Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 Chân trời sáng tạo tại giaitoan.edu.vn. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho từng bài tập trong SGK, giúp các em nắm vững kiến thức và tự tin hơn trong học tập.
Mục 1 trang 15, 16 tập trung vào các kiến thức cơ bản về biểu thức đại số và các phép biến đổi biểu thức. Việc hiểu rõ và vận dụng thành thạo các kiến thức này là nền tảng quan trọng cho các bài học tiếp theo.
Cho hệ phương trình: (left{ {begin{array}{*{20}{c}}{x - 2y = 1}{ - 2x + 3y = - 1}end{array}} right.) Thực hiện giải hệ phương trình này theo hướng dẫn sau: - Từ phương trình (1), hãy biểu diễn x theo y. - Thế x được biểu diễn ở trên vào phương trình (2), để nhận được một phương trình ẩn y. - Giải phương trình ẩn y đó, rồi suy ra nghiệm của hệ.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 15 SGK Toán 9 Chân trời sáng tạo
Cho hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x - 2y = 1}\\{ - 2x + 3y = - 1}\end{array}} \right.\)
Thực hiện giải hệ phương trình này theo hướng dẫn sau:
- Từ phương trình (1), hãy biểu diễn x theo y.
- Thế x được biểu diễn ở trên vào phương trình (2), để nhận được một phương trình ẩn y.
- Giải phương trình ẩn y đó, rồi suy ra nghiệm của hệ.
Phương pháp giải:
Làm theo hướng dẫn ở đề bài.
Lời giải chi tiết:
Từ phương trình (1) suy ra x = 1 + 2y
Thế vào (2) ta được:
- 2(1 + 2y) + 3y = -1
- 2 – 4y + 3y = -1
y = - 1
suy ra x = 1 + 2.(-1) = -1
Vậy (-1;-1) là nghiệm của hệ phương trình.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 15 SGK Toán 9 Chân trời sáng tạo
Cho hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x - 2y = 1}\\{ - 2x + 3y = - 1}\end{array}} \right.\)
Thực hiện giải hệ phương trình này theo hướng dẫn sau:
- Từ phương trình (1), hãy biểu diễn x theo y.
- Thế x được biểu diễn ở trên vào phương trình (2), để nhận được một phương trình ẩn y.
- Giải phương trình ẩn y đó, rồi suy ra nghiệm của hệ.
Phương pháp giải:
Làm theo hướng dẫn ở đề bài.
Lời giải chi tiết:
Từ phương trình (1) suy ra x = 1 + 2y
Thế vào (2) ta được:
- 2(1 + 2y) + 3y = -1
- 2 – 4y + 3y = -1
y = - 1
suy ra x = 1 + 2.(-1) = -1
Vậy (-1;-1) là nghiệm của hệ phương trình.
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 1 trang 16 SGK Toán 9 Chân trời sáng tạo
Giải các hệ phương trình:
a) \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = - 2}\\{5x - 4y = 11}\end{array}} \right.\)
b) \(\left\{ {\begin{array}{*{20}{c}}{2x - y = - 5}\\{ - 2x + y = 11}\end{array}} \right.\)
c) \(\left\{ {\begin{array}{*{20}{c}}{3x + y = 2}\\{6x + 2y = 4}\end{array}} \right.\)
Phương pháp giải:
Dựa vào các bước giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp thế.
Lời giải chi tiết:
a) \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = - 2}\\{5x - 4y = 11}\end{array}} \right.\)
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x = - 2 - 2y}\\{5.( - 2 - 2y) - 4y = 11}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = - 2 - 2y}\\{ - 10 - 10y - 4y = 11}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = - 2 - 2y}\\{ - 14y = 21}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = \frac{{ - 3}}{2}}\end{array}} \right.\end{array}\)
Vậy hệ phương trình có nghiệm duy nhất là \(\left( {1;\frac{{ - 3}}{2}} \right)\)
b) \(\left\{ {\begin{array}{*{20}{c}}{2x - y = - 5}\\{ - 2x + y = 11}\end{array}} \right.\)
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{y = 2x + 5}\\{ - 2x + 2x + 5 = 11}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 2x + 5}\\{0x = 6}\end{array}} \right.\end{array}\)
Phương trình 0x = 6 vô nghiệm.
Vậy hệ phương trình vô nghiệm.
c) \(\left\{ {\begin{array}{*{20}{c}}{3x + y = 2}\\{6x + 2y = 4}\end{array}} \right.\)
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{y = 2 - 3x}\\{6x + 2.(2 - 3x) = 4}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 2 - 3x}\\{6x + 4 - 6x = 4}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 2 - 3x}\\{0x = 0}\end{array}} \right.\end{array}\)
Phương trình 0x = 0 nghiệm đúng với mọi x \( \in \mathbb{R}\).
Vậy hệ phương trình có vô số nghiệm. Các nghiệm của hệ được viết như sau: \(\left\{ {\begin{array}{*{20}{c}}{x \in \mathbb{R}}\\{y = 2 - 3x}\end{array}} \right.\).
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 1 trang 16 SGK Toán 9 Chân trời sáng tạo
Giải các hệ phương trình:
a) \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = - 2}\\{5x - 4y = 11}\end{array}} \right.\)
b) \(\left\{ {\begin{array}{*{20}{c}}{2x - y = - 5}\\{ - 2x + y = 11}\end{array}} \right.\)
c) \(\left\{ {\begin{array}{*{20}{c}}{3x + y = 2}\\{6x + 2y = 4}\end{array}} \right.\)
Phương pháp giải:
Dựa vào các bước giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp thế.
Lời giải chi tiết:
a) \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = - 2}\\{5x - 4y = 11}\end{array}} \right.\)
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x = - 2 - 2y}\\{5.( - 2 - 2y) - 4y = 11}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = - 2 - 2y}\\{ - 10 - 10y - 4y = 11}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = - 2 - 2y}\\{ - 14y = 21}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = \frac{{ - 3}}{2}}\end{array}} \right.\end{array}\)
Vậy hệ phương trình có nghiệm duy nhất là \(\left( {1;\frac{{ - 3}}{2}} \right)\)
b) \(\left\{ {\begin{array}{*{20}{c}}{2x - y = - 5}\\{ - 2x + y = 11}\end{array}} \right.\)
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{y = 2x + 5}\\{ - 2x + 2x + 5 = 11}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 2x + 5}\\{0x = 6}\end{array}} \right.\end{array}\)
Phương trình 0x = 6 vô nghiệm.
Vậy hệ phương trình vô nghiệm.
c) \(\left\{ {\begin{array}{*{20}{c}}{3x + y = 2}\\{6x + 2y = 4}\end{array}} \right.\)
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{y = 2 - 3x}\\{6x + 2.(2 - 3x) = 4}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 2 - 3x}\\{6x + 4 - 6x = 4}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 2 - 3x}\\{0x = 0}\end{array}} \right.\end{array}\)
Phương trình 0x = 0 nghiệm đúng với mọi x \( \in \mathbb{R}\).
Vậy hệ phương trình có vô số nghiệm. Các nghiệm của hệ được viết như sau: \(\left\{ {\begin{array}{*{20}{c}}{x \in \mathbb{R}}\\{y = 2 - 3x}\end{array}} \right.\).
Mục 1 của SGK Toán 9 tập 1 Chân trời sáng tạo giới thiệu về các khái niệm cơ bản của biểu thức đại số, bao gồm các biến, số, phép toán và thứ tự thực hiện các phép toán. Các bài tập trong mục này chủ yếu tập trung vào việc vận dụng các quy tắc để đơn giản hóa biểu thức, tìm giá trị của biểu thức khi biết giá trị của biến, và xây dựng các biểu thức đại số từ các bài toán thực tế.
Trang 15 SGK Toán 9 tập 1 Chân trời sáng tạo chứa các bài tập rèn luyện về nhận biết và phân loại biểu thức đại số. Các bài tập này giúp học sinh làm quen với các khái niệm cơ bản và củng cố kiến thức đã học.
Trang 16 SGK Toán 9 tập 1 Chân trời sáng tạo tập trung vào việc đơn giản hóa biểu thức đại số bằng cách sử dụng các quy tắc về phép cộng, trừ, nhân, chia và lũy thừa. Các bài tập này đòi hỏi học sinh phải nắm vững các quy tắc và vận dụng linh hoạt để giải quyết.
Để giải các bài tập về biểu thức đại số một cách hiệu quả, học sinh cần:
Trong quá trình giải bài tập, học sinh cần chú ý:
Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả này, các em học sinh sẽ tự tin hơn trong việc học tập môn Toán 9 tập 1 Chân trời sáng tạo. Chúc các em học tốt!