Logo Header
  1. Môn Toán
  2. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9

Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9

Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9

Chào mừng các em học sinh đến với đề thi học kì 1 môn Toán 10 chương trình Chân trời sáng tạo - Đề số 9.

Đề thi này được thiết kế bám sát cấu trúc đề thi chính thức, giúp các em làm quen với dạng bài và rèn luyện kỹ năng giải quyết vấn đề.

Hãy tải đề thi về và thử sức ngay để đánh giá năng lực của bản thân nhé!

Câu 1: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 - 3x} + \frac{1}{{\sqrt {x - 1} }}.\) A. \({\rm{D}} = \left[ {1;2} \right].\) B. \({\rm{D}} = \left( {1;2} \right).\) C. \({\rm{D}} = (1;2].\) D. \({\rm{D}} = \left[ { - 1;2} \right].\)

Đề bài

    I. Trắc nghiệm (7 điểm)

    Câu 1: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 - 3x} + \frac{1}{{\sqrt {x - 1} }}.\)

    A. \({\rm{D}} = \left[ {1;2} \right].\)B. \({\rm{D}} = \left( {1;2} \right).\) C. \({\rm{D}} = (1;2].\) D. \({\rm{D}} = \left[ { - 1;2} \right].\)

    Câu 2: Cho mệnh đề P(x): “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)”. Mệnh đề phủ định của mệnh đề P(x) là

    A. “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 < 0\)”. B. “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”.

    C. “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”. D. “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)”.

     Câu 3: Cho hàm số \(y = \frac{{\sqrt {x - 2} - 2}}{{x - 6}}\). Điểm nào sau đây thuộc đồ thị hàm số:

    A. \((6;0)\).B. \((2; - 0,5)\).C. \((2;0,5)\).D. \((0;6)\).

     Câu 4: Trong các tập hợp sau, tập hợp nào là tập hợp rỗng:

    A. \(A = \left\{ {x \in \mathbb{R}|\left| x \right| < 1} \right\}\) B. \(A = \left\{ {x \in \mathbb{Z}|6{x^2} - 7x + 1 = 0} \right\}\) C. \(A = \left\{ {x \in \mathbb{Z}|{x^2} - 4x + 2 = 0} \right\}\) D. \(A = \left\{ {x \in \mathbb{N}|{x^2} - 4x + 3 = 0} \right\}\)

     Câu 5: Cho hai tập hợp \(A = \left( { - \infty ;2} \right]\) và \(B = \left( { - 3;5} \right]\). Tìm mệnh đề sai.

    A. \(A \cap B = \left( { - 3;2} \right].\) B. \(A\backslash B = \left( { - \infty ; - 3} \right)\). C. \(A \cup B = \left( { - \infty ;5} \right]\). D. \(B\backslash A = \left( {2;5} \right]\).

    Câu 6: Cho tập hợp: \(B = \left\{ {x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 5} \right\}.\) Số tập hợp con của tập hợp \(B\) là

    A. 29 B. 30 C. 31 D. 32

     Câu 7: Hàm số \(y = a{x^2} + bx + c\), \((a > 0)\) nghịch biến trong khoảng nào sau đậy?

    A. \(\left( { - \infty ;\, - \frac{b}{{2a}}} \right).\)B. \(\left( { - \frac{b}{{2a}};\, + \infty } \right).\)C. \(\left( { - \frac{\Delta }{{4a}};\, + \infty } \right).\)D. \(\left( { - \infty ;\, - \frac{\Delta }{{4a}}} \right).\)

     Câu 8: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

    A. \(2{x^2} + 3y > 0\) B. \({x^2} + {y^2} < 2\) C. \(x + {y^2} \ge 0\) D. \(x + y \ge 0\)

    Câu 9: Miền nghiệm của bất phương trình \(\left( {1 + \sqrt 3 } \right)x - \left( {1 - \sqrt 3 } \right)y \ge 2\) chứa điểm nào sau đây?

    A. A(1;-1) B. B(-1;-1) C. C(-1;1) D. \(D\left( { - \sqrt 3 ;\sqrt 3 } \right)\)

    Câu 10: (ID: 590544) Trong tam giác EFG, chọn mệnh đề đúng.

    A. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos G.\) B. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos E.\)

    C. \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos E.\) D. \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos G.\)

    Câu 11: (ID: 590545) Cho tam giác ABC biết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) và \(AB = 2\sqrt 2 \). Tính AC.

    A. \(2\sqrt 3 .\) B. \(2\sqrt 5 .\) C. \(2\sqrt 2 .\) D. \(2\sqrt 6 .\)

    Câu 12: (ID: 590546) Cho tam giác ABC có b = 7, c = 5, \(\cos A = \frac{3}{5}.\) Độ dài đường cao \({h_a}\) của tam giác ABC là:

    A. \(8.\) B. \(8\sqrt 3 .\) C. \(\frac{{7\sqrt 2 }}{2}.\) D. \(7\sqrt 2 .\)

    Câu 13: Hàm số bậc hai nào sau đây có đồ thị là parabol có đỉnh là \(S\left( {\frac{5}{2};\frac{1}{2}} \right)\)và đi qua \(A\left( {1; - 4} \right)\)?

    A. \(y = - {x^2} + 5x - 8\). B. \(y = - 2{x^2} + 10x - 12\).

    C. \(y = {x^2} - 5x\). D. \(y = - 2{x^2} + 5x + \frac{1}{2}\).

    Câu 14: Cho hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    A. \(O\left( {0;0} \right)\) B. \(M\left( {1;0} \right)\) C. \(N\left( {0; - 2} \right)\) D. \(P\left( {0;2} \right)\)

    Câu 15: Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau

    Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 1

    Phương trình của parabol này là

    A. \(y = - {x^2} + x - 1\).B. \(y = 2{x^2} + 4x + 1\).C. \(y = {x^2} - 2x - 1\). D. \(y = 2{x^2} - 4x - 1\).

    Câu 16: Tính bán kính r của đường tròn nội tiếp tam giác đều cạnh a.

    A. \(r = \frac{{a\sqrt 3 }}{4}\) B. \(r = \frac{{a\sqrt 2 }}{5}\) C. \(r = \frac{{a\sqrt 3 }}{6}\) D. \(r = \frac{{a\sqrt 5 }}{7}\)

    Câu 17: Tam giác ABC có \(AB = \sqrt 2 ,\,\,AC = \sqrt 3 \) và \(C = {45^0}\). Tính độ dài cạnh BC.

    A. \(BC = \sqrt 5 \) B. \(BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\) C. \(BC = \frac{{\sqrt 6 - \sqrt 2 }}{2}\) D. \(BC = \sqrt 6 \)

    Câu 18: Bảng biến thiên của hàm số \(y = - {x^2} + 2x - 1\) là:

    A. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 2B. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 3

    C. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 4D. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 5

     Câu 19: Phần không bị gạch trên hình vẽ dưới đây minh họa cho tập hợp nào?

    Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 6

    A. \(\left( { - 3; + \infty } \right).\) B. \(\left( {5; + \infty } \right).\) C. \(\{ - 3;5\} \) D. \(\left( { - 3;5} \right].\)

    Câu 20: Giá trị lớn nhất của hàm số \(y = - 3{x^2} + 2x + 1\) trên đoạn \(\left[ {1;3} \right]\) là:

    A. B. 0 C. \(\frac{1}{3}\) D. \( - 20\)

    Câu 21: Cho hai vectơ \(\vec a\) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 3,\) \(\left| {\overrightarrow b } \right| = 2\) và \(\vec a.\vec b = - 3.\) Xác định góc \(\alpha \) giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b .\)

    A. \(\alpha = {30^0}.\) B. \(\alpha = {45^0}.\) C. \(\alpha = {60^0}.\) D. \(\alpha = {120^0}.\)

    Câu 22: Cho tam giác cân \(ABC\) có\(\widehat A = {120^0}\)và \(AB = AC = a\). Lấy điểm \(M\)trên cạnh \(BC\) sao cho \(BM = \frac{{2BC}}{5}\). Tính độ dài \(AM.\)

    A. \(\frac{{a\sqrt 3 }}{3}\)B. \(\frac{{11a}}{5}\)C. \(\frac{{a\sqrt 7 }}{5}\) D. \(\frac{{a\sqrt 6 }}{4}\)

    Câu 23: Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?

    Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 7

    A. \(2x - y < 3\) B. \(2x - y > 3\) C. \(x - 2y < 3\) D. \(x - 2y > 3\)

    Câu 24: Cho góc \(\alpha \) với \({0^0} < \alpha < {180^0}\). Tính giá trị của \(\cos \alpha \), biết \(\tan \alpha = - 2\sqrt 2 \).

    A. \( - \frac{1}{3}.\) B. \(\frac{1}{3}.\) C. \(\frac{{2\sqrt 2 }}{3}.\) D. \(\frac{{\sqrt 2 }}{3}.\)

    Câu 25: Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn cùng một điểm trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40cm, \(\angle CAB = {45^0}\), \(\angle CBA = {70^0}\). Vậy sau khi đo đạc và tính toán được khoảng cách AC gần nhất với giá trị nào sau đây?

    Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 8

    A. 53 m B. 30 m C. 41,5 m D. 41 m

    Câu 26: Trái đất quay một vòng quanh mặt trời là 365 ngày. Kết quả này có độ chính xác là \(\frac{1}{4}\) ngày. Sai số tương đối là:

    A. 0,0068%. B. 0,068%. C. 0,68%. D. 6,8%.

    Câu 27: Cho mẫu số liệu: 1 3 6 8 9 12. Tứ phân vị của mẫu số liệu trên là:

    A. Q1 = 3, Q2 = 6,5, Q3 = 9. B. Q1 = 1, Q2 = 6,5, Q3 = 12.

    C. Q1 = 6, Q2 = 7, Q3 = 8. D. Q1 = 3, Q2 = 7, Q3 = 9.

    Câu 28: Cho bốn điểm A,B,C,Dphân biệt. Khi đó, \(\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {DC} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} - \overrightarrow {AD} \) bằng véctơ nào sau đây?

    A. \(\vec 0\) B. \(\overrightarrow {BD} \) C. \(\overrightarrow {AC} \) D. \(2\overrightarrow {DC} \)

     Câu 29: Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    A. \(\overrightarrow {AC} {\rm{ \;}} = \overrightarrow {BD} \) B. \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = \vec 0\)

    C. \(\left| {\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AD} } \right|\) D. \(\left| {\overrightarrow {BC} {\rm{ \;}} + \overrightarrow {BD} } \right| = \left| {\overrightarrow {AC} {\rm{ \;}} - \overrightarrow {AB} } \right|\)

    Câu 30: Hãy viết số quy tròn của số gần đúng \(a = 15,318\) biết \(\bar a = 15,318 \pm 0,006.\)

    A. 15,3. B. 15,31. C. 15,32. D. 15,4.

    Câu 31: Sản lượng lúa của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng tần số sau đây: (đơn vị: tạ)

    Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 0 9

    Phương sai là

    A. 1,24 B. 1,54 C. 22,1 D. 4,70

    Câu 32: Cho tam giác ABC có trung tuyến BM và trọng tâm \(G\). Đặt \(\overrightarrow {BC} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BA} {\rm{\;}} = b\). Hãy phân tích vectơ \(\overrightarrow {BG} \) theo \(\vec a\) và \(\vec b\).

    A. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) B. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{2}{3}\vec b\) C. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{2}{3}\vec b\) D. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{1}{3}\vec b\)

    Câu 33: Cho hình vuông ABCD cạnh \(a\), \(M\) là điểm thay đổi. Độ dài véctơ \(\vec u = \overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} {\rm{\;}} - 3\overrightarrow {MD} \) là:

    A. \(4a\sqrt 2 \) B. \(a\sqrt 2 \) C. \(3a\sqrt 2 \) D. \(2a\sqrt 2 \)

    Câu 34: Cho tam giác ABC đều cạnh a, G là trọng tâm. Mệnh đề nào sau đây sai?

    A. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}{a^2}.\) B. \(\overrightarrow {AC} .\overrightarrow {CB} = - \frac{1}{2}{a^2}.\) C. \(\overrightarrow {GA} .\overrightarrow {GB} = \frac{1}{6}{a^2}.\) D. \(\overrightarrow {AB} .\overrightarrow {AG} = \frac{1}{2}{a^2}.\)

    Câu 35: Cho hình chữ nhật ABCD có \(AB = a\) và \(AD = a\sqrt 2 \). Gọi K là trung điểm của cạnh AD. Tính \(\overrightarrow {BK} .\overrightarrow {AC} \)

    A. \(\overrightarrow {BK} .\overrightarrow {AC} = \overrightarrow 0 \) B. \(\overrightarrow {BK} .\overrightarrow {AC} = - {a^2}\sqrt 2 \) C. \(\overrightarrow {BK} .\overrightarrow {AC} = {a^2}\sqrt 2 \) D. \(\overrightarrow {BK} .\overrightarrow {AC} = 2{a^2}\)

    II. Tự luận (3 điểm)

    Câu 1: Cho ba lực \(\overrightarrow {{F_1}} {\rm{\;}} = \overrightarrow {MA} \), \(\overrightarrow {{F_2}} {\rm{\;}} = \overrightarrow {MB} \), \(\overrightarrow {{F_3}} {\rm{\;}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ lực \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 50 N và tam giác MAB vuông tại M. Tìm hướng và cường độ lực \(\overrightarrow {{F_3}} \)

    Câu 2: Quang ghi lại số tin nhắn điện thoại mà bạn ấy nhận được từ ngày 1/11 đến ngày 15/11 ở bảng sau:

    Xác định các giá trị ngoại lệ (nếu có).

    Câu 3: Tìm parabol (P) \(y = a{x^2} + bx + c\) biết (P) có đỉnh \(I(2;3)\) và giao với Oy tại điểm có tung độ bằng -1. Vẽ đồ thị hàm số tìm được.

    -----HẾT-----

    Lời giải

      HƯỚNG DẪN GIẢI CHI TIẾT

      I. Trắc nghiệm (7 điểm)

      1. C

      2. C

      3. C

      4. C

      5. B

      6. D

      7.A

      8. D

      9. A

      10. D

      11. D

      12. C

      13. B

      14. C

      15. D

      16. C

      17. B

      18. A

      19. D

      20. B

      21. D

      22. C

      23. D

      24. C

      25. C

      26. A

      27. D

      28. A

      29.A

      30. B

      31. B

      32. A

      33. D

      34. C

      35. A

      Câu 1 (NB):

      Phương pháp:

      • \(\sqrt {P(x)} \) có nghĩa khi \(P(x) \ge 0\).
      • \(\frac{{Q(x)}}{{\sqrt {P(x)} }}\) có nghĩa khi \(P(x) > 0\).

      Cách giải:

      Hàm số \(y = \sqrt {6 - 3x} + \frac{1}{{\sqrt {x - 1} }}\) xác định khi \(\left\{ \begin{array}{l}6 - 3x \ge 0\\x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\x > 1\end{array} \right. \Leftrightarrow 1 < x \le 2\)

      Vậy tập xác định \(D = (1;2]\)

      Chọn C.

      Câu 2 (TH):

      Phương pháp:

      Phủ định của mệnh đề “\(\forall x \in K,\,\,P\left( x \right)\)” là mệnh đề “\(\exists x \in K,\,\,\overline {P\left( x \right)} \)”.

      Cách giải:

      Mệnh đề phủ định của mệnh đề P(x): “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)” là “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”.

      Chọn C.

       Câu 3 (TH):

      Phương pháp:

      Thay tọa độ các điểm vào hàm số

      Cách giải:

      Với \(x = 6,x = 0\)thì \(y = \frac{{\sqrt {x - 2} - 2}}{{x - 6}}\) không xác định. Suy ra điểm \((6;0)\) và \((0;6)\)không thuộc đồ thị hàm số

      Với \(x = 2\) thì \(y = \frac{{\sqrt {2 - 2} - 2}}{{2 - 6}} = 0,5 \ne - 0,5\). Suy ra điểm \((2; - 0,5)\)không thuộc đồ thị hàm số, điểm \((2;0,5)\) thuộc đồ thị hàm số

      Chọn C.

       Câu 4 (TH):

      Phương pháp:

      Tập hợp rỗng không chứa phần tử nào.

      Cách giải:

      +) Xét đáp án A: \(\left\{ {\begin{array}{*{20}{l}}{x \in \mathbb{R}}\\{\left| x \right| < 1}\end{array}} \right. \Rightarrow {\rm{\;}} - 1 < x < 1\) \( \Rightarrow A = \left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right) \ne \emptyset \)

      \( \Rightarrow \) Loại đáp án A.

      +) Xét đáp án B: \(6{x^2} - 7x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = \frac{1}{6}}\end{array}} \right.\) \( \Rightarrow A = \left\{ 1 \right\} \ne \emptyset \)

      \( \Rightarrow \) Loại đáp án B.

      +) Xét đáp án C: \({x^2} - 4x + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 2 + \sqrt 2 }\\{x = 2 - \sqrt 2 }\end{array}} \right.\) \( \Rightarrow A = \emptyset \)

      Chọn C.

       Câu 5 (VD):

      Phương pháp:

      Thực hiện các phép toán trên tập hợp. Sử dụng trục số.

      Cách giải:

      +) \(A \cap B = \left( { - 3;2} \right]\)

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 1

      => A đúng.

      +) \(A\backslash B = \left( { - \infty ; - 3} \right]\)

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 2

      => B sai.

      +) \(A \cup B = \left( { - \infty ;5} \right]\)

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 3

      => C đúng.

      +) \(B\backslash A = \left( {2;5} \right]\).

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 4

      => D đúng.

      Chọn B.

      Câu 6 (TH):

      Phương pháp:

      Cho tập hợp B có n phần tử. Số tập hợp con của B là \({2^n}\)

      Cách giải:

      Tập hợp \(B = \left\{ {x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 5} \right\}\) có 5 phần tử.

      Số tập hợp con của tập B là: \({2^5} = 32\)

      Chọn D.

       Câu 7 (NB):

      Cách giải:

      Với \(a > 0\), ta có bảng biến thiên

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 5

      Hàm số nghịch biến trên \(\left( { - \infty ;\, - \frac{b}{{2a}}} \right).\)

      Chọn A.

       Câu 8 (TH):

      Phương pháp:

      Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là \(ax + by + c < 0\), \(ax + by + c > 0\), \(ax + by + c \le 0\), \(ax + by + c \ge 0\), trong đó a, b, c là các số cho trước sao cho \({a^2} + {b^2} \ne 0\).

      Cách giải:

      Bất phương trình bậc nhất hai ẩn là \(x + y \ge 0\).

      Chọn D.

      Câu 9 (TH):

      Phương pháp:

      Thay tọa độ các điểm ở các đáp án vào bất phương trình.

      Cách giải:

      Thay tọa độ điểm A(1;-1) ta có: \(\left( {1 + \sqrt 3 } \right) + \left( {1 - \sqrt 3 } \right) = 2 \ge 2\) (Đúng).

      Vậy điểm A thuộc miền nghiệm của bất phương trình.

      Chọn A.

      Câu 10 (NB):

      Phương pháp:

      Sử dụng định lí cosin trong tam giác: \({a^2} = {b^2} + {c^2} - 2bc.\cos A.\)

      Cách giải:

      \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos G\) là mệnh đề đúng.

      Chọn D.

      Câu 11 (TH):

      Phương pháp:

      Áp dụng định lí Sin trong tam giác ABC: \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{\sin B}}{{\sin C}} = \frac{{AC}}{{AB}}\).

      Cách giải:

      Áp dụng định lí Sin trong tam giác ABC ta có: \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{\sin B}}{{\sin C}} = \frac{{AC}}{{AB}}\).

      Theo giả thiết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \Rightarrow \frac{{AC}}{{AB}} = \sqrt 3 \Rightarrow AC = \sqrt 3 AB.\)

      Vậy \(AC = \sqrt 3 .2\sqrt 2 = 2\sqrt 6 .\)

      Chọn D.

      Câu 12 (VD):

      Phương pháp:

      Tính sinA.

      Tính diện tích tam giác ABC: \(S = \frac{1}{2}bc.\sin A.\)

      Sử dụng định lí cosin trong tam giác tính a: \({a^2} = {b^2} + {c^2} - 2bc.\cos A.\)

      Sử dụng công thức tính diện tích tam giác: \(S = \frac{1}{2}a{h_a}\), từ đó tính \({h_a}\).

      Cách giải:

      Ta có:

      \(\begin{array}{l}{\sin ^2}A + {\cos ^2}A = 1\\ \Leftrightarrow {\sin ^2}A + {\left( {\frac{3}{5}} \right)^2} = 1\\ \Leftrightarrow {\sin ^2}A = \frac{{16}}{{25}}\end{array}\)

      Vì \({0^0} < A < {180^0}\) nên sinA > 0 \( \Rightarrow \sin A = \frac{4}{5}.\)

      Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A. = \frac{1}{2}.7.5.\frac{4}{5} = 14.\)

      Áp dụng định lí cosin trong tam giác ABC ta có:

      \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A.\\\,\,\,\,\,\, = {7^2} + {5^2} - 2.7.5.\frac{3}{5}\\\,\,\,\,\,\, = 32\\ \Rightarrow a = 4\sqrt 2 .\end{array}\)

      Lại có: \(S = \frac{1}{2}a{h_a} \Rightarrow {h_a} = \frac{{2S}}{a} = \frac{{2.14}}{{4\sqrt 2 }} = \frac{{7\sqrt 2 }}{2}.\)

      Chọn C.

      Câu 13 (TH):

      Cách giải:

      Hàm số bậc hai cần tìm có phương trình: \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)

      Hàm số bậc hai có đồ thị là parabol có đỉnh là \(S\left( {\frac{5}{2};\frac{1}{2}} \right)\)và đi qua \(A\left( {1; - 4} \right)\)

      \( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = \frac{5}{2}\\a.\frac{{25}}{4} + b.\frac{5}{2} + c = \frac{1}{2}\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - b}}{a} = 5\\25a + 10b + 2c = 2\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{\rm{a + b = 0}}\\25a + 10b + 2c = 2\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = 10\\c = - 12\end{array} \right.\)

      Chọn B.

       Câu 14 (TH):

      Phương pháp:

      Thay tọa độ các điểm vào hệ bất phương trình.

      Cách giải:

      Dễ thấy các điểm \(O\left( {0;0} \right)\), \(M\left( {1;0} \right)\), \(P\left( {0;2} \right)\) không thỏa mãn bất phương trình \(x + y + 1 < 0\) nên không thỏa mãn cả hệ bất phương trình.

      Chọn C.

      Câu 15 (TH):

      Cách giải:

      Đồ thị hàm số cắt trục tung tại điểm \(\left( {0\,\,;\,\, - 1} \right)\) nên \(c = - 1\).

      Tọa độ đỉnh \(I\left( {1\,\,;\, - 3} \right)\), ta có phương trình: \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a{.1^2} + b.1 - 1 = - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b = - 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 4\end{array} \right.\).

      Vậy parabol cần tìm là: \(y = 2{x^2} - 4x - 1\).

      Chọn D.

      Câu 16 (TH):

      Phương pháp:

      Sử dụng công thức tính diện tích tam giác \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = pr\).

      Cách giải:

      Nửa chu vi tam giác đều cạnh a là \(p = \frac{{a + a + a}}{2} = \frac{{3a}}{2}\).

      Tam giác đều cạnh a có diện tích \(S = \sqrt {\frac{{3a}}{2}\left( {\frac{{3a}}{2} - a} \right)\left( {\frac{{3a}}{2} - a} \right)\left( {\frac{{3a}}{2} - a} \right)} = \frac{{{a^2}\sqrt 3 }}{4}\).

      Lại có \(S = pr \Leftrightarrow r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{4}:\frac{{3a}}{2} = \frac{{a\sqrt 3 }}{6}\).

      Chọn C.

      Câu 17 (NB):

      Phương pháp:

      Sử dụng hệ quả định lí Cosin trong tam giác: \(\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\).

      Cách giải:

      Áp dụng hệ quả định lí Cosin trong tam giác ABC ta có:

      \(\begin{array}{l}\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\\ \Leftrightarrow \cos {45^0} = \frac{{{{\left( {\sqrt 3 } \right)}^2} + B{C^2} - {{\left( {\sqrt 2 } \right)}^2}}}{{2.\sqrt 3 .BC}}\\ \Leftrightarrow \sqrt 6 BC = B{C^2} + 1\\ \Leftrightarrow B{C^2} - \sqrt 6 BC + 1 = 0\\ \Leftrightarrow BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\end{array}\).

      Chọn B.

      Câu 18 (TH):

      Cách giải:

      Hàm số \(y = - {x^2} + 2x - 1\) có \(a = - 1 < 0\), nên loại C,D.

      Hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = - \frac{2}{{2.( - 1)}} = 1\)

      Chọn A.

       Câu 19 (NB):

      Phương pháp:

      Biểu diễn tập hợp trên trục số.

      Cách giải:

      Hình vẽ đã cho là minh họa cho tập hợp \(( - 3;5]\)

      Chọn D.

      Câu 20 (VD):

      Cách giải:

      Ta có \( - \frac{b}{{2a}} = \frac{1}{3}\) và \(a = - 3 < 0\). Suy ra hàm số đã cho nghịch biến trên khoảng \(\left( {\frac{1}{3}; + \infty } \right)\).

      Mà \(\left[ {1;3} \right] \subset \left( {\frac{1}{3}; + \infty } \right)\).

      Do đó trên đoạn \(\left[ {1;3} \right]\) hàm số đạt giá trị lớn nhất tại \(x = 1\), tức là \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = 0\).

      Chọn B.

      Câu 21 (TH):

      Phương pháp:

      Áp dụng công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)

      Cách giải:

      Ta có \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 3}}{{3.2}} = - \frac{1}{2}\)

      \( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {120^o}\)

      Chọn D.

      Câu 22 (VD):

      Phương pháp:

      - Tính BC dựa vào định lí côsin trong tam giác cân ABC.

      - Tính BM.

      - Tính AM dựa vào định lí côsin trong tam giác ABM.

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 6

      \(BC = \sqrt {A{B^2} + A{C^2} - 2ABAC\cos {{120}^0}} = \sqrt {{a^2} + {a^2} - 2a.a.\left( { - \frac{1}{2}} \right)} = a\sqrt 3 {\rm{ }} \Rightarrow BM = \frac{{2a\sqrt 3 }}{5}\)

      \(AM = \sqrt {A{B^2} + B{M^2} - 2AB.BM.cos{{30}^0}} = \sqrt {{a^2} + {{\left( {\frac{{2a\sqrt 3 }}{5}} \right)}^2} - 2a.\frac{{2a\sqrt 3 }}{5}.\frac{{\sqrt 3 }}{2}} = \frac{{a\sqrt 7 }}{5}\).

      Chọn C.

      Câu 23 (TH):

      Phương pháp:

      Tìm phương trình đường thẳng d. Loại đáp án.

      Thay tọa độ điểm O(0;0) vào các bất phương trình chưa bị loại ở các đáp án, tiếp tục loại đáp án.

      Cách giải:

      Đường thẳng d đi qua điểm (3;0) nên loại đáp án A, B.

      Ta thấy điểm O(0;0) không thuộc miền nghiệm của bất phương trình.

      + Thay tọa độ điểm O(0;0) vào biểu thức \(x - 2y\) ta có: \(0 - 2.0 = 0 < 3\)

      Do đó bất phươn trình cần tìm là \(x - 2y > 3\)

      Chọn D.

      Câu 24 (TH):

      Phương pháp:

      Sử dụng công thức: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}.\)

      Cách giải:

      Ta có:

      \(\begin{array}{l}\,\,\,\,\,\,\,1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow 1 + {\left( { - 2\sqrt 2 } \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\cos ^2}\alpha = \frac{1}{9}\\ \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{1}{9} = \frac{8}{9}\\ \Leftrightarrow \sin \alpha = \pm \frac{{2\sqrt 2 }}{3}\end{array}\)

      Vì \({0^0} < \alpha < {180^0}\) \( \Rightarrow \sin \alpha > 0\).

      Vậy \(\sin \alpha = \frac{{2\sqrt 2 }}{3}.\)

      Chọn C.

      Câu 25 (VD):

      Phương pháp:

      Áp dụng hệ quả định lí Sin trong tam giác ABC.

      Cách giải:

      Ta có: \(\angle ACB = {180^0} - {45^0} - {70^0} = {65^0}\)

      Áp dụng hệ quả định lí Sin trong tam giác ABC ta có:

      \(\begin{array}{l}\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{AC}}{{\sin {{70}^0}}} = \frac{{40}}{{\sin {{65}^0}}}\\ \Rightarrow AC = \frac{{40}}{{\sin {{65}^0}}}.\sin {70^0} \approx 41,47\,\,\left( m \right)\end{array}\)

      Chọn C.

      Câu 26 (TH):

      Phương pháp:

      Sai số tương đối \({\delta _a} \le \frac{d}{{\left| a \right|}}\).

      Cách giải:

      Ta có: \(d = \frac{1}{4} \Rightarrow \delta \le \frac{d}{{\left| a \right|}} = \frac{1}{{4.365}} = 0,0068\% \).

      Chọn A.

      Câu 27 (NB):

      Phương pháp:

      Để tìm các tứ phân vị của mẫu số liệu có n giá trị ta làm như sau:

      • Sắp xếp mẫu số liệu theo thứ tự không giảm.

      • Tìm trung vị. Giá trị này là Q2.

      • Tìm trung vị của nửa số liệu bên trái Q2 (không bao gồm Q2 nếu n lẻ). Giá trị này là Q1.

      • Tìm trung vị của nửa số liệu bên phải Q2 (không bao gồm Q2 nếu n lẻ). Giá trị này là Q3.

      Q1, Q2, Q3 được gọi là các tứ phân vị của mẫu số liệu.

      Cách giải:

      Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 6 8 9 12.

      Cỡ mẫu n = 6 chẵn nên \({Q_2} = \frac{{6 + 8}}{2} = 7.\)

      Nửa số liệu bên trái Q2: 1 3 6 => Q1 = 3.

      Nửa số liệu bên phải Q2: 8 9 12 => Q3 = 9.

      Vậy Q1 = 3, Q2 = 7, Q3 = 9.

      Chọn D.

      Câu 28 (NB):

      Phương pháp:

      Nhóm \(\overrightarrow {AB} ,\overrightarrow {BC} \); \(\overrightarrow {DC} ,\overrightarrow {AD} \), áp dụng quy tắc cộng vectơ.

      Cách giải:

      Ta có: \(\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {DC} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} - \overrightarrow {AD} {\rm{ \;}} = \left( {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} } \right) - \left( {\overrightarrow {AD} {\rm{ \;}} + \overrightarrow {DC} } \right) = \overrightarrow {AC} {\rm{ \;}} - \overrightarrow {AC} {\rm{ \;}} = \vec 0\).

      Chọn A.

      Câu 29 (NB):

      Phương pháp:

      Sử dụng quy tắc hình bình hành tính \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} \).

      Tính độ dài vectơ vừa tìm được.

      Cách giải:

      Ta có: \(\left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\).

      Chọn A.

      Câu 30 (TH):

      Cách giải:

      Ta có: \(\bar a = 15,318 \pm 0,006 \Rightarrow d = 0,006\) có chữ số khác 0 đầu tiên bên trái là ở hàng phần nghìn.

      Làm tròn số \(a = 15,318\) chính xác đến hàng phần trăm, kết quả là: \(15,32\)

      Chọn B.

      Câu 31 (TH):

      Phương pháp:

      Đối với bảng phân bố tần số, phương sai được tính theo công thức:

      \({s^2} = \frac{1}{N}\left[ {{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + {\rm{\;}} \ldots {\rm{\;}} + {n_k}{{\left( {{x_k} - \bar x} \right)}^2}} \right]\)

      Với \({n_i};{\mkern 1mu} {\mkern 1mu} {f_i}\) lần lượt là tần số, tần suất của giá trị \({x_i}\).

      Cách giải:

      Bảng phân số tần số:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 7

      *) Sản lượng trung bình của 40 thửa ruộng là:

      \(\bar x = \frac{{20.5 + 21.8 + 22.11 + 23.10 + 24.6}}{{40}} = 22,1{\mkern 1mu} \)(tạ)

      *) Phương sai:

      \({s^2} = \frac{1}{{40}}\left[ {5.{{\left( {20 - 22,1} \right)}^2} + 8.{{\left( {21 - 22,1} \right)}^2} + 11.{{\left( {22 - 22,1} \right)}^2} + 10.{{\left( {23 - 22,1} \right)}^2} + 6.{{\left( {24 - 22,1} \right)}^2}} \right]\)\( = 1,54\) (tạ)

      Chọn B.

      Câu 32 (TH):

      Phương pháp:

      Áp dụng quy tắc cộng vecto, quy tắc hình bình hành để biểu diễn véctơ.

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 8

      \(\overrightarrow {BM} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {BA} {\rm{\;}} + \overrightarrow {BC} } \right) = \frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} \)

      \( \Rightarrow \overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\overrightarrow {BM} {\rm{\;}} = \frac{2}{3} \cdot \left( {\frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} } \right) = \frac{1}{3}\overrightarrow {BA} {\rm{\;}} + \frac{1}{3}\overrightarrow {BC} \)

      Mặt khác, \(\overrightarrow {BA} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BC} {\rm{\;}} = \vec b\) nên ta có: \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\)

      Vậy \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\).

      Chọn A.

      Câu 33 (VD):

      Phương pháp:

      Áp dụng quy tắc cộng vecto để tìm được vecto \(\vec u\).

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 9

      Vì ABCD là hình vuông nên ta có: \(AB = BC = CD = DA = 2\); \(AC = BD = a\sqrt 2 \).

      Ta có:

      \(\vec u = \overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} {\rm{\;}} - 3\overrightarrow {MD} \)

      \({\mkern 1mu} = \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DA} } \right) + \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DB} } \right) + \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DC} } \right) - 3\overrightarrow {MD} \)

      \({\mkern 1mu} = \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DA} {\rm{\;}} + \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DB} {\rm{\;}} + \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DC} {\rm{\;}} - 3\overrightarrow {MD} \)

      \( = \overrightarrow {DA} {\rm{\;}} + \overrightarrow {DB} {\rm{\;}} + \overrightarrow {DC} \)

      \( = \left( {\overrightarrow {DA} {\rm{\;}} + \overrightarrow {DC} } \right) + \overrightarrow {DB} \)

      \( = \overrightarrow {DB} {\rm{\;}} + \overrightarrow {DB} \)

      \( = 2\overrightarrow {DB} \)

      \( \Rightarrow \vec u = 2\overrightarrow {DB} \)

      \( \Rightarrow \left| {\vec u} \right| = \left| {2.\overrightarrow {DB} } \right| = 2.a.\sqrt 2 {\rm{\;}} = 2\sqrt 2 a\)

      Chọn D.

      Câu 34 (VD):

      Phương pháp:

      Áp dụng tích vô hướng \(\overrightarrow a .\overrightarrow b = a.b.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 10

      Ta có:

      \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = a.a.\cos A = {a^2}\cos {60^ \circ } = \frac{1}{2}{a^2}\) => A đúng

      \(\overrightarrow {AC} .\overrightarrow {CB} = AC.CB.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = a.a.\cos {120^ \circ } = - \frac{1}{2}{a^2}\) => B đúng

      + \(AG = \frac{2}{3}AM;AM = AC.\sin C = a.\sin {60^ \circ } = \frac{{a\sqrt 3 }}{2}\)

      \( \Rightarrow AG = BG = \frac{{a\sqrt 3 }}{3}\)

      \(\overrightarrow {GA} .\overrightarrow {GB} = GA.GB.\cos \left( {\overrightarrow {GA} ,\overrightarrow {GB} } \right) = \frac{{a\sqrt 3 }}{3}.\frac{{a\sqrt 3 }}{3}.\cos {120^ \circ } = - \frac{1}{6}{a^2}\) => C sai.

      \(\overrightarrow {AB} .\overrightarrow {AG} = AB.AG.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AG} } \right) = a.\frac{{a\sqrt 3 }}{3}.\cos {30^ \circ } = \frac{1}{2}{a^2}\) => D đúng.

      Chọn C.

      Câu 35 (VD):

      Cách giải:

      Ta có:

      \(AC = BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \)

      Lại có:

      \(\left\{ \begin{array}{l}\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {AD} \\\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \end{array} \right.\)

      \(\begin{array}{l} \Rightarrow \overrightarrow {BK} .\overrightarrow {AC} = \left( {\overrightarrow {BA} + \frac{1}{2}\overrightarrow {AD} } \right).\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\\ = \overrightarrow {BA} .\overrightarrow {AB} + \overrightarrow {BA} .\overrightarrow {AD} + \frac{1}{2}\overrightarrow {AD} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} .\overrightarrow {AD} \\ = - {a^2} + 0 + 0 + \frac{1}{2}{\left( {a\sqrt 2 } \right)^2}\\ = 0\end{array}\)

      Chọn A.

      II. Tự luận (3 điểm)

      Câu 1 (VD):

      Phương pháp:

      Áp dụng quy tắc hình bình hành.

      Vật đứng yên khi tổng các lực tác động lên điểm bằng 0.

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 11

      Có cường độ lực \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 50 N và tam giác MAB vuông tại M

      \( \Rightarrow \) Tam giác MAB vuông cân tại M

      Lấy điểm D sao cho MADB là hình vuông

       \( \Rightarrow MD = \sqrt {M{A^2} + A{D^2}} {\rm{\;}} = \sqrt {M{A^2} + M{B^2}} {\rm{\;}} = 50\sqrt 2 {\mkern 1mu} {\mkern 1mu} N\)

      Vì vật đứng yên nên tổng các lực tác động lên điểm bằng 0

      \( \Rightarrow \overrightarrow {{F_1}} {\rm{\;}} + \overrightarrow {{F_2}} {\rm{\;}} + \overrightarrow {{F_3}} {\rm{\;}} = \vec 0\) hay \(\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {{F_3}} {\rm{\;}} = \vec 0\)

      \( \Rightarrow \overrightarrow {{F_3}} {\rm{\;}} = {\rm{\;}} - \left( {\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} } \right) = {\rm{\;}} - \overrightarrow {MD} \)

      Vậy lực \(\overrightarrow {{F_3}} \) có hướng ngược với \(\overrightarrow {MD} \) và có cường độ bằng \(50\sqrt 2 {\mkern 1mu} {\mkern 1mu} N \approx 70,71{\mkern 1mu} {\mkern 1mu} N\)

      Câu 3 (VD):

      Phương pháp:

      +) Khoảng tứ phân vị, kí hiệu là ΔQ, là hiệu số giữa tứ phân vị thứ ba và tứ phân vị thứ nhất, tức là

      ΔQ = Q3 – Q1.

      +) Giá trị ngoại lệ: Giá trị ngoại lệ x thỏa mãn x > Q3 + 1,5∆Q hoặc x < Q1 − 1,5∆Q.

      Cách giải:

      Từ số liệu, ta lập bảng tần số

      Giá trị

      1

      2

      3

      4

      6

      30

      Tần số

      2

      6

      3

      2

      1

      1

      Cỡ mẫu \(n = 15\) nên trung vị \({Q_2} = {x_8} = 2\)

      \({Q_1}\) là trung vị của mẫu: 1 1 2 2 2 2 2. Do đó \({Q_1} = 2\)

      \({Q_3}\) là trung vị của mẫu: 3 3 3 4 4 6 30. Do đó \({Q_3} = 4\)

      Khi đó khoảng tứ phân vị là \({\Delta _Q}\; = {\rm{ }}{Q_3}\; - {\rm{ }}{Q_1}\; = 4--2 = 2.\)

      Giá trị ngoại lệ x thỏa mãn \(x > {Q_3}\; + {\rm{ }}1,5{\Delta _Q}\; = 4 + 1,5.2 = 7\)

      Hoặc \(x < {Q_1}\; - {\rm{ }}1,5{\Delta _Q}\; = 2 - 1,5.2 = - 1\)

      Vậy đối chiếu mẫu số liệu của Quang suy ra giá trị ngoại lệ là 30.

      Câu 3 (VD):

      Cách giải:

      Parabol (P) \(y = a{x^2} + bx + c\) giao với Oy tại điểm có tọa độ \((0;c)\), do đó \(c = - 1\)

      (P) có hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = 2 \Rightarrow b = - 4a\)

      Điểm \(I(2;3)\) thuộc (P) nên \(a{.2^2} + b.2 - 1 = 3\) hay \(4a + 2b = 4\)

      Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}4a + 2b = 4\\b = - 4a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 4\\a = - 1\end{array} \right.\)

      Vậy parabol cần tìm là \(y = - {x^2} + 4x - 1\)

      * Vẽ parabol

      Đỉnh \(I(2;3)\)

      Trục đối xứng \(x = 2\)

      Giao với Oy tại A(0;-1), lấy điểm B(4;-1) đối xứng với A qua trục đối xứng

      Lấy điểm C(1;2) và D(3;2) thuộc đồ thị.

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1 12

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      I. Trắc nghiệm (7 điểm)

      Câu 1: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 - 3x} + \frac{1}{{\sqrt {x - 1} }}.\)

      A. \({\rm{D}} = \left[ {1;2} \right].\)B. \({\rm{D}} = \left( {1;2} \right).\) C. \({\rm{D}} = (1;2].\) D. \({\rm{D}} = \left[ { - 1;2} \right].\)

      Câu 2: Cho mệnh đề P(x): “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)”. Mệnh đề phủ định của mệnh đề P(x) là

      A. “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 < 0\)”. B. “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”.

      C. “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”. D. “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)”.

       Câu 3: Cho hàm số \(y = \frac{{\sqrt {x - 2} - 2}}{{x - 6}}\). Điểm nào sau đây thuộc đồ thị hàm số:

      A. \((6;0)\).B. \((2; - 0,5)\).C. \((2;0,5)\).D. \((0;6)\).

       Câu 4: Trong các tập hợp sau, tập hợp nào là tập hợp rỗng:

      A. \(A = \left\{ {x \in \mathbb{R}|\left| x \right| < 1} \right\}\) B. \(A = \left\{ {x \in \mathbb{Z}|6{x^2} - 7x + 1 = 0} \right\}\) C. \(A = \left\{ {x \in \mathbb{Z}|{x^2} - 4x + 2 = 0} \right\}\) D. \(A = \left\{ {x \in \mathbb{N}|{x^2} - 4x + 3 = 0} \right\}\)

       Câu 5: Cho hai tập hợp \(A = \left( { - \infty ;2} \right]\) và \(B = \left( { - 3;5} \right]\). Tìm mệnh đề sai.

      A. \(A \cap B = \left( { - 3;2} \right].\) B. \(A\backslash B = \left( { - \infty ; - 3} \right)\). C. \(A \cup B = \left( { - \infty ;5} \right]\). D. \(B\backslash A = \left( {2;5} \right]\).

      Câu 6: Cho tập hợp: \(B = \left\{ {x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 5} \right\}.\) Số tập hợp con của tập hợp \(B\) là

      A. 29 B. 30 C. 31 D. 32

       Câu 7: Hàm số \(y = a{x^2} + bx + c\), \((a > 0)\) nghịch biến trong khoảng nào sau đậy?

      A. \(\left( { - \infty ;\, - \frac{b}{{2a}}} \right).\)B. \(\left( { - \frac{b}{{2a}};\, + \infty } \right).\)C. \(\left( { - \frac{\Delta }{{4a}};\, + \infty } \right).\)D. \(\left( { - \infty ;\, - \frac{\Delta }{{4a}}} \right).\)

       Câu 8: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

      A. \(2{x^2} + 3y > 0\) B. \({x^2} + {y^2} < 2\) C. \(x + {y^2} \ge 0\) D. \(x + y \ge 0\)

      Câu 9: Miền nghiệm của bất phương trình \(\left( {1 + \sqrt 3 } \right)x - \left( {1 - \sqrt 3 } \right)y \ge 2\) chứa điểm nào sau đây?

      A. A(1;-1) B. B(-1;-1) C. C(-1;1) D. \(D\left( { - \sqrt 3 ;\sqrt 3 } \right)\)

      Câu 10: (ID: 590544) Trong tam giác EFG, chọn mệnh đề đúng.

      A. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos G.\) B. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos E.\)

      C. \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos E.\) D. \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos G.\)

      Câu 11: (ID: 590545) Cho tam giác ABC biết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) và \(AB = 2\sqrt 2 \). Tính AC.

      A. \(2\sqrt 3 .\) B. \(2\sqrt 5 .\) C. \(2\sqrt 2 .\) D. \(2\sqrt 6 .\)

      Câu 12: (ID: 590546) Cho tam giác ABC có b = 7, c = 5, \(\cos A = \frac{3}{5}.\) Độ dài đường cao \({h_a}\) của tam giác ABC là:

      A. \(8.\) B. \(8\sqrt 3 .\) C. \(\frac{{7\sqrt 2 }}{2}.\) D. \(7\sqrt 2 .\)

      Câu 13: Hàm số bậc hai nào sau đây có đồ thị là parabol có đỉnh là \(S\left( {\frac{5}{2};\frac{1}{2}} \right)\)và đi qua \(A\left( {1; - 4} \right)\)?

      A. \(y = - {x^2} + 5x - 8\). B. \(y = - 2{x^2} + 10x - 12\).

      C. \(y = {x^2} - 5x\). D. \(y = - 2{x^2} + 5x + \frac{1}{2}\).

      Câu 14: Cho hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

      A. \(O\left( {0;0} \right)\) B. \(M\left( {1;0} \right)\) C. \(N\left( {0; - 2} \right)\) D. \(P\left( {0;2} \right)\)

      Câu 15: Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 1

      Phương trình của parabol này là

      A. \(y = - {x^2} + x - 1\).B. \(y = 2{x^2} + 4x + 1\).C. \(y = {x^2} - 2x - 1\). D. \(y = 2{x^2} - 4x - 1\).

      Câu 16: Tính bán kính r của đường tròn nội tiếp tam giác đều cạnh a.

      A. \(r = \frac{{a\sqrt 3 }}{4}\) B. \(r = \frac{{a\sqrt 2 }}{5}\) C. \(r = \frac{{a\sqrt 3 }}{6}\) D. \(r = \frac{{a\sqrt 5 }}{7}\)

      Câu 17: Tam giác ABC có \(AB = \sqrt 2 ,\,\,AC = \sqrt 3 \) và \(C = {45^0}\). Tính độ dài cạnh BC.

      A. \(BC = \sqrt 5 \) B. \(BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\) C. \(BC = \frac{{\sqrt 6 - \sqrt 2 }}{2}\) D. \(BC = \sqrt 6 \)

      Câu 18: Bảng biến thiên của hàm số \(y = - {x^2} + 2x - 1\) là:

      A. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 2B. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 3

      C. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 4D. Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 5

       Câu 19: Phần không bị gạch trên hình vẽ dưới đây minh họa cho tập hợp nào?

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 6

      A. \(\left( { - 3; + \infty } \right).\) B. \(\left( {5; + \infty } \right).\) C. \(\{ - 3;5\} \) D. \(\left( { - 3;5} \right].\)

      Câu 20: Giá trị lớn nhất của hàm số \(y = - 3{x^2} + 2x + 1\) trên đoạn \(\left[ {1;3} \right]\) là:

      A. B. 0 C. \(\frac{1}{3}\) D. \( - 20\)

      Câu 21: Cho hai vectơ \(\vec a\) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 3,\) \(\left| {\overrightarrow b } \right| = 2\) và \(\vec a.\vec b = - 3.\) Xác định góc \(\alpha \) giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b .\)

      A. \(\alpha = {30^0}.\) B. \(\alpha = {45^0}.\) C. \(\alpha = {60^0}.\) D. \(\alpha = {120^0}.\)

      Câu 22: Cho tam giác cân \(ABC\) có\(\widehat A = {120^0}\)và \(AB = AC = a\). Lấy điểm \(M\)trên cạnh \(BC\) sao cho \(BM = \frac{{2BC}}{5}\). Tính độ dài \(AM.\)

      A. \(\frac{{a\sqrt 3 }}{3}\)B. \(\frac{{11a}}{5}\)C. \(\frac{{a\sqrt 7 }}{5}\) D. \(\frac{{a\sqrt 6 }}{4}\)

      Câu 23: Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 7

      A. \(2x - y < 3\) B. \(2x - y > 3\) C. \(x - 2y < 3\) D. \(x - 2y > 3\)

      Câu 24: Cho góc \(\alpha \) với \({0^0} < \alpha < {180^0}\). Tính giá trị của \(\cos \alpha \), biết \(\tan \alpha = - 2\sqrt 2 \).

      A. \( - \frac{1}{3}.\) B. \(\frac{1}{3}.\) C. \(\frac{{2\sqrt 2 }}{3}.\) D. \(\frac{{\sqrt 2 }}{3}.\)

      Câu 25: Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn cùng một điểm trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40cm, \(\angle CAB = {45^0}\), \(\angle CBA = {70^0}\). Vậy sau khi đo đạc và tính toán được khoảng cách AC gần nhất với giá trị nào sau đây?

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 8

      A. 53 m B. 30 m C. 41,5 m D. 41 m

      Câu 26: Trái đất quay một vòng quanh mặt trời là 365 ngày. Kết quả này có độ chính xác là \(\frac{1}{4}\) ngày. Sai số tương đối là:

      A. 0,0068%. B. 0,068%. C. 0,68%. D. 6,8%.

      Câu 27: Cho mẫu số liệu: 1 3 6 8 9 12. Tứ phân vị của mẫu số liệu trên là:

      A. Q1 = 3, Q2 = 6,5, Q3 = 9. B. Q1 = 1, Q2 = 6,5, Q3 = 12.

      C. Q1 = 6, Q2 = 7, Q3 = 8. D. Q1 = 3, Q2 = 7, Q3 = 9.

      Câu 28: Cho bốn điểm A,B,C,Dphân biệt. Khi đó, \(\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {DC} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} - \overrightarrow {AD} \) bằng véctơ nào sau đây?

      A. \(\vec 0\) B. \(\overrightarrow {BD} \) C. \(\overrightarrow {AC} \) D. \(2\overrightarrow {DC} \)

       Câu 29: Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

      A. \(\overrightarrow {AC} {\rm{ \;}} = \overrightarrow {BD} \) B. \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = \vec 0\)

      C. \(\left| {\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AD} } \right|\) D. \(\left| {\overrightarrow {BC} {\rm{ \;}} + \overrightarrow {BD} } \right| = \left| {\overrightarrow {AC} {\rm{ \;}} - \overrightarrow {AB} } \right|\)

      Câu 30: Hãy viết số quy tròn của số gần đúng \(a = 15,318\) biết \(\bar a = 15,318 \pm 0,006.\)

      A. 15,3. B. 15,31. C. 15,32. D. 15,4.

      Câu 31: Sản lượng lúa của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng tần số sau đây: (đơn vị: tạ)

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 9

      Phương sai là

      A. 1,24 B. 1,54 C. 22,1 D. 4,70

      Câu 32: Cho tam giác ABC có trung tuyến BM và trọng tâm \(G\). Đặt \(\overrightarrow {BC} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BA} {\rm{\;}} = b\). Hãy phân tích vectơ \(\overrightarrow {BG} \) theo \(\vec a\) và \(\vec b\).

      A. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) B. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{2}{3}\vec b\) C. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{2}{3}\vec b\) D. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{1}{3}\vec b\)

      Câu 33: Cho hình vuông ABCD cạnh \(a\), \(M\) là điểm thay đổi. Độ dài véctơ \(\vec u = \overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} {\rm{\;}} - 3\overrightarrow {MD} \) là:

      A. \(4a\sqrt 2 \) B. \(a\sqrt 2 \) C. \(3a\sqrt 2 \) D. \(2a\sqrt 2 \)

      Câu 34: Cho tam giác ABC đều cạnh a, G là trọng tâm. Mệnh đề nào sau đây sai?

      A. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}{a^2}.\) B. \(\overrightarrow {AC} .\overrightarrow {CB} = - \frac{1}{2}{a^2}.\) C. \(\overrightarrow {GA} .\overrightarrow {GB} = \frac{1}{6}{a^2}.\) D. \(\overrightarrow {AB} .\overrightarrow {AG} = \frac{1}{2}{a^2}.\)

      Câu 35: Cho hình chữ nhật ABCD có \(AB = a\) và \(AD = a\sqrt 2 \). Gọi K là trung điểm của cạnh AD. Tính \(\overrightarrow {BK} .\overrightarrow {AC} \)

      A. \(\overrightarrow {BK} .\overrightarrow {AC} = \overrightarrow 0 \) B. \(\overrightarrow {BK} .\overrightarrow {AC} = - {a^2}\sqrt 2 \) C. \(\overrightarrow {BK} .\overrightarrow {AC} = {a^2}\sqrt 2 \) D. \(\overrightarrow {BK} .\overrightarrow {AC} = 2{a^2}\)

      II. Tự luận (3 điểm)

      Câu 1: Cho ba lực \(\overrightarrow {{F_1}} {\rm{\;}} = \overrightarrow {MA} \), \(\overrightarrow {{F_2}} {\rm{\;}} = \overrightarrow {MB} \), \(\overrightarrow {{F_3}} {\rm{\;}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ lực \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 50 N và tam giác MAB vuông tại M. Tìm hướng và cường độ lực \(\overrightarrow {{F_3}} \)

      Câu 2: Quang ghi lại số tin nhắn điện thoại mà bạn ấy nhận được từ ngày 1/11 đến ngày 15/11 ở bảng sau:

      Xác định các giá trị ngoại lệ (nếu có).

      Câu 3: Tìm parabol (P) \(y = a{x^2} + bx + c\) biết (P) có đỉnh \(I(2;3)\) và giao với Oy tại điểm có tung độ bằng -1. Vẽ đồ thị hàm số tìm được.

      -----HẾT-----

      HƯỚNG DẪN GIẢI CHI TIẾT

      I. Trắc nghiệm (7 điểm)

      1. C

      2. C

      3. C

      4. C

      5. B

      6. D

      7.A

      8. D

      9. A

      10. D

      11. D

      12. C

      13. B

      14. C

      15. D

      16. C

      17. B

      18. A

      19. D

      20. B

      21. D

      22. C

      23. D

      24. C

      25. C

      26. A

      27. D

      28. A

      29.A

      30. B

      31. B

      32. A

      33. D

      34. C

      35. A

      Câu 1 (NB):

      Phương pháp:

      • \(\sqrt {P(x)} \) có nghĩa khi \(P(x) \ge 0\).
      • \(\frac{{Q(x)}}{{\sqrt {P(x)} }}\) có nghĩa khi \(P(x) > 0\).

      Cách giải:

      Hàm số \(y = \sqrt {6 - 3x} + \frac{1}{{\sqrt {x - 1} }}\) xác định khi \(\left\{ \begin{array}{l}6 - 3x \ge 0\\x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\x > 1\end{array} \right. \Leftrightarrow 1 < x \le 2\)

      Vậy tập xác định \(D = (1;2]\)

      Chọn C.

      Câu 2 (TH):

      Phương pháp:

      Phủ định của mệnh đề “\(\forall x \in K,\,\,P\left( x \right)\)” là mệnh đề “\(\exists x \in K,\,\,\overline {P\left( x \right)} \)”.

      Cách giải:

      Mệnh đề phủ định của mệnh đề P(x): “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)” là “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”.

      Chọn C.

       Câu 3 (TH):

      Phương pháp:

      Thay tọa độ các điểm vào hàm số

      Cách giải:

      Với \(x = 6,x = 0\)thì \(y = \frac{{\sqrt {x - 2} - 2}}{{x - 6}}\) không xác định. Suy ra điểm \((6;0)\) và \((0;6)\)không thuộc đồ thị hàm số

      Với \(x = 2\) thì \(y = \frac{{\sqrt {2 - 2} - 2}}{{2 - 6}} = 0,5 \ne - 0,5\). Suy ra điểm \((2; - 0,5)\)không thuộc đồ thị hàm số, điểm \((2;0,5)\) thuộc đồ thị hàm số

      Chọn C.

       Câu 4 (TH):

      Phương pháp:

      Tập hợp rỗng không chứa phần tử nào.

      Cách giải:

      +) Xét đáp án A: \(\left\{ {\begin{array}{*{20}{l}}{x \in \mathbb{R}}\\{\left| x \right| < 1}\end{array}} \right. \Rightarrow {\rm{\;}} - 1 < x < 1\) \( \Rightarrow A = \left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right) \ne \emptyset \)

      \( \Rightarrow \) Loại đáp án A.

      +) Xét đáp án B: \(6{x^2} - 7x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = \frac{1}{6}}\end{array}} \right.\) \( \Rightarrow A = \left\{ 1 \right\} \ne \emptyset \)

      \( \Rightarrow \) Loại đáp án B.

      +) Xét đáp án C: \({x^2} - 4x + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 2 + \sqrt 2 }\\{x = 2 - \sqrt 2 }\end{array}} \right.\) \( \Rightarrow A = \emptyset \)

      Chọn C.

       Câu 5 (VD):

      Phương pháp:

      Thực hiện các phép toán trên tập hợp. Sử dụng trục số.

      Cách giải:

      +) \(A \cap B = \left( { - 3;2} \right]\)

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 10

      => A đúng.

      +) \(A\backslash B = \left( { - \infty ; - 3} \right]\)

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 11

      => B sai.

      +) \(A \cup B = \left( { - \infty ;5} \right]\)

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 12

      => C đúng.

      +) \(B\backslash A = \left( {2;5} \right]\).

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 13

      => D đúng.

      Chọn B.

      Câu 6 (TH):

      Phương pháp:

      Cho tập hợp B có n phần tử. Số tập hợp con của B là \({2^n}\)

      Cách giải:

      Tập hợp \(B = \left\{ {x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 5} \right\}\) có 5 phần tử.

      Số tập hợp con của tập B là: \({2^5} = 32\)

      Chọn D.

       Câu 7 (NB):

      Cách giải:

      Với \(a > 0\), ta có bảng biến thiên

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 14

      Hàm số nghịch biến trên \(\left( { - \infty ;\, - \frac{b}{{2a}}} \right).\)

      Chọn A.

       Câu 8 (TH):

      Phương pháp:

      Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là \(ax + by + c < 0\), \(ax + by + c > 0\), \(ax + by + c \le 0\), \(ax + by + c \ge 0\), trong đó a, b, c là các số cho trước sao cho \({a^2} + {b^2} \ne 0\).

      Cách giải:

      Bất phương trình bậc nhất hai ẩn là \(x + y \ge 0\).

      Chọn D.

      Câu 9 (TH):

      Phương pháp:

      Thay tọa độ các điểm ở các đáp án vào bất phương trình.

      Cách giải:

      Thay tọa độ điểm A(1;-1) ta có: \(\left( {1 + \sqrt 3 } \right) + \left( {1 - \sqrt 3 } \right) = 2 \ge 2\) (Đúng).

      Vậy điểm A thuộc miền nghiệm của bất phương trình.

      Chọn A.

      Câu 10 (NB):

      Phương pháp:

      Sử dụng định lí cosin trong tam giác: \({a^2} = {b^2} + {c^2} - 2bc.\cos A.\)

      Cách giải:

      \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos G\) là mệnh đề đúng.

      Chọn D.

      Câu 11 (TH):

      Phương pháp:

      Áp dụng định lí Sin trong tam giác ABC: \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{\sin B}}{{\sin C}} = \frac{{AC}}{{AB}}\).

      Cách giải:

      Áp dụng định lí Sin trong tam giác ABC ta có: \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{\sin B}}{{\sin C}} = \frac{{AC}}{{AB}}\).

      Theo giả thiết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \Rightarrow \frac{{AC}}{{AB}} = \sqrt 3 \Rightarrow AC = \sqrt 3 AB.\)

      Vậy \(AC = \sqrt 3 .2\sqrt 2 = 2\sqrt 6 .\)

      Chọn D.

      Câu 12 (VD):

      Phương pháp:

      Tính sinA.

      Tính diện tích tam giác ABC: \(S = \frac{1}{2}bc.\sin A.\)

      Sử dụng định lí cosin trong tam giác tính a: \({a^2} = {b^2} + {c^2} - 2bc.\cos A.\)

      Sử dụng công thức tính diện tích tam giác: \(S = \frac{1}{2}a{h_a}\), từ đó tính \({h_a}\).

      Cách giải:

      Ta có:

      \(\begin{array}{l}{\sin ^2}A + {\cos ^2}A = 1\\ \Leftrightarrow {\sin ^2}A + {\left( {\frac{3}{5}} \right)^2} = 1\\ \Leftrightarrow {\sin ^2}A = \frac{{16}}{{25}}\end{array}\)

      Vì \({0^0} < A < {180^0}\) nên sinA > 0 \( \Rightarrow \sin A = \frac{4}{5}.\)

      Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A. = \frac{1}{2}.7.5.\frac{4}{5} = 14.\)

      Áp dụng định lí cosin trong tam giác ABC ta có:

      \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A.\\\,\,\,\,\,\, = {7^2} + {5^2} - 2.7.5.\frac{3}{5}\\\,\,\,\,\,\, = 32\\ \Rightarrow a = 4\sqrt 2 .\end{array}\)

      Lại có: \(S = \frac{1}{2}a{h_a} \Rightarrow {h_a} = \frac{{2S}}{a} = \frac{{2.14}}{{4\sqrt 2 }} = \frac{{7\sqrt 2 }}{2}.\)

      Chọn C.

      Câu 13 (TH):

      Cách giải:

      Hàm số bậc hai cần tìm có phương trình: \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)

      Hàm số bậc hai có đồ thị là parabol có đỉnh là \(S\left( {\frac{5}{2};\frac{1}{2}} \right)\)và đi qua \(A\left( {1; - 4} \right)\)

      \( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = \frac{5}{2}\\a.\frac{{25}}{4} + b.\frac{5}{2} + c = \frac{1}{2}\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - b}}{a} = 5\\25a + 10b + 2c = 2\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{\rm{a + b = 0}}\\25a + 10b + 2c = 2\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = 10\\c = - 12\end{array} \right.\)

      Chọn B.

       Câu 14 (TH):

      Phương pháp:

      Thay tọa độ các điểm vào hệ bất phương trình.

      Cách giải:

      Dễ thấy các điểm \(O\left( {0;0} \right)\), \(M\left( {1;0} \right)\), \(P\left( {0;2} \right)\) không thỏa mãn bất phương trình \(x + y + 1 < 0\) nên không thỏa mãn cả hệ bất phương trình.

      Chọn C.

      Câu 15 (TH):

      Cách giải:

      Đồ thị hàm số cắt trục tung tại điểm \(\left( {0\,\,;\,\, - 1} \right)\) nên \(c = - 1\).

      Tọa độ đỉnh \(I\left( {1\,\,;\, - 3} \right)\), ta có phương trình: \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a{.1^2} + b.1 - 1 = - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b = - 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 4\end{array} \right.\).

      Vậy parabol cần tìm là: \(y = 2{x^2} - 4x - 1\).

      Chọn D.

      Câu 16 (TH):

      Phương pháp:

      Sử dụng công thức tính diện tích tam giác \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = pr\).

      Cách giải:

      Nửa chu vi tam giác đều cạnh a là \(p = \frac{{a + a + a}}{2} = \frac{{3a}}{2}\).

      Tam giác đều cạnh a có diện tích \(S = \sqrt {\frac{{3a}}{2}\left( {\frac{{3a}}{2} - a} \right)\left( {\frac{{3a}}{2} - a} \right)\left( {\frac{{3a}}{2} - a} \right)} = \frac{{{a^2}\sqrt 3 }}{4}\).

      Lại có \(S = pr \Leftrightarrow r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{4}:\frac{{3a}}{2} = \frac{{a\sqrt 3 }}{6}\).

      Chọn C.

      Câu 17 (NB):

      Phương pháp:

      Sử dụng hệ quả định lí Cosin trong tam giác: \(\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\).

      Cách giải:

      Áp dụng hệ quả định lí Cosin trong tam giác ABC ta có:

      \(\begin{array}{l}\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\\ \Leftrightarrow \cos {45^0} = \frac{{{{\left( {\sqrt 3 } \right)}^2} + B{C^2} - {{\left( {\sqrt 2 } \right)}^2}}}{{2.\sqrt 3 .BC}}\\ \Leftrightarrow \sqrt 6 BC = B{C^2} + 1\\ \Leftrightarrow B{C^2} - \sqrt 6 BC + 1 = 0\\ \Leftrightarrow BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\end{array}\).

      Chọn B.

      Câu 18 (TH):

      Cách giải:

      Hàm số \(y = - {x^2} + 2x - 1\) có \(a = - 1 < 0\), nên loại C,D.

      Hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = - \frac{2}{{2.( - 1)}} = 1\)

      Chọn A.

       Câu 19 (NB):

      Phương pháp:

      Biểu diễn tập hợp trên trục số.

      Cách giải:

      Hình vẽ đã cho là minh họa cho tập hợp \(( - 3;5]\)

      Chọn D.

      Câu 20 (VD):

      Cách giải:

      Ta có \( - \frac{b}{{2a}} = \frac{1}{3}\) và \(a = - 3 < 0\). Suy ra hàm số đã cho nghịch biến trên khoảng \(\left( {\frac{1}{3}; + \infty } \right)\).

      Mà \(\left[ {1;3} \right] \subset \left( {\frac{1}{3}; + \infty } \right)\).

      Do đó trên đoạn \(\left[ {1;3} \right]\) hàm số đạt giá trị lớn nhất tại \(x = 1\), tức là \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = 0\).

      Chọn B.

      Câu 21 (TH):

      Phương pháp:

      Áp dụng công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)

      Cách giải:

      Ta có \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 3}}{{3.2}} = - \frac{1}{2}\)

      \( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {120^o}\)

      Chọn D.

      Câu 22 (VD):

      Phương pháp:

      - Tính BC dựa vào định lí côsin trong tam giác cân ABC.

      - Tính BM.

      - Tính AM dựa vào định lí côsin trong tam giác ABM.

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 15

      \(BC = \sqrt {A{B^2} + A{C^2} - 2ABAC\cos {{120}^0}} = \sqrt {{a^2} + {a^2} - 2a.a.\left( { - \frac{1}{2}} \right)} = a\sqrt 3 {\rm{ }} \Rightarrow BM = \frac{{2a\sqrt 3 }}{5}\)

      \(AM = \sqrt {A{B^2} + B{M^2} - 2AB.BM.cos{{30}^0}} = \sqrt {{a^2} + {{\left( {\frac{{2a\sqrt 3 }}{5}} \right)}^2} - 2a.\frac{{2a\sqrt 3 }}{5}.\frac{{\sqrt 3 }}{2}} = \frac{{a\sqrt 7 }}{5}\).

      Chọn C.

      Câu 23 (TH):

      Phương pháp:

      Tìm phương trình đường thẳng d. Loại đáp án.

      Thay tọa độ điểm O(0;0) vào các bất phương trình chưa bị loại ở các đáp án, tiếp tục loại đáp án.

      Cách giải:

      Đường thẳng d đi qua điểm (3;0) nên loại đáp án A, B.

      Ta thấy điểm O(0;0) không thuộc miền nghiệm của bất phương trình.

      + Thay tọa độ điểm O(0;0) vào biểu thức \(x - 2y\) ta có: \(0 - 2.0 = 0 < 3\)

      Do đó bất phươn trình cần tìm là \(x - 2y > 3\)

      Chọn D.

      Câu 24 (TH):

      Phương pháp:

      Sử dụng công thức: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}.\)

      Cách giải:

      Ta có:

      \(\begin{array}{l}\,\,\,\,\,\,\,1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow 1 + {\left( { - 2\sqrt 2 } \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\cos ^2}\alpha = \frac{1}{9}\\ \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{1}{9} = \frac{8}{9}\\ \Leftrightarrow \sin \alpha = \pm \frac{{2\sqrt 2 }}{3}\end{array}\)

      Vì \({0^0} < \alpha < {180^0}\) \( \Rightarrow \sin \alpha > 0\).

      Vậy \(\sin \alpha = \frac{{2\sqrt 2 }}{3}.\)

      Chọn C.

      Câu 25 (VD):

      Phương pháp:

      Áp dụng hệ quả định lí Sin trong tam giác ABC.

      Cách giải:

      Ta có: \(\angle ACB = {180^0} - {45^0} - {70^0} = {65^0}\)

      Áp dụng hệ quả định lí Sin trong tam giác ABC ta có:

      \(\begin{array}{l}\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{AC}}{{\sin {{70}^0}}} = \frac{{40}}{{\sin {{65}^0}}}\\ \Rightarrow AC = \frac{{40}}{{\sin {{65}^0}}}.\sin {70^0} \approx 41,47\,\,\left( m \right)\end{array}\)

      Chọn C.

      Câu 26 (TH):

      Phương pháp:

      Sai số tương đối \({\delta _a} \le \frac{d}{{\left| a \right|}}\).

      Cách giải:

      Ta có: \(d = \frac{1}{4} \Rightarrow \delta \le \frac{d}{{\left| a \right|}} = \frac{1}{{4.365}} = 0,0068\% \).

      Chọn A.

      Câu 27 (NB):

      Phương pháp:

      Để tìm các tứ phân vị của mẫu số liệu có n giá trị ta làm như sau:

      • Sắp xếp mẫu số liệu theo thứ tự không giảm.

      • Tìm trung vị. Giá trị này là Q2.

      • Tìm trung vị của nửa số liệu bên trái Q2 (không bao gồm Q2 nếu n lẻ). Giá trị này là Q1.

      • Tìm trung vị của nửa số liệu bên phải Q2 (không bao gồm Q2 nếu n lẻ). Giá trị này là Q3.

      Q1, Q2, Q3 được gọi là các tứ phân vị của mẫu số liệu.

      Cách giải:

      Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 6 8 9 12.

      Cỡ mẫu n = 6 chẵn nên \({Q_2} = \frac{{6 + 8}}{2} = 7.\)

      Nửa số liệu bên trái Q2: 1 3 6 => Q1 = 3.

      Nửa số liệu bên phải Q2: 8 9 12 => Q3 = 9.

      Vậy Q1 = 3, Q2 = 7, Q3 = 9.

      Chọn D.

      Câu 28 (NB):

      Phương pháp:

      Nhóm \(\overrightarrow {AB} ,\overrightarrow {BC} \); \(\overrightarrow {DC} ,\overrightarrow {AD} \), áp dụng quy tắc cộng vectơ.

      Cách giải:

      Ta có: \(\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {DC} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} - \overrightarrow {AD} {\rm{ \;}} = \left( {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} } \right) - \left( {\overrightarrow {AD} {\rm{ \;}} + \overrightarrow {DC} } \right) = \overrightarrow {AC} {\rm{ \;}} - \overrightarrow {AC} {\rm{ \;}} = \vec 0\).

      Chọn A.

      Câu 29 (NB):

      Phương pháp:

      Sử dụng quy tắc hình bình hành tính \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} \).

      Tính độ dài vectơ vừa tìm được.

      Cách giải:

      Ta có: \(\left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\).

      Chọn A.

      Câu 30 (TH):

      Cách giải:

      Ta có: \(\bar a = 15,318 \pm 0,006 \Rightarrow d = 0,006\) có chữ số khác 0 đầu tiên bên trái là ở hàng phần nghìn.

      Làm tròn số \(a = 15,318\) chính xác đến hàng phần trăm, kết quả là: \(15,32\)

      Chọn B.

      Câu 31 (TH):

      Phương pháp:

      Đối với bảng phân bố tần số, phương sai được tính theo công thức:

      \({s^2} = \frac{1}{N}\left[ {{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + {\rm{\;}} \ldots {\rm{\;}} + {n_k}{{\left( {{x_k} - \bar x} \right)}^2}} \right]\)

      Với \({n_i};{\mkern 1mu} {\mkern 1mu} {f_i}\) lần lượt là tần số, tần suất của giá trị \({x_i}\).

      Cách giải:

      Bảng phân số tần số:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 16

      *) Sản lượng trung bình của 40 thửa ruộng là:

      \(\bar x = \frac{{20.5 + 21.8 + 22.11 + 23.10 + 24.6}}{{40}} = 22,1{\mkern 1mu} \)(tạ)

      *) Phương sai:

      \({s^2} = \frac{1}{{40}}\left[ {5.{{\left( {20 - 22,1} \right)}^2} + 8.{{\left( {21 - 22,1} \right)}^2} + 11.{{\left( {22 - 22,1} \right)}^2} + 10.{{\left( {23 - 22,1} \right)}^2} + 6.{{\left( {24 - 22,1} \right)}^2}} \right]\)\( = 1,54\) (tạ)

      Chọn B.

      Câu 32 (TH):

      Phương pháp:

      Áp dụng quy tắc cộng vecto, quy tắc hình bình hành để biểu diễn véctơ.

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 17

      \(\overrightarrow {BM} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {BA} {\rm{\;}} + \overrightarrow {BC} } \right) = \frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} \)

      \( \Rightarrow \overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\overrightarrow {BM} {\rm{\;}} = \frac{2}{3} \cdot \left( {\frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} } \right) = \frac{1}{3}\overrightarrow {BA} {\rm{\;}} + \frac{1}{3}\overrightarrow {BC} \)

      Mặt khác, \(\overrightarrow {BA} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BC} {\rm{\;}} = \vec b\) nên ta có: \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\)

      Vậy \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\).

      Chọn A.

      Câu 33 (VD):

      Phương pháp:

      Áp dụng quy tắc cộng vecto để tìm được vecto \(\vec u\).

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 18

      Vì ABCD là hình vuông nên ta có: \(AB = BC = CD = DA = 2\); \(AC = BD = a\sqrt 2 \).

      Ta có:

      \(\vec u = \overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} {\rm{\;}} - 3\overrightarrow {MD} \)

      \({\mkern 1mu} = \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DA} } \right) + \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DB} } \right) + \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DC} } \right) - 3\overrightarrow {MD} \)

      \({\mkern 1mu} = \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DA} {\rm{\;}} + \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DB} {\rm{\;}} + \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DC} {\rm{\;}} - 3\overrightarrow {MD} \)

      \( = \overrightarrow {DA} {\rm{\;}} + \overrightarrow {DB} {\rm{\;}} + \overrightarrow {DC} \)

      \( = \left( {\overrightarrow {DA} {\rm{\;}} + \overrightarrow {DC} } \right) + \overrightarrow {DB} \)

      \( = \overrightarrow {DB} {\rm{\;}} + \overrightarrow {DB} \)

      \( = 2\overrightarrow {DB} \)

      \( \Rightarrow \vec u = 2\overrightarrow {DB} \)

      \( \Rightarrow \left| {\vec u} \right| = \left| {2.\overrightarrow {DB} } \right| = 2.a.\sqrt 2 {\rm{\;}} = 2\sqrt 2 a\)

      Chọn D.

      Câu 34 (VD):

      Phương pháp:

      Áp dụng tích vô hướng \(\overrightarrow a .\overrightarrow b = a.b.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 19

      Ta có:

      \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = a.a.\cos A = {a^2}\cos {60^ \circ } = \frac{1}{2}{a^2}\) => A đúng

      \(\overrightarrow {AC} .\overrightarrow {CB} = AC.CB.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = a.a.\cos {120^ \circ } = - \frac{1}{2}{a^2}\) => B đúng

      + \(AG = \frac{2}{3}AM;AM = AC.\sin C = a.\sin {60^ \circ } = \frac{{a\sqrt 3 }}{2}\)

      \( \Rightarrow AG = BG = \frac{{a\sqrt 3 }}{3}\)

      \(\overrightarrow {GA} .\overrightarrow {GB} = GA.GB.\cos \left( {\overrightarrow {GA} ,\overrightarrow {GB} } \right) = \frac{{a\sqrt 3 }}{3}.\frac{{a\sqrt 3 }}{3}.\cos {120^ \circ } = - \frac{1}{6}{a^2}\) => C sai.

      \(\overrightarrow {AB} .\overrightarrow {AG} = AB.AG.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AG} } \right) = a.\frac{{a\sqrt 3 }}{3}.\cos {30^ \circ } = \frac{1}{2}{a^2}\) => D đúng.

      Chọn C.

      Câu 35 (VD):

      Cách giải:

      Ta có:

      \(AC = BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \)

      Lại có:

      \(\left\{ \begin{array}{l}\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {AD} \\\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \end{array} \right.\)

      \(\begin{array}{l} \Rightarrow \overrightarrow {BK} .\overrightarrow {AC} = \left( {\overrightarrow {BA} + \frac{1}{2}\overrightarrow {AD} } \right).\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\\ = \overrightarrow {BA} .\overrightarrow {AB} + \overrightarrow {BA} .\overrightarrow {AD} + \frac{1}{2}\overrightarrow {AD} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} .\overrightarrow {AD} \\ = - {a^2} + 0 + 0 + \frac{1}{2}{\left( {a\sqrt 2 } \right)^2}\\ = 0\end{array}\)

      Chọn A.

      II. Tự luận (3 điểm)

      Câu 1 (VD):

      Phương pháp:

      Áp dụng quy tắc hình bình hành.

      Vật đứng yên khi tổng các lực tác động lên điểm bằng 0.

      Cách giải:

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 20

      Có cường độ lực \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 50 N và tam giác MAB vuông tại M

      \( \Rightarrow \) Tam giác MAB vuông cân tại M

      Lấy điểm D sao cho MADB là hình vuông

       \( \Rightarrow MD = \sqrt {M{A^2} + A{D^2}} {\rm{\;}} = \sqrt {M{A^2} + M{B^2}} {\rm{\;}} = 50\sqrt 2 {\mkern 1mu} {\mkern 1mu} N\)

      Vì vật đứng yên nên tổng các lực tác động lên điểm bằng 0

      \( \Rightarrow \overrightarrow {{F_1}} {\rm{\;}} + \overrightarrow {{F_2}} {\rm{\;}} + \overrightarrow {{F_3}} {\rm{\;}} = \vec 0\) hay \(\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {{F_3}} {\rm{\;}} = \vec 0\)

      \( \Rightarrow \overrightarrow {{F_3}} {\rm{\;}} = {\rm{\;}} - \left( {\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} } \right) = {\rm{\;}} - \overrightarrow {MD} \)

      Vậy lực \(\overrightarrow {{F_3}} \) có hướng ngược với \(\overrightarrow {MD} \) và có cường độ bằng \(50\sqrt 2 {\mkern 1mu} {\mkern 1mu} N \approx 70,71{\mkern 1mu} {\mkern 1mu} N\)

      Câu 3 (VD):

      Phương pháp:

      +) Khoảng tứ phân vị, kí hiệu là ΔQ, là hiệu số giữa tứ phân vị thứ ba và tứ phân vị thứ nhất, tức là

      ΔQ = Q3 – Q1.

      +) Giá trị ngoại lệ: Giá trị ngoại lệ x thỏa mãn x > Q3 + 1,5∆Q hoặc x < Q1 − 1,5∆Q.

      Cách giải:

      Từ số liệu, ta lập bảng tần số

      Giá trị

      1

      2

      3

      4

      6

      30

      Tần số

      2

      6

      3

      2

      1

      1

      Cỡ mẫu \(n = 15\) nên trung vị \({Q_2} = {x_8} = 2\)

      \({Q_1}\) là trung vị của mẫu: 1 1 2 2 2 2 2. Do đó \({Q_1} = 2\)

      \({Q_3}\) là trung vị của mẫu: 3 3 3 4 4 6 30. Do đó \({Q_3} = 4\)

      Khi đó khoảng tứ phân vị là \({\Delta _Q}\; = {\rm{ }}{Q_3}\; - {\rm{ }}{Q_1}\; = 4--2 = 2.\)

      Giá trị ngoại lệ x thỏa mãn \(x > {Q_3}\; + {\rm{ }}1,5{\Delta _Q}\; = 4 + 1,5.2 = 7\)

      Hoặc \(x < {Q_1}\; - {\rm{ }}1,5{\Delta _Q}\; = 2 - 1,5.2 = - 1\)

      Vậy đối chiếu mẫu số liệu của Quang suy ra giá trị ngoại lệ là 30.

      Câu 3 (VD):

      Cách giải:

      Parabol (P) \(y = a{x^2} + bx + c\) giao với Oy tại điểm có tọa độ \((0;c)\), do đó \(c = - 1\)

      (P) có hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = 2 \Rightarrow b = - 4a\)

      Điểm \(I(2;3)\) thuộc (P) nên \(a{.2^2} + b.2 - 1 = 3\) hay \(4a + 2b = 4\)

      Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}4a + 2b = 4\\b = - 4a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 4\\a = - 1\end{array} \right.\)

      Vậy parabol cần tìm là \(y = - {x^2} + 4x - 1\)

      * Vẽ parabol

      Đỉnh \(I(2;3)\)

      Trục đối xứng \(x = 2\)

      Giao với Oy tại A(0;-1), lấy điểm B(4;-1) đối xứng với A qua trục đối xứng

      Lấy điểm C(1;2) và D(3;2) thuộc đồ thị.

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 21

      Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9 đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

      Đề thi học kì 1 Toán 10 Chân trời sáng tạo - Đề số 9: Phân tích chi tiết và hướng dẫn giải

      Đề thi học kì 1 Toán 10 chương trình Chân trời sáng tạo - Đề số 9 là một bài kiểm tra quan trọng, đánh giá mức độ nắm vững kiến thức và kỹ năng của học sinh sau một học kỳ học tập. Đề thi này bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như tập hợp, hàm số, phương trình, bất phương trình, và hình học phẳng.

      Cấu trúc đề thi

      Đề thi thường được chia thành các phần sau:

      • Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      • Phần tự luận: Đòi hỏi học sinh trình bày chi tiết các bước giải và chứng minh.

      Nội dung đề thi

      Dưới đây là một số dạng bài tập thường xuất hiện trong đề thi:

      1. Tập hợp: Xác định các tập hợp, thực hiện các phép toán trên tập hợp, giải các bài toán liên quan đến tập hợp.
      2. Hàm số: Xác định tập xác định, tập giá trị, vẽ đồ thị hàm số, tìm điểm cực trị, giải các bài toán ứng dụng hàm số.
      3. Phương trình và bất phương trình: Giải các phương trình bậc nhất, bậc hai, phương trình chứa ẩn trong dấu căn, giải các bất phương trình bậc nhất, bậc hai.
      4. Hình học phẳng: Chứng minh các tính chất hình học, tính diện tích, chu vi, giải các bài toán liên quan đến tam giác, tứ giác, đường tròn.

      Hướng dẫn giải đề thi

      Để đạt kết quả tốt trong kỳ thi, học sinh cần:

      • Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý, công thức trong chương trình học.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải quyết vấn đề.
      • Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
      • Trình bày rõ ràng, mạch lạc: Viết các bước giải một cách chi tiết, dễ hiểu.
      • Kiểm tra lại kết quả: Đảm bảo kết quả cuối cùng là chính xác.

      Ví dụ minh họa

      Bài 1: Giải phương trình 2x + 3 = 7

      Giải:

      2x + 3 = 7

      2x = 7 - 3

      2x = 4

      x = 2

      Tài liệu tham khảo

      Để hỗ trợ quá trình ôn tập và luyện thi, học sinh có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 10 Chân trời sáng tạo
      • Sách bài tập Toán 10 Chân trời sáng tạo
      • Các đề thi thử học kì 1 Toán 10 Chân trời sáng tạo
      • Các trang web học toán online uy tín như giaitoan.edu.vn

      Lời khuyên

      Hãy dành thời gian ôn tập và luyện thi một cách nghiêm túc. Đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè nếu gặp khó khăn. Chúc các em đạt kết quả tốt nhất trong kỳ thi học kì 1!

      Bảng tổng hợp kiến thức trọng tâm

      Chủ đềKiến thức trọng tâm
      Tập hợpCác phép toán trên tập hợp, tập con, tập hợp rỗng
      Hàm sốTập xác định, tập giá trị, đồ thị hàm số, hàm số bậc nhất, hàm số bậc hai
      Phương trìnhPhương trình bậc nhất, phương trình bậc hai, phương trình chứa ẩn trong dấu căn
      Bất phương trìnhBất phương trình bậc nhất, bất phương trình bậc hai
      Hình học phẳngTam giác, tứ giác, đường tròn, các tính chất hình học

      Tài liệu, đề thi và đáp án Toán 10