Chào mừng các em học sinh đến với bài học số 3 trong chương trình Toán 9 tập 1, sách Chân trời sáng tạo. Bài học hôm nay sẽ tập trung vào phương pháp giải hệ hai phương trình bậc nhất hai ẩn, một kiến thức nền tảng quan trọng trong chương trình học.
Chúng ta sẽ cùng nhau tìm hiểu các phương pháp giải hệ phương trình, các ví dụ minh họa và bài tập thực hành để nắm vững kiến thức này.
Bài 3 trong chương trình Toán 9 tập 1, sách Chân trời sáng tạo, tập trung vào việc giải hệ hai phương trình bậc nhất hai ẩn. Đây là một phần quan trọng của chương trình, giúp học sinh nắm vững các kỹ năng giải phương trình và ứng dụng vào các bài toán thực tế.
Hệ hai phương trình bậc nhất hai ẩn là một tập hợp gồm hai phương trình, mỗi phương trình có hai ẩn số và bậc của mỗi ẩn số đều bằng 1. Dạng tổng quát của hệ hai phương trình bậc nhất hai ẩn là:
{ ax + by = ca'x + b'y = c' }
Trong đó, a, b, a', b', c, c' là các số thực và a, b, a', b' không đồng thời bằng 0.
Có ba phương pháp chính để giải hệ hai phương trình bậc nhất hai ẩn:
Ví dụ 1: Giải hệ phương trình sau bằng phương pháp thế:
{ 2x + y = 5x - y = 1 }
Giải:
Từ phương trình thứ hai, ta có x = y + 1. Thay vào phương trình thứ nhất, ta được:
2(y + 1) + y = 5
2y + 2 + y = 5
3y = 3
y = 1
Thay y = 1 vào x = y + 1, ta được x = 2.
Vậy nghiệm của hệ phương trình là (x, y) = (2, 1).
Ví dụ 2: Giải hệ phương trình sau bằng phương pháp cộng đại số:
{ 3x + 2y = 7x - 2y = 1 }
Giải:
Cộng hai phương trình, ta được:
4x = 8
x = 2
Thay x = 2 vào phương trình thứ hai, ta được:
2 - 2y = 1
-2y = -1
y = 1/2
Vậy nghiệm của hệ phương trình là (x, y) = (2, 1/2).
Giải các hệ phương trình sau:
Việc giải hệ phương trình bậc nhất hai ẩn có nhiều ứng dụng trong thực tế, ví dụ như:
Hy vọng bài học này đã giúp các em hiểu rõ hơn về cách giải hệ hai phương trình bậc nhất hai ẩn. Chúc các em học tốt!