Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2, được biên soạn theo chuẩn chương trình học mới nhất. Đề thi này là tài liệu ôn tập và luyện thi vô cùng hữu ích cho các em học sinh.

Đề thi bao gồm các dạng bài tập đa dạng, bám sát nội dung sách giáo khoa và có độ khó phù hợp, giúp các em làm quen với cấu trúc đề thi thực tế và rèn luyện kỹ năng giải toán.

Câu 1. Kí hiệu nào sau đây viết đúng mệnh đề: “(sqrt 2 ) không là số hữu tỉ” A. (sqrt 2 = mathbb{Q}) B. (sqrt 2 in mathbb{Q}) C. (sqrt 2 subset mathbb{Q}) D. (sqrt 2 notin mathbb{Q})

Đề bài

    I. PHẦN TRẮC NGHIỆM

    Câu 1. Kí hiệu nào sau đây viết đúng mệnh đề: “\(\sqrt 2 \) không là số hữu tỉ”

    A. \(\sqrt 2 = \mathbb{Q}\)B. \(\sqrt 2 \in \mathbb{Q}\) C. \(\sqrt 2 \subset \mathbb{Q}\) D. \(\sqrt 2 \notin \mathbb{Q}\)

    Câu 2. Trong các mệnh đề sau, mệnh đề nào đúng?

    A. \(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > - 2\). B. \(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > 2\). C. \(\forall x \in \mathbb{R},x > - 2 \Rightarrow {x^2} > 4\). D. \(\forall x \in \mathbb{R},x > 2 \Rightarrow {x^2} > 4\)

    Câu 3. Cho A là tập hợp các số tự nhiên chẵn, \(B = \{ n \in \mathbb{N}|n \le 8\} \) và \(C = \{ n \in \mathbb{N}|2 \le n \le 5\} \).

    Tìm tập hợp \(A \cap \left( {B \cap C} \right)\)

    A. \(\{ 2;4\} \) B. \(\{ 2\} \). C. \(\{ 4\} \). D. \(\emptyset \).

    Câu 4. Cho \(A = ( - 2;5]\) và \(B = (m; + \infty )\). Tìm \(m \in \mathbb{Z}\) để \(A{\rm{\backslash }}B\) chứa đúng 3 số nguyên là:

    A. \(0\). B. \(1\). C. \(2\) D. \(3\)

    Câu 5. Để chuẩn bị cho các tiết mục văn nghệ, lớp 10B cử ra 12 bạn tham gia tiết mục múa và 7 bạn vào tiết mục hát. Biết rằng có 3 bạn tham gia cả hai tiết mục và 22 bạn không tham gia văn nghệ. Số học sinh lớp 10B là:

    A. \(36\). B. \(38\). C. \(40\). D. \(45\).

    Câu 6. Miền nghiệm của bất phương trình \(x - 2y \ge 4\) là:

    A.Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 0 1 B.Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 0 2

    C.Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 0 3 D. Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 0 4

    Câu 7. Giá trị lớn nhất của \(F(x;y) = x - 3y\), với điều kiện \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

    A.\(2\) B. \( - 6\) C.\( - \frac{{34}}{3}\) D. \( - 15\)

    Câu 8. Tập xác định của hàm số \(y = \frac{{x - 2}}{{{x^2} - 9}}\)

    A.\(\mathbb{R}\). B. \(\mathbb{R}{\rm{\backslash }}\{ 3\} \) C. \(\mathbb{R}{\rm{\backslash }}\{ - 3;3\} \). D. \(\mathbb{R}{\rm{\backslash }}\{ - 3;2;3\} \).

    Câu 9. Parabol \((P):y = {x^2} - 6x + 5\) có số điểm chung với trục hoành là

    A.\(0\) B. \(1\). C. \(2\). D. \(3\).

    Câu 10. Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

    Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 0 5

     Khẳng định nào sau đây sai?

    A. \(f( - 3) > f( - 2)\) B. \(f(2) < f(\sqrt 5 )\) C. \(f(1) < f(0)\) D. \(f(2020) > f(2022)\)

    Câu 11. Đường thẳng nào dưới đây song song với đường thẳng \(y = \sqrt 2 x + 1\)

    A. \(y = - \sqrt 2 x + 1\) B. \(y = \frac{{\sqrt 2 }}{2}x - 3\) C. \(y = \sqrt 2 x + 5\). D. \(y = \sqrt 2 - 5x\).

    Câu 12. Cho hàm số \(f(x) = {x^2} - 4x + 3\). Khẳng định nào sau đây đúng?

    A.Hàm số nghịch biến trên \(( - \infty ;2)\), đồng biến trên\((2; + \infty )\).

    B.Hàm số nghịch biến trên \((2; + \infty )\), đồng biến trên\(( - \infty ;2)\).

    C. Hàm số nghịch biến trên\(\mathbb{R}\).

    D. Hàm số đồng biến trên\(\mathbb{R}\).

    Câu 13. Điểm \(A(1;2)\) thuộc miền nghiệm của hệ bất phương trình nào dưới đây?

    A. \(\left\{ \begin{array}{l}x + 2y > 7\\3x - y < 5\end{array} \right.\) B. \(\left\{ \begin{array}{l}2x - y > 7\\x + y \le 3\end{array} \right.\) C. \(\left\{ \begin{array}{l}3x + 4 \le 10\\4x - y > 3\end{array} \right.\) D.\(\left\{ \begin{array}{l}2x + 5y > 8\\x - 3y \le 4\end{array} \right.\)

    Câu 14. Cho hàm số \(f(x) = \left\{ \begin{array}{l}\sqrt {x + 1} - 2\quad (x \ge 1)\\3{x^2} - x + 1\quad (x < 1)\end{array} \right.\). Giá trị của \(2.f( - 3) - 4.f(3)\) là:

    A. \(58\) B. \(62\) C. \( - 1\). D. \(1\).

    Câu 15. Cho bất phương trình \(2(2x - 3y) - (2x - y + 5) > x - 3y + 1\). Điểm nào dưới đây thuộc miền nghiệm của hệ đã cho?

    A. \(O(0;0)\) B. \(A(1;0)\). C. \(B(3; - 2)\). D. \(C(0;2)\)

    II. PHẦN TỰ LUẬN

    Câu 1. Xác định các tập hợp sau và biểu diễn chúng trên trục số.

    a) \(( - \infty ;3) \cap ( - 4; + \infty )\) b) \((1;6] \cup ( - 2;5]\) c) \([ - 3;7){\rm{\backslash }}(1; + \infty )\) d) \(\mathbb{R}{\rm{\backslash }}( - 1;8]\)

    Câu 2. Nhà cô Minh có mảnh vườn rộng \(8{m^2}\). Cô dự định trồng cà chua và cải bắp trên toàn bộ mảnh vườn đó. Nếu trồng cà chua thì cần 20 công và thu được 300 nghìn đồng trên mỗi \({m^2}\). Nếu trồng cải bắp thì cần 30 công và thu được 400 nghìn đồng trên mỗi \({m^2}\). Hỏi cần cần trồng mỗi loại cây trên diện tích bao nhiêu để tthu được nhiều tiền nhất mà tổng số công không quá 180?

    Câu 3.

    a) Xác định parabol (P) biết \((P):y = a{x^2} + bx + c\) đi qua A(0;5) và có đỉnh \(I(3; - 4)\)

    b) Xét sự biến thiên và vẽ đồ thị hàm số trên.

    Câu 4. Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của hàm số: \(y = 2{x^2} - 4x + 3\) trên đoạn [-1;4].

    Lời giải chi tiết

      I. PHẦN TRẮC NGHIỆM

      1. D

      2. D

      3. A

      4. B

      5. B

      6. B

      7. A

      8. C

      9. C

      10. C

      11. C

      12. A

      13. D

      14. B

      15. C

      Câu 1:

      Cách giải:

      Tập hợp các số hữu tỉ: \(\mathbb{Q}\)

      “\(\sqrt 2 \) không là số hữu tỉ” viết là: \(\sqrt 2 \notin \mathbb{Q}\)

      Chọn D.

      Câu 2:

      Cách giải:

      Mệnh đề “\(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > - 2\)” sai, chẳng hạn \(x = - 3\) thì \({x^2} > 4\) nhưng \(x < - 2\)

      Mệnh đề “\(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > 2\)” sai, chẳng hạn \(x = - 3\) thì \({x^2} > 4\) nhưng \(x < 2\)

      Mệnh đề “\(\forall x \in \mathbb{R},x > - 2 \Rightarrow {x^2} > 4\)” sai, chẳng hạn \(x = 0 > - 2\) nhưng \({x^2} < 4\)

      Mệnh đề “\(\forall x \in \mathbb{R},x > 2 \Rightarrow {x^2} > 4\)” đúng

      Chọn D.

      Câu 3:

      Phương pháp:

      Cho A là tập hợp các số tự nhiên chẵn, \(B = \{ n \in \mathbb{N}|n \le 8\} \) và \(C = \{ n \in \mathbb{N}|2 \le n \le 5\} \).

      Tìm tập hợp \(A \cap \left( {B \cap C} \right)\)

      Cách giải:

      \(A = \{ 0;2;4;6;8;...\} \)

      \(B = \{ 0;1;2;3;4;5;6;7;8\} \)

      \(C = \{ 2;3;4;5\} \).

      Ta có: \(B \cap C = \{ 2;3;4;5\} = C \Rightarrow A \cap \left( {B \cap C} \right) = A \cap C = \{ 2;4\} \)

      Chọn A.

      Câu 4:

      Cách giải:

      + Nếu \(m \ge 5\) thì \(A{\rm{\backslash }}B = ( - 2;5]{\rm{\backslash }}(m; + \infty ) = A = ( - 2;5]\), chứa 7 số nguyên là -1 ; 0 ;1 ;2 ;3 ;4 ;5 (nhiều hơn 3) nên ta loại trường hợp m > 5.

      + Để \(A{\rm{\backslash }}B \ne \emptyset \) thì m>-2. Xét trường hợp -2<m<5, khi đó \(A{\rm{\backslash }}B = ( - 2;5]{\rm{\backslash }}(m; + \infty ) = ( - 2;m]\)

      Chứa 3 số nguyên -1 ;0 ;1 thì m=1.

      Chọn B.

      Câu 5:

      Phương pháp:

      Thay cặp số vào BPT, cặp số nào cho ta mệnh đề đúng thì cặp số đó là nghiệm của BPT đã cho.

      Để chuẩn bị cho các tiết mục văn nghệ, lớp 10B cử ra 12 bạn tham gia tiết mục múa và 7 bạn vào tiết mục hát. Biết rằng có 3 bạn tham gia cả hai tiết mục và 22 bạn không tham gia văn nghệ. Số học sinh lớp 10B là:

      Gọi A là tập hợp các học sinh tham gia tiết mục múa.

      B là là tập hợp các học sinh tham gia tiết mục hát.

      Cách giải:

      Gọi A là tập hợp các học sinh tham gia tiết mục múa.

      B là là tập hợp các học sinh tham gia tiết mục hát.

      Suy ra : \(A \cup B\) là tập hợp các học sinh tham gia văn nghệ.

      \(A \cap B\) là tập hợp các học sinh tham gia cả hai tiết mục.

      Ta có : \(n(A) = 12;n(B) = 7;n(A \cap B) = 3\)

      \( \Rightarrow \) Số học sinh tham gia văn nghệ là : \(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 12 + 7 - 3 = 16\) (học sinh)

      Số học sinh lớp 10B (gồm học sinh tham gia văn nghệ và các học sinh không tham gia văn nghệ) là : \(16 + 22 = 38\) (học sinh)

      Chọn B.

      Câu 6:

      Phương pháp:

      Xác định đường thẳng \(x - 2y = 4\) và xét một điểm (không thuộc đường thẳng) xem có thuộc miền nghiệm hay không.

      Cách giải:

      Đường thẳng \(x - 2y = 4\) đi qua điểm có tọa độ (4;0) và (0; -2) => Loại C, D.

      Xét điểm O(0;0), ta có: \(0 - 2.0 = 0 < 4\) nên O không thuộc miền nghiệm.

      Chọn B.

      Câu 7:

      Phương pháp:

      Bước 1: Biểu diễn miền nghiệm, xác định các đỉnh của miền nghiệm

      Bước 2: Thay tọa độ các đỉnh vào \(F(x;y) = x - 3y\), kết luận giá trị nhỏ nhất.

      Cách giải:

      Xét hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

      Biểu diễn miền nghiệm của hệ, ta được

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 1

      Miền nghiệm là miền tứ giác ABCD trong đó \(A\left( {0;2} \right),{\rm{ }}B\left( {0;5} \right),{\rm{ }}C\left( {\frac{{11}}{3};5} \right),D(2;0)\)

      Thay tọa độ các điểm A, B, C, D vào \(F(x;y) = x - 3y\) ta được

      \(F(0;2) = 0 - 3.2 = - 6\)

      \(F(0;5) = 0 - 3.5 = - 15\)

      \(F\left( {\frac{{11}}{3};5} \right) = \frac{{11}}{3} - 3.5 = - \frac{{34}}{3}\)

      \(F(2;0) = 2 - 3.0 = 2\)

      Vậy giá trị lớn nhất của F bằng 2.

      Chọn A.

      Câu 8:

      Phương pháp:

      \(\frac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\)

      Cách giải:

      Hàm số \(y = \frac{{x - 2}}{{{x^2} - 9}}\) xác định khi \({x^2} - 9 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x \ne - 3\end{array} \right.\)

      Tập xác định là \(\mathbb{R}{\rm{\backslash }}\{ - 3;3\} \)

      Chọn C.

      Câu 9:

      Phương pháp:

      Số giao điểm của Parabol \((P):y = f(x)\) với trục hoành là số nghiệm của phương trình \(f(x) = 0\).

      Cách giải:

      Xét phương trình hoành độ giao điểm của (P) với trục hoành là:

      \(\begin{array}{l}{x^2} - 6x + 5 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 1\end{array} \right.\end{array}\)

      PT có 2 nghiệm phân biệt nên parabol có đúng 2 điểm chung với trục hoành

      Chọn C.

      Câu 10:

      Cách giải:

      Từ bảng biến thiên ta suy ra

      Hàm số đồng biến trên \(( - 1;3)\)

      Hàm số nghịch biến trên \(( - \infty ; - 1)\) và \((3; + \infty )\)

      + Vì \( - 3, - 2 \in ( - \infty ;1)\) và \( - 3 < - 2\) nên \(f( - 3) > f( - 2)\) => A đúng.

      + Vì \(2,\sqrt 5 \in ( - 1;3)\) và \(2 < \sqrt 5 \) nên \(f(2) < f(\sqrt 5 )\) => B đúng.

      + Vì \(0,1 \in ( - 1;3)\) và \(0 < 1\) nên \(f(0) < f(1)\) => C sai.

      + Vì \(2000,2022 \in (3; + \infty )\) và \(2000 < 2022\) nên \(f(2020) > f(2022)\) => D đúng.

      Chọn C.

      Câu 11:

      Phương pháp:

      Đường thẳng song song với đường thẳng \(y = ax + b\) có dạng \(y = ax + b'\) với \(b \ne b'\)

      Cách giải:

      Đường thẳng song song với đường thẳng \(y = \sqrt 2 x + 1\) có dạng \(y = \sqrt 2 x + b'\) với \(b' \ne 1\)

      Chọn C.

      Câu 12:

      Cách giải:

      Xét hàm số \(f(x) = {x^2} - 4x + 3\), có \(a = 1 > 0,b = - 4,c = 3\)

      \( \Rightarrow \frac{{ - b}}{{2a}} = 2;\frac{{ - \Delta }}{{4a}} = \frac{{ - {{( - 4)}^2} + 4.1.3}}{4} = - 1\)

      Bảng biến thiên:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 2

      Hàm số đồng biến trên \((2; + \infty )\)và nghịch biến trên\(( - \infty ;2)\).

      Chọn A.

      Câu 13.

      Phương pháp:

      Thay tọa độ điểm A vào hệ BPT, hệ nào cho ta các mệnh đề đúng thì điểm A thuộc miền nghiệm của hệ BPT đó.

      Cách giải

      + Xét hệ \(\left\{ \begin{array}{l}x + 2y > 7\\3x - y < 5\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(1 + 2.2 > 7\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}2x - y > 7\\x + y \le 3\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(2.1 - 2 > 7\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}3x + 4 \le 10\\4x - y > 3\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(4.1 - 2 > 3\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}2x + 5y > 8\\x - 3y \le 4\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(\left\{ \begin{array}{l}2.1 + 5.2 > 8\\1 - 3.2 \le 4\end{array} \right.\) đúng nên A(1;2) thuộc miền nghiệm của hệ BPT.

      Chọn D.

      Câu 14:

      Cách giải:

      Tại \(x = - 3 < 1\) thì \(f( - 3) = 3.{( - 3)^2} - ( - 3) + 1 = 31\)

      Tại \(x = 2 \ge 1\) thì \(f(3) = \sqrt {3 + 1} - 2 = 0\)

      \( \Rightarrow 2.f( - 3) - 4.f(3) = 2.31 - 4.0 = 62\)

      Chọn B.

      Câu 15.

      Cách giải:

      Ta có: \(2(2x - 3y) - (2x - y + 5) > x - 3y + 1\)

      \(\begin{array}{l} \Leftrightarrow 4x - 6y - 2x + y - 5 - x + 3y - 1 > 0\\ \Leftrightarrow x - 2y - 6 > 0\end{array}\)

      Thay tọa độ các điểm vào BPT:

      + Vì \(0 - 2.0 - 6 = - 6 < 0\) nên \(O(0;0)\) không thuộc miền nghiệm

      + Vì \(1 - 2.0 - 6 = - 5 < 0\) nên \(A(1;0)\) không thuộc miền nghiệm

      + Vì \(3 - 2.( - 2) - 6 = 1 > 0\) nên \(B(3; - 2)\) thuộc miền nghiệm

      + Vì \(0 - 2.2 - 6 = - 10 < 0\) nên \(C(0;2)\) không thuộc miền nghiệm

      Chọn C

      II. PHẦN TỰ LUẬN

      Câu 1 (TH):

      Phương pháp:

      a) \(A \cap B = \{ x \in A|x \in B\} \)

      b) \(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)

      c) \(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)

      Cách giải:

      a) Biểu diễn hai tập \(( - \infty ;3)\) và \(( - 4; + \infty )\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 3

      Giao của hai tập hợp: \(( - \infty ;3) \cap ( - 4; + \infty ) = ( - 4;3)\)

      b) Biểu diễn hai tập \((1;6]\) và \(( - 2;5]\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 4

      Hợp của hai tập hợp: \((1;6] \cup ( - 2;5] = ( - 2;6]\)

      c) Biểu diễn hai tập \(( - 3;7]\) và \((1; + \infty )\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 5

      Hiệu của hai tập hợp: \([ - 3;7){\rm{\backslash }}(1; + \infty ) = [ - 3;1]\)

      d) Biểu diễn tập \(( - 1;8]\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 6

      Hiệu của hai tập hợp: \(\mathbb{R}{\rm{\backslash }}( - 1;8] = ( - \infty ; - 1] \cup (8; + \infty )\)

      Câu 2:

      Nhà cô Minh có mảnh vườn rộng \(8{m^2}\). Cô dự định trồng cà chua và cải bắp trên toàn bộ mảnh vườn đó. Nếu trồng cà chua thì cần 20 công và thu được 300 nghìn đồng trên mỗi \({m^2}\). Nếu trồng cải bắp thì cần 30 công và thu được 400 nghìn đồng trên mỗi \({m^2}\). Hỏi cần cần trồng mỗi loại cây trên diện tích bao nhiêu để tthu được nhiều tiền nhất mà tổng số công không quá 180?

      Cách giải:

      Gọi diện tích trồng cà chua và cải bắp lần lượt là x, y (đơn vị: \({m^2}\)). \((x,y \ge 0)\)

      Mảnh vườn rộng \(8{m^2}\) nên ta có: \(x + y \le 8\)

      Khi trồng x \({m^2}\) cà chua thì cần \(20x\) công và thu được \(300x\) nghìn đồng

      Khi trồng y \({m^2}\) cải bắp thì cần \(30x\) công và thu được \(400x\) nghìn đồng

      Tổng số công không quá 180 nên ta có: \(20x + 30y \le 180\) hay \(2x + 3y \le 18\)

      Tổng số tiền thu được là: \(F(x;y) = 300x + 400y\)

      Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 8\\0 \le y \le 8\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\)

      Biểu diễn miền nghiệm trên hệ trục Oxy, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 7

      Miền nghiệm là miền tứ giác ABCD (kể cả các cạnh) , trong đó \(A(0;6),B(6;2),C(8;0),O(0;0)\)

      Lần lượt thay tọa độ các điểm A, B, C, D vào biểu thức \(F(x;y) = 300x + 400y\) ta được:

      \(\begin{array}{l}F(0;0) = 300.0 + 400.0 = 0\\F(0;6) = 300.0 + 400.6 = 2400\\F(6;2) = 300.6 + 400.2 = 2600\\F(8;0) = 300.8 + 400.0 = 2400\end{array}\)

      Do đó F đạt giá trị lớn nhất bằng 2600 tại \(x = 6;y = 2\)

      Vậy cô Minh cần mua trồng \(6{m^2}\) cà chua và \(2{m^2}\) cải bắp.

      Câu 3:

      Cách giải:

      a) Parabol \((P):y = a{x^2} + bx + c\) đi qua A(0;5) nên \(5 = a{.0^2} + b.0 + c \Leftrightarrow c = - 5\)

      Lại có: (P) có đỉnh \(I(3; - 4)\)

      \( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = 3\\a{.3^2} + b.3 + 5 = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6a + b = 0\\9a + 3b = - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 6\end{array} \right.\)

      Vậy parabol đó là \((P):y = {x^2} - 6x + 5\)

      b) Parabol \((P):y = {x^2} - 6x + 5\) có \(a = 1 > 0,b = - 6\)

      Bảng biến thiên

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 8

      Hàm số đồng biến trên \((3; + \infty )\)và nghịch biến trên\(( - \infty ;3)\).

      + Vẽ đồ thị

      Đỉnh \(I(3; - 4)\)

      (P) giao Oy tại điểm \(A\left( {0;5} \right)\)

      (P) giao Ox tại \(B(1;0)\) và \(C(5;0)\)

      Điểm \(D(5;6)\) đối xứng với \(A\left( {0;5} \right)\) qua trục đối xứng.

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 9

      Câu 4. Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của hàm số: \(y = 2{x^2} - 4x + 3\) trên đoạn [-1;4].

      Cách giải:

      Hàm số \(y = 2{x^2} - 4x + 3\) có \(a = 2 > 0,b = - 4 \Rightarrow - \frac{b}{{2a}} = 1;\;y(1) = 1\).

      Ta có bảng biến thiên

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 10

      Mà \(f( - 1) = 9,f(4) = 19,f(1) = 1\)

      \( \Rightarrow \) Trên [-1;4]

       Hàm số đạt GTLN bằng 19 tại \(x = 4\), đạt GTNN bằng 1 tại \(x = 1\).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải chi tiết
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      I. PHẦN TRẮC NGHIỆM

      Câu 1. Kí hiệu nào sau đây viết đúng mệnh đề: “\(\sqrt 2 \) không là số hữu tỉ”

      A. \(\sqrt 2 = \mathbb{Q}\)B. \(\sqrt 2 \in \mathbb{Q}\) C. \(\sqrt 2 \subset \mathbb{Q}\) D. \(\sqrt 2 \notin \mathbb{Q}\)

      Câu 2. Trong các mệnh đề sau, mệnh đề nào đúng?

      A. \(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > - 2\). B. \(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > 2\). C. \(\forall x \in \mathbb{R},x > - 2 \Rightarrow {x^2} > 4\). D. \(\forall x \in \mathbb{R},x > 2 \Rightarrow {x^2} > 4\)

      Câu 3. Cho A là tập hợp các số tự nhiên chẵn, \(B = \{ n \in \mathbb{N}|n \le 8\} \) và \(C = \{ n \in \mathbb{N}|2 \le n \le 5\} \).

      Tìm tập hợp \(A \cap \left( {B \cap C} \right)\)

      A. \(\{ 2;4\} \) B. \(\{ 2\} \). C. \(\{ 4\} \). D. \(\emptyset \).

      Câu 4. Cho \(A = ( - 2;5]\) và \(B = (m; + \infty )\). Tìm \(m \in \mathbb{Z}\) để \(A{\rm{\backslash }}B\) chứa đúng 3 số nguyên là:

      A. \(0\). B. \(1\). C. \(2\) D. \(3\)

      Câu 5. Để chuẩn bị cho các tiết mục văn nghệ, lớp 10B cử ra 12 bạn tham gia tiết mục múa và 7 bạn vào tiết mục hát. Biết rằng có 3 bạn tham gia cả hai tiết mục và 22 bạn không tham gia văn nghệ. Số học sinh lớp 10B là:

      A. \(36\). B. \(38\). C. \(40\). D. \(45\).

      Câu 6. Miền nghiệm của bất phương trình \(x - 2y \ge 4\) là:

      A.Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 1 B.Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 2

      C.Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 3 D. Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 4

      Câu 7. Giá trị lớn nhất của \(F(x;y) = x - 3y\), với điều kiện \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

      A.\(2\) B. \( - 6\) C.\( - \frac{{34}}{3}\) D. \( - 15\)

      Câu 8. Tập xác định của hàm số \(y = \frac{{x - 2}}{{{x^2} - 9}}\)

      A.\(\mathbb{R}\). B. \(\mathbb{R}{\rm{\backslash }}\{ 3\} \) C. \(\mathbb{R}{\rm{\backslash }}\{ - 3;3\} \). D. \(\mathbb{R}{\rm{\backslash }}\{ - 3;2;3\} \).

      Câu 9. Parabol \((P):y = {x^2} - 6x + 5\) có số điểm chung với trục hoành là

      A.\(0\) B. \(1\). C. \(2\). D. \(3\).

      Câu 10. Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 5

       Khẳng định nào sau đây sai?

      A. \(f( - 3) > f( - 2)\) B. \(f(2) < f(\sqrt 5 )\) C. \(f(1) < f(0)\) D. \(f(2020) > f(2022)\)

      Câu 11. Đường thẳng nào dưới đây song song với đường thẳng \(y = \sqrt 2 x + 1\)

      A. \(y = - \sqrt 2 x + 1\) B. \(y = \frac{{\sqrt 2 }}{2}x - 3\) C. \(y = \sqrt 2 x + 5\). D. \(y = \sqrt 2 - 5x\).

      Câu 12. Cho hàm số \(f(x) = {x^2} - 4x + 3\). Khẳng định nào sau đây đúng?

      A.Hàm số nghịch biến trên \(( - \infty ;2)\), đồng biến trên\((2; + \infty )\).

      B.Hàm số nghịch biến trên \((2; + \infty )\), đồng biến trên\(( - \infty ;2)\).

      C. Hàm số nghịch biến trên\(\mathbb{R}\).

      D. Hàm số đồng biến trên\(\mathbb{R}\).

      Câu 13. Điểm \(A(1;2)\) thuộc miền nghiệm của hệ bất phương trình nào dưới đây?

      A. \(\left\{ \begin{array}{l}x + 2y > 7\\3x - y < 5\end{array} \right.\) B. \(\left\{ \begin{array}{l}2x - y > 7\\x + y \le 3\end{array} \right.\) C. \(\left\{ \begin{array}{l}3x + 4 \le 10\\4x - y > 3\end{array} \right.\) D.\(\left\{ \begin{array}{l}2x + 5y > 8\\x - 3y \le 4\end{array} \right.\)

      Câu 14. Cho hàm số \(f(x) = \left\{ \begin{array}{l}\sqrt {x + 1} - 2\quad (x \ge 1)\\3{x^2} - x + 1\quad (x < 1)\end{array} \right.\). Giá trị của \(2.f( - 3) - 4.f(3)\) là:

      A. \(58\) B. \(62\) C. \( - 1\). D. \(1\).

      Câu 15. Cho bất phương trình \(2(2x - 3y) - (2x - y + 5) > x - 3y + 1\). Điểm nào dưới đây thuộc miền nghiệm của hệ đã cho?

      A. \(O(0;0)\) B. \(A(1;0)\). C. \(B(3; - 2)\). D. \(C(0;2)\)

      II. PHẦN TỰ LUẬN

      Câu 1. Xác định các tập hợp sau và biểu diễn chúng trên trục số.

      a) \(( - \infty ;3) \cap ( - 4; + \infty )\) b) \((1;6] \cup ( - 2;5]\) c) \([ - 3;7){\rm{\backslash }}(1; + \infty )\) d) \(\mathbb{R}{\rm{\backslash }}( - 1;8]\)

      Câu 2. Nhà cô Minh có mảnh vườn rộng \(8{m^2}\). Cô dự định trồng cà chua và cải bắp trên toàn bộ mảnh vườn đó. Nếu trồng cà chua thì cần 20 công và thu được 300 nghìn đồng trên mỗi \({m^2}\). Nếu trồng cải bắp thì cần 30 công và thu được 400 nghìn đồng trên mỗi \({m^2}\). Hỏi cần cần trồng mỗi loại cây trên diện tích bao nhiêu để tthu được nhiều tiền nhất mà tổng số công không quá 180?

      Câu 3.

      a) Xác định parabol (P) biết \((P):y = a{x^2} + bx + c\) đi qua A(0;5) và có đỉnh \(I(3; - 4)\)

      b) Xét sự biến thiên và vẽ đồ thị hàm số trên.

      Câu 4. Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của hàm số: \(y = 2{x^2} - 4x + 3\) trên đoạn [-1;4].

      I. PHẦN TRẮC NGHIỆM

      1. D

      2. D

      3. A

      4. B

      5. B

      6. B

      7. A

      8. C

      9. C

      10. C

      11. C

      12. A

      13. D

      14. B

      15. C

      Câu 1:

      Cách giải:

      Tập hợp các số hữu tỉ: \(\mathbb{Q}\)

      “\(\sqrt 2 \) không là số hữu tỉ” viết là: \(\sqrt 2 \notin \mathbb{Q}\)

      Chọn D.

      Câu 2:

      Cách giải:

      Mệnh đề “\(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > - 2\)” sai, chẳng hạn \(x = - 3\) thì \({x^2} > 4\) nhưng \(x < - 2\)

      Mệnh đề “\(\forall x \in \mathbb{R},{x^2} > 4 \Rightarrow x > 2\)” sai, chẳng hạn \(x = - 3\) thì \({x^2} > 4\) nhưng \(x < 2\)

      Mệnh đề “\(\forall x \in \mathbb{R},x > - 2 \Rightarrow {x^2} > 4\)” sai, chẳng hạn \(x = 0 > - 2\) nhưng \({x^2} < 4\)

      Mệnh đề “\(\forall x \in \mathbb{R},x > 2 \Rightarrow {x^2} > 4\)” đúng

      Chọn D.

      Câu 3:

      Phương pháp:

      Cho A là tập hợp các số tự nhiên chẵn, \(B = \{ n \in \mathbb{N}|n \le 8\} \) và \(C = \{ n \in \mathbb{N}|2 \le n \le 5\} \).

      Tìm tập hợp \(A \cap \left( {B \cap C} \right)\)

      Cách giải:

      \(A = \{ 0;2;4;6;8;...\} \)

      \(B = \{ 0;1;2;3;4;5;6;7;8\} \)

      \(C = \{ 2;3;4;5\} \).

      Ta có: \(B \cap C = \{ 2;3;4;5\} = C \Rightarrow A \cap \left( {B \cap C} \right) = A \cap C = \{ 2;4\} \)

      Chọn A.

      Câu 4:

      Cách giải:

      + Nếu \(m \ge 5\) thì \(A{\rm{\backslash }}B = ( - 2;5]{\rm{\backslash }}(m; + \infty ) = A = ( - 2;5]\), chứa 7 số nguyên là -1 ; 0 ;1 ;2 ;3 ;4 ;5 (nhiều hơn 3) nên ta loại trường hợp m > 5.

      + Để \(A{\rm{\backslash }}B \ne \emptyset \) thì m>-2. Xét trường hợp -2<m<5, khi đó \(A{\rm{\backslash }}B = ( - 2;5]{\rm{\backslash }}(m; + \infty ) = ( - 2;m]\)

      Chứa 3 số nguyên -1 ;0 ;1 thì m=1.

      Chọn B.

      Câu 5:

      Phương pháp:

      Thay cặp số vào BPT, cặp số nào cho ta mệnh đề đúng thì cặp số đó là nghiệm của BPT đã cho.

      Để chuẩn bị cho các tiết mục văn nghệ, lớp 10B cử ra 12 bạn tham gia tiết mục múa và 7 bạn vào tiết mục hát. Biết rằng có 3 bạn tham gia cả hai tiết mục và 22 bạn không tham gia văn nghệ. Số học sinh lớp 10B là:

      Gọi A là tập hợp các học sinh tham gia tiết mục múa.

      B là là tập hợp các học sinh tham gia tiết mục hát.

      Cách giải:

      Gọi A là tập hợp các học sinh tham gia tiết mục múa.

      B là là tập hợp các học sinh tham gia tiết mục hát.

      Suy ra : \(A \cup B\) là tập hợp các học sinh tham gia văn nghệ.

      \(A \cap B\) là tập hợp các học sinh tham gia cả hai tiết mục.

      Ta có : \(n(A) = 12;n(B) = 7;n(A \cap B) = 3\)

      \( \Rightarrow \) Số học sinh tham gia văn nghệ là : \(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 12 + 7 - 3 = 16\) (học sinh)

      Số học sinh lớp 10B (gồm học sinh tham gia văn nghệ và các học sinh không tham gia văn nghệ) là : \(16 + 22 = 38\) (học sinh)

      Chọn B.

      Câu 6:

      Phương pháp:

      Xác định đường thẳng \(x - 2y = 4\) và xét một điểm (không thuộc đường thẳng) xem có thuộc miền nghiệm hay không.

      Cách giải:

      Đường thẳng \(x - 2y = 4\) đi qua điểm có tọa độ (4;0) và (0; -2) => Loại C, D.

      Xét điểm O(0;0), ta có: \(0 - 2.0 = 0 < 4\) nên O không thuộc miền nghiệm.

      Chọn B.

      Câu 7:

      Phương pháp:

      Bước 1: Biểu diễn miền nghiệm, xác định các đỉnh của miền nghiệm

      Bước 2: Thay tọa độ các đỉnh vào \(F(x;y) = x - 3y\), kết luận giá trị nhỏ nhất.

      Cách giải:

      Xét hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\0 \le y \le 5\\x + y - 2 \ge 0\\3x - y \le 6\end{array} \right.\)

      Biểu diễn miền nghiệm của hệ, ta được

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 6

      Miền nghiệm là miền tứ giác ABCD trong đó \(A\left( {0;2} \right),{\rm{ }}B\left( {0;5} \right),{\rm{ }}C\left( {\frac{{11}}{3};5} \right),D(2;0)\)

      Thay tọa độ các điểm A, B, C, D vào \(F(x;y) = x - 3y\) ta được

      \(F(0;2) = 0 - 3.2 = - 6\)

      \(F(0;5) = 0 - 3.5 = - 15\)

      \(F\left( {\frac{{11}}{3};5} \right) = \frac{{11}}{3} - 3.5 = - \frac{{34}}{3}\)

      \(F(2;0) = 2 - 3.0 = 2\)

      Vậy giá trị lớn nhất của F bằng 2.

      Chọn A.

      Câu 8:

      Phương pháp:

      \(\frac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\)

      Cách giải:

      Hàm số \(y = \frac{{x - 2}}{{{x^2} - 9}}\) xác định khi \({x^2} - 9 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x \ne - 3\end{array} \right.\)

      Tập xác định là \(\mathbb{R}{\rm{\backslash }}\{ - 3;3\} \)

      Chọn C.

      Câu 9:

      Phương pháp:

      Số giao điểm của Parabol \((P):y = f(x)\) với trục hoành là số nghiệm của phương trình \(f(x) = 0\).

      Cách giải:

      Xét phương trình hoành độ giao điểm của (P) với trục hoành là:

      \(\begin{array}{l}{x^2} - 6x + 5 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 1\end{array} \right.\end{array}\)

      PT có 2 nghiệm phân biệt nên parabol có đúng 2 điểm chung với trục hoành

      Chọn C.

      Câu 10:

      Cách giải:

      Từ bảng biến thiên ta suy ra

      Hàm số đồng biến trên \(( - 1;3)\)

      Hàm số nghịch biến trên \(( - \infty ; - 1)\) và \((3; + \infty )\)

      + Vì \( - 3, - 2 \in ( - \infty ;1)\) và \( - 3 < - 2\) nên \(f( - 3) > f( - 2)\) => A đúng.

      + Vì \(2,\sqrt 5 \in ( - 1;3)\) và \(2 < \sqrt 5 \) nên \(f(2) < f(\sqrt 5 )\) => B đúng.

      + Vì \(0,1 \in ( - 1;3)\) và \(0 < 1\) nên \(f(0) < f(1)\) => C sai.

      + Vì \(2000,2022 \in (3; + \infty )\) và \(2000 < 2022\) nên \(f(2020) > f(2022)\) => D đúng.

      Chọn C.

      Câu 11:

      Phương pháp:

      Đường thẳng song song với đường thẳng \(y = ax + b\) có dạng \(y = ax + b'\) với \(b \ne b'\)

      Cách giải:

      Đường thẳng song song với đường thẳng \(y = \sqrt 2 x + 1\) có dạng \(y = \sqrt 2 x + b'\) với \(b' \ne 1\)

      Chọn C.

      Câu 12:

      Cách giải:

      Xét hàm số \(f(x) = {x^2} - 4x + 3\), có \(a = 1 > 0,b = - 4,c = 3\)

      \( \Rightarrow \frac{{ - b}}{{2a}} = 2;\frac{{ - \Delta }}{{4a}} = \frac{{ - {{( - 4)}^2} + 4.1.3}}{4} = - 1\)

      Bảng biến thiên:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 7

      Hàm số đồng biến trên \((2; + \infty )\)và nghịch biến trên\(( - \infty ;2)\).

      Chọn A.

      Câu 13.

      Phương pháp:

      Thay tọa độ điểm A vào hệ BPT, hệ nào cho ta các mệnh đề đúng thì điểm A thuộc miền nghiệm của hệ BPT đó.

      Cách giải

      + Xét hệ \(\left\{ \begin{array}{l}x + 2y > 7\\3x - y < 5\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(1 + 2.2 > 7\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}2x - y > 7\\x + y \le 3\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(2.1 - 2 > 7\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}3x + 4 \le 10\\4x - y > 3\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(4.1 - 2 > 3\) sai nên A(1;2) không thuộc miền nghiệm của hệ BPT.

      + Xét hệ \(\left\{ \begin{array}{l}2x + 5y > 8\\x - 3y \le 4\end{array} \right.\), thay \(x = 1,y = 2\) ta được: \(\left\{ \begin{array}{l}2.1 + 5.2 > 8\\1 - 3.2 \le 4\end{array} \right.\) đúng nên A(1;2) thuộc miền nghiệm của hệ BPT.

      Chọn D.

      Câu 14:

      Cách giải:

      Tại \(x = - 3 < 1\) thì \(f( - 3) = 3.{( - 3)^2} - ( - 3) + 1 = 31\)

      Tại \(x = 2 \ge 1\) thì \(f(3) = \sqrt {3 + 1} - 2 = 0\)

      \( \Rightarrow 2.f( - 3) - 4.f(3) = 2.31 - 4.0 = 62\)

      Chọn B.

      Câu 15.

      Cách giải:

      Ta có: \(2(2x - 3y) - (2x - y + 5) > x - 3y + 1\)

      \(\begin{array}{l} \Leftrightarrow 4x - 6y - 2x + y - 5 - x + 3y - 1 > 0\\ \Leftrightarrow x - 2y - 6 > 0\end{array}\)

      Thay tọa độ các điểm vào BPT:

      + Vì \(0 - 2.0 - 6 = - 6 < 0\) nên \(O(0;0)\) không thuộc miền nghiệm

      + Vì \(1 - 2.0 - 6 = - 5 < 0\) nên \(A(1;0)\) không thuộc miền nghiệm

      + Vì \(3 - 2.( - 2) - 6 = 1 > 0\) nên \(B(3; - 2)\) thuộc miền nghiệm

      + Vì \(0 - 2.2 - 6 = - 10 < 0\) nên \(C(0;2)\) không thuộc miền nghiệm

      Chọn C

      II. PHẦN TỰ LUẬN

      Câu 1 (TH):

      Phương pháp:

      a) \(A \cap B = \{ x \in A|x \in B\} \)

      b) \(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)

      c) \(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)

      Cách giải:

      a) Biểu diễn hai tập \(( - \infty ;3)\) và \(( - 4; + \infty )\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 8

      Giao của hai tập hợp: \(( - \infty ;3) \cap ( - 4; + \infty ) = ( - 4;3)\)

      b) Biểu diễn hai tập \((1;6]\) và \(( - 2;5]\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 9

      Hợp của hai tập hợp: \((1;6] \cup ( - 2;5] = ( - 2;6]\)

      c) Biểu diễn hai tập \(( - 3;7]\) và \((1; + \infty )\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 10

      Hiệu của hai tập hợp: \([ - 3;7){\rm{\backslash }}(1; + \infty ) = [ - 3;1]\)

      d) Biểu diễn tập \(( - 1;8]\) trên trục số, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 11

      Hiệu của hai tập hợp: \(\mathbb{R}{\rm{\backslash }}( - 1;8] = ( - \infty ; - 1] \cup (8; + \infty )\)

      Câu 2:

      Nhà cô Minh có mảnh vườn rộng \(8{m^2}\). Cô dự định trồng cà chua và cải bắp trên toàn bộ mảnh vườn đó. Nếu trồng cà chua thì cần 20 công và thu được 300 nghìn đồng trên mỗi \({m^2}\). Nếu trồng cải bắp thì cần 30 công và thu được 400 nghìn đồng trên mỗi \({m^2}\). Hỏi cần cần trồng mỗi loại cây trên diện tích bao nhiêu để tthu được nhiều tiền nhất mà tổng số công không quá 180?

      Cách giải:

      Gọi diện tích trồng cà chua và cải bắp lần lượt là x, y (đơn vị: \({m^2}\)). \((x,y \ge 0)\)

      Mảnh vườn rộng \(8{m^2}\) nên ta có: \(x + y \le 8\)

      Khi trồng x \({m^2}\) cà chua thì cần \(20x\) công và thu được \(300x\) nghìn đồng

      Khi trồng y \({m^2}\) cải bắp thì cần \(30x\) công và thu được \(400x\) nghìn đồng

      Tổng số công không quá 180 nên ta có: \(20x + 30y \le 180\) hay \(2x + 3y \le 18\)

      Tổng số tiền thu được là: \(F(x;y) = 300x + 400y\)

      Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 8\\0 \le y \le 8\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\)

      Biểu diễn miền nghiệm trên hệ trục Oxy, ta được:

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 12

      Miền nghiệm là miền tứ giác ABCD (kể cả các cạnh) , trong đó \(A(0;6),B(6;2),C(8;0),O(0;0)\)

      Lần lượt thay tọa độ các điểm A, B, C, D vào biểu thức \(F(x;y) = 300x + 400y\) ta được:

      \(\begin{array}{l}F(0;0) = 300.0 + 400.0 = 0\\F(0;6) = 300.0 + 400.6 = 2400\\F(6;2) = 300.6 + 400.2 = 2600\\F(8;0) = 300.8 + 400.0 = 2400\end{array}\)

      Do đó F đạt giá trị lớn nhất bằng 2600 tại \(x = 6;y = 2\)

      Vậy cô Minh cần mua trồng \(6{m^2}\) cà chua và \(2{m^2}\) cải bắp.

      Câu 3:

      Cách giải:

      a) Parabol \((P):y = a{x^2} + bx + c\) đi qua A(0;5) nên \(5 = a{.0^2} + b.0 + c \Leftrightarrow c = - 5\)

      Lại có: (P) có đỉnh \(I(3; - 4)\)

      \( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = 3\\a{.3^2} + b.3 + 5 = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6a + b = 0\\9a + 3b = - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 6\end{array} \right.\)

      Vậy parabol đó là \((P):y = {x^2} - 6x + 5\)

      b) Parabol \((P):y = {x^2} - 6x + 5\) có \(a = 1 > 0,b = - 6\)

      Bảng biến thiên

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 13

      Hàm số đồng biến trên \((3; + \infty )\)và nghịch biến trên\(( - \infty ;3)\).

      + Vẽ đồ thị

      Đỉnh \(I(3; - 4)\)

      (P) giao Oy tại điểm \(A\left( {0;5} \right)\)

      (P) giao Ox tại \(B(1;0)\) và \(C(5;0)\)

      Điểm \(D(5;6)\) đối xứng với \(A\left( {0;5} \right)\) qua trục đối xứng.

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 14

      Câu 4. Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của hàm số: \(y = 2{x^2} - 4x + 3\) trên đoạn [-1;4].

      Cách giải:

      Hàm số \(y = 2{x^2} - 4x + 3\) có \(a = 2 > 0,b = - 4 \Rightarrow - \frac{b}{{2a}} = 1;\;y(1) = 1\).

      Ta có bảng biến thiên

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 15

      Mà \(f( - 1) = 9,f(4) = 19,f(1) = 1\)

      \( \Rightarrow \) Trên [-1;4]

       Hàm số đạt GTLN bằng 19 tại \(x = 4\), đạt GTNN bằng 1 tại \(x = 1\).

      Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2: Phân tích chi tiết và hướng dẫn giải

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau một nửa học kì đầu tiên. Đề thi này thường bao gồm các chủ đề chính như tập số thực, bất phương trình, hệ bất phương trình, hàm số bậc nhất và hàm số bậc hai. Việc làm quen với cấu trúc đề thi và các dạng bài tập thường gặp là vô cùng quan trọng để đạt kết quả tốt.

      Cấu trúc đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2

      Thông thường, đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 sẽ có cấu trúc tương tự như sau:

      • Phần trắc nghiệm: Khoảng 5-7 câu, tập trung vào các khái niệm cơ bản, định nghĩa, tính chất và công thức.
      • Phần tự luận: Khoảng 3-5 câu, yêu cầu học sinh vận dụng kiến thức để giải quyết các bài toán cụ thể. Các bài toán tự luận thường bao gồm các dạng như giải bất phương trình, giải hệ bất phương trình, xét dấu bất phương trình, vẽ đồ thị hàm số, tìm tập xác định của hàm số, và các bài toán ứng dụng thực tế.

      Nội dung chi tiết đề thi và hướng dẫn giải

      Dưới đây là một số dạng bài tập thường gặp trong đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2, cùng với hướng dẫn giải chi tiết:

      1. Tập số thực và bất phương trình bậc nhất một ẩn

      Ví dụ: Giải bất phương trình 2x + 3 > 5.

      Hướng dẫn giải:

      1. Chuyển vế: 2x > 5 - 3
      2. Rút gọn: 2x > 2
      3. Chia cả hai vế cho 2: x > 1
      4. Kết luận: Tập nghiệm của bất phương trình là (1; +∞).

      2. Hệ bất phương trình bậc nhất một ẩn

      Ví dụ: Giải hệ bất phương trình sau:

      2x + 1 > 3
      5 - x ≥ 2

      Hướng dẫn giải:

      1. Giải từng bất phương trình:
        • 2x + 1 > 3 => 2x > 2 => x > 1
        • 5 - x ≥ 2 => -x ≥ -3 => x ≤ 3
      2. Tìm giao của hai tập nghiệm: Tập nghiệm của hệ bất phương trình là (1; 3].

      3. Hàm số bậc nhất và hàm số bậc hai

      Ví dụ: Vẽ đồ thị hàm số y = 2x - 1 và xác định khoảng đồng biến, nghịch biến của hàm số.

      Hướng dẫn giải:

      • Xác định hai điểm thuộc đồ thị: Ví dụ, khi x = 0 thì y = -1, khi x = 1 thì y = 1.
      • Vẽ đường thẳng đi qua hai điểm này.
      • Hàm số y = 2x - 1 là hàm số bậc nhất có hệ số a = 2 > 0, do đó hàm số đồng biến trên R.

      Lời khuyên khi làm bài thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2

      • Đọc kỹ đề bài trước khi làm.
      • Phân bổ thời gian hợp lý cho từng câu hỏi.
      • Sử dụng máy tính bỏ túi khi cần thiết.
      • Kiểm tra lại bài làm trước khi nộp.

      Tài liệu ôn tập và luyện thi

      Ngoài đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2, các em học sinh có thể tham khảo thêm các tài liệu ôn tập và luyện thi khác như sách giáo khoa, sách bài tập, các đề thi thử, và các bài giảng trực tuyến trên giaitoan.edu.vn. Việc luyện tập thường xuyên và nắm vững kiến thức cơ bản là chìa khóa để đạt kết quả tốt trong các kỳ thi.

      Kết luận

      Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo - Đề số 2 là một cơ hội tốt để các em học sinh tự đánh giá năng lực của mình và chuẩn bị tốt hơn cho các kỳ thi tiếp theo. Chúc các em học sinh ôn tập tốt và đạt kết quả cao!

      Tài liệu, đề thi và đáp án Toán 10