:

Phương pháp:

Số giao điểm của Parabol \((P):y = f(x)\) với trục hoành là số nghiệm của phương trình \(f(x) = 0\).

Cách giải:

Xét phương trình hoành độ giao điểm của (P) với trục hoành là:

\(\begin{array}{l}{x^2} - 6x + 9 = 0\\ \Leftrightarrow {\left( {x - 3} \right)^2} = 0\\ \Leftrightarrow x - 3 = 0\\ \Leftrightarrow x = 3\end{array}\)

PT có nghiệm duy nhất \(x = 3\) nên parabol có đúng 1 điểm chung với trục hoành

Chọn B.

Câu 10:

Cách giải:

Từ bảng biến thiên ta suy ra

Hàm số đồng biến trên \(( - \infty ; - 1)\) và \((3; + \infty )\)

Hàm số nghịch biến trên \(( - 1;3)\)

+ Vì \( - 3, - 2 \in ( - \infty ; - 1)\) và \( - 3 < - 2\) nên \(f( - 3) < f( - 2)\) => A sai.

+ Vì \(2,\sqrt 5 \in ( - 1;3)\) và \(2 < \sqrt 5 \) nên \(f(2) > f(\sqrt 5 )\) => B sai.

+ Vì \(0,1 \in ( - 1;3)\) và \(0 < 1\) nên \(f(0) > f(1)\) => C đúng.

+ Vì \(2000,2022 \in (3; + \infty )\) và \(2000 < 2022\) nên \(f(2020) < f(2022)\) => D sai.

Chọn C.

Câu 11:

Phương pháp:

Đường thẳng song song với đường thẳng \(y = ax + b\) có dạng \(y = ax + b'\) với \(b \ne b'\)

Cách giải:

Đường thẳng song song với đường thẳng \(y = \sqrt 3 x + 1\) có dạng \(y = \sqrt 3 x + b'\) với \(b' \ne 1\)

Chọn C.

Câu 12:

Cách giải:

Xét hàm số \(f(x) = {x^2} - 4x + 10\), có \(a = 1 > 0,b = - 4,c = 10\)

\( \Rightarrow \frac{{ - b}}{{2a}} = 2;\frac{{ - \Delta }}{{4a}} = \frac{{ - {{( - 4)}^2} + 4.1.10}}{4} = 6\)

Bảng biến thiên:

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 7

Hàm số đồng biến trên \((2; + \infty )\) và nghịch biến trên \(( - \infty ;2)\).

Chọn A.

II. PHẦN TỰ LUẬN

Câu 1 (TH):

Phương pháp:

a) \(A \cap B = \{ x \in A|x \in B\} \)

b) \(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)

c) \(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)

Cách giải:

a) Biểu diễn hai tập \(( - \infty ;1)\) và \(( - 2; + \infty )\) trên trục số, ta được:

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 8

Giao của hai tập hợp: \(( - \infty ;1) \cap ( - 2; + \infty ) = ( - 2;1)\)

b) Biểu diễn hai tập \((3;7]\) và \(( - 1;5]\) trên trục số, ta được:

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 9

Hợp của hai tập hợp: \((3;7] \cup ( - 1;5] = ( - 1;7]\)

c) Biểu diễn hai tập \(( - 4;7]\) và \([2; + \infty )\) trên trục số, ta được:

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 10

Hiệu của hai tập hợp: \(( - 4;7]{\rm{\backslash }}[2; + \infty ) = ( - 4;2)\)

Câu 2 (VD):

Cách giải:

Gọi số hoa tươi và hoa sáp cần mua lần lượt là x, y (bông). \((x,y \in \mathbb{N})\)

Mua tối đa 210 bông nên ta có: \(x + y \le 210\)

Số hoa tươi cần mua ít nhất là 50 bông, số hoa sáp tối đa là 100 bông hay \(x \ge 50;0 \le y \le 100\)

Số hoa sáp chiếm ít nhất \(\frac{1}{3}\) tổng số hoa nên \(y \ge \frac{1}{3}(x + y)\) hay \(x - 2y \le 0\)

Lợi nhuận thu được là: \(F(x;y) = 4x + 3y\)

Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 50\\0 \le y \le 100\\x + y \le 210\\x - 2y \le 0\end{array} \right.\)

Biểu diễn miền nghiệm trên hệ trục Oxy, ta được:

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 11

Miền nghiệm là miền tứ giác ABCD (kể cả các cạnh) , trong đó \(A(50;25),B(50;100),C(110;100),D(140;70)\)

Lần lượt thay tọa độ các điểm A, B, C, D vào biểu thức \(F(x;y) = 4x + 3y\) ta được:

\(\begin{array}{l}F(50;25) = 4.50 + 3.25 = 275\\F(50;100) = 4.50 + 3.100 = 500\\F(110;100) = 4.110 + 3.100 = 740\\F(140;70) = 4.140 + 3.70 = 770\end{array}\)

Do đó F đạt giá trị lớn nhất bằng 770 tại \(x = 140;y = 70\)

Vậy cô Lan cần mua 140 bông hoa tươi và 70 bông hoa sáp.

Câu 3:

Cách giải:

a) Parabol \((P):y = a{x^2} + bx + 2\) đi qua A(1;0) nên \(0 = a{.1^2} + b.1 + 2 \Leftrightarrow a + b = - 2\)

Lại có: (P) có trục đối xứng \(x = - \frac{b}{{2a}} = \frac{3}{2}\)\( \Rightarrow 3a = - b\)

Từ đây ta tìm được \(a = 1,b = - 3\)

Vậy parabol đó là \((P):y = {x^2} - 3x + 2\)

b) Parabol \((P):y = {x^2} - 3x + 2\) có \(a = 1 > 0,b = - 3\)

Bảng biến thiên

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 12

Hàm số đồng biến trên \((\frac{3}{2}; + \infty )\) và nghịch biến trên \(( - \infty ;\frac{3}{2})\).

+ Vẽ đồ thị

Đỉnh \(I(\frac{3}{2};2)\)

(P) giao Ox tại \(A\left( {1;0} \right)\) và \(B(2;0)\)

(P) giao Oy tại điểm C(0;2)

Điểm D(3;2) đối xứng với C(0;2) qua trục đối xứng.

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 13

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1: Tổng quan và hướng dẫn giải chi tiết

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 đóng vai trò quan trọng trong việc đánh giá mức độ nắm vững kiến thức của học sinh sau một nửa học kì. Đề thi này không chỉ kiểm tra khả năng vận dụng công thức mà còn đánh giá tư duy logic và kỹ năng giải quyết vấn đề của học sinh. Bài viết này sẽ cung cấp một cái nhìn tổng quan về đề thi, phân tích cấu trúc, các dạng bài tập thường gặp và hướng dẫn giải chi tiết một số câu hỏi điển hình.

Cấu trúc đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1

Thông thường, đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 bao gồm các phần sau:

  • Phần trắc nghiệm: Khoảng 5-7 câu, tập trung vào các kiến thức cơ bản như tập hợp, số thực, bất phương trình, hệ bất phương trình, hàm số bậc nhất và bậc hai.
  • Phần tự luận: Khoảng 3-5 câu, yêu cầu học sinh trình bày chi tiết lời giải. Các dạng bài tập tự luận thường gặp bao gồm:

    • Giải phương trình, bất phương trình, hệ phương trình, hệ bất phương trình.
    • Chứng minh bất đẳng thức.
    • Giải bài toán thực tế liên quan đến hàm số.
    • Ứng dụng kiến thức về vectơ trong hình học.

Các dạng bài tập thường gặp trong đề thi

Dưới đây là một số dạng bài tập thường xuất hiện trong đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1:

  1. Bài tập về tập hợp: Xác định các tập hợp, thực hiện các phép toán trên tập hợp (hợp, giao, hiệu, bù).
  2. Bài tập về số thực: So sánh, biểu diễn số thực trên trục số, tính giá trị tuyệt đối.
  3. Bài tập về bất phương trình: Giải bất phương trình bậc nhất, bất phương trình bậc hai, hệ bất phương trình.
  4. Bài tập về hàm số: Xác định tập xác định, tập giá trị, vẽ đồ thị hàm số, tìm điểm thuộc đồ thị, xét tính đơn điệu của hàm số.
  5. Bài tập về vectơ: Thực hiện các phép toán trên vectơ (cộng, trừ, nhân với một số), chứng minh đẳng thức vectơ, tìm tọa độ của vectơ.

Hướng dẫn giải chi tiết một số câu hỏi điển hình

Ví dụ 1: Giải bất phương trình 2x + 3 > 5

Lời giải:

2x + 3 > 5

2x > 5 - 3

2x > 2

x > 1

Vậy, nghiệm của bất phương trình là x > 1.

Ví dụ 2: Tìm tập xác định của hàm số y = √(x - 2)

Lời giải:

Hàm số y = √(x - 2) xác định khi và chỉ khi x - 2 ≥ 0

Suy ra x ≥ 2

Vậy, tập xác định của hàm số là [2, +∞).

Lời khuyên để đạt kết quả tốt trong kỳ thi

  • Nắm vững kiến thức cơ bản: Đảm bảo hiểu rõ các định nghĩa, định lý, công thức và các quy tắc trong chương trình học.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập thường gặp.
  • Ôn tập theo cấu trúc đề thi: Luyện tập với các đề thi thử để làm quen với cấu trúc đề thi và phân bổ thời gian hợp lý.
  • Kiểm tra lại bài làm: Sau khi làm xong bài thi, hãy dành thời gian kiểm tra lại bài làm để phát hiện và sửa lỗi.
  • Giữ tâm lý bình tĩnh: Trong quá trình làm bài thi, hãy giữ tâm lý bình tĩnh và tự tin để đạt được kết quả tốt nhất.

Kết luận

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 1 là một cơ hội tốt để học sinh đánh giá năng lực và chuẩn bị cho các kỳ thi tiếp theo. Hy vọng với những thông tin và hướng dẫn trong bài viết này, các em sẽ tự tin hơn và đạt được kết quả tốt nhất trong kỳ thi sắp tới. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 10