Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3, được biên soạn theo chương trình học mới nhất của Bộ Giáo dục và Đào tạo. Đề thi này là tài liệu ôn tập lý tưởng giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Đề thi bao gồm các dạng bài tập đa dạng, từ trắc nghiệm đến tự luận, tập trung vào các kiến thức trọng tâm đã học trong học kì 1. Đáp án chi tiết đi kèm sẽ giúp học sinh tự đánh giá kết quả và tìm ra những điểm cần cải thiện.

Câu 1: Giá trị biểu thức (P = {cos ^2}frac{pi }{3} - tan frac{pi }{4} + {cot ^2}frac{pi }{6} + sin frac{pi }{2}) là:

Đề bài

Phần trắc nghiệm (5 điểm)

Câu 1: Giá trị biểu thức \(P = {\cos ^2}\frac{\pi }{3} - \tan \frac{\pi }{4} + {\cot ^2}\frac{\pi }{6} + \sin \frac{\pi }{2}\) là:

A. \(\frac{9}{4}\)

B. \(\frac{{13}}{4}\)

C. \(\frac{{17}}{4}\)

D. \(\frac{{19}}{4}\)

Câu 2: Cho \(D = {\tan ^2}\frac{\pi }{8}.\tan \frac{{3\pi }}{8}.\tan \frac{{5\pi }}{8}\). Chọn đáp án đúng.

A. \(D = - 1\)

B. \(D = 1\)

C. \(D = \frac{1}{2}\)

D. \(D = 0\)

Câu 3: Chọn khẳng định đúng:

A. \({\sin ^4}\alpha + {\cos ^4}\alpha = \frac{3}{4} - \frac{{\cos 4\alpha }}{4}\)

B. \({\sin ^4}\alpha + {\cos ^4}\alpha = - \frac{3}{4} + \frac{{\cos 4\alpha }}{4}\)

C. \({\sin ^4}\alpha + {\cos ^4}\alpha = \frac{3}{4} + \frac{{\cos 4\alpha }}{4}\)

D. Cả A, B, C đều sai.

Câu 4: Chọn đáp án đúng.

A. Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( { - x} \right)\)

B. Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x + 2T} \right) = 2f\left( x \right)\)

C. Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x - 2T} \right) = 2f\left( x \right)\)

D. Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( x \right)\)

Câu 5: Nhiệt độ ngoài trời T (tính bằng oC) vào thời điểm t giờ trong một ngày ở thành phố X được cho bởi hàm số \(T = 22 + 4\sin \left( {\frac{\pi }{{12}}t - \frac{{5\pi }}{6}} \right)\). Để bảo quản các tác phẩm nghệ thuật, hệ thống điều hòa của một bảo tàng tự động bật khi nhiệt độ ngoài trời từ 24oC trở lên. Dựa vào đồ thị của hàm số sin, xác định khoảng thời gian t trong ngày \(\left( {0 \le t \le 24} \right)\) hệ thống điều hòa được bật.

A. 12 giờ đến 20 giờ

B. 11 giờ đến 20 giờ

C. 11 giờ đến 19 giờ

D. 12 giờ đến 19 giờ

Câu 6: Sử dụng máy tính cầm tay để giải phương trình \(5\sin x - 3 = 0\) với kết quả là radian (làm tròn kết quả đến hàng phần trăm) là:

A. \(x \approx 0,64 + k2\pi ,k \in \mathbb{Z}\)

B. \(x \approx \pi - 0,64 + k2\pi ,k \in \mathbb{Z}\)

C. Cả A và B đều đúng

D. Cả A và B đều sai

Câu 7: Phương trình \(\frac{{2\sin x + \cos x + 1}}{{\sin x - 2\cos x + 3}} = a\) có nghiệm khi:

A. \(a \ge \frac{{ - 1}}{2}\)

B. \(a \le 2\)

C. \(\frac{{ - 1}}{2} \le a \le \frac{5}{2}\)

D. \(\frac{{ - 1}}{2} \le a \le 2\)

Câu 8:

Một chồng cột gỗ được xếp thành các hàng, hai hàng liên tiếp hơn kém nhau 1 cột gỗ (hình bên). Gọi \({u_n}\) là số cột gỗ nằm ở hàng thứ n tính từ trên xuống và cho biết hàng trên cùng có 14 cột gỗ. Công thức số hạng tổng quát của dãy số \({u_n}\) là: 

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 1

A. \({u_n} = {u_{n - 1}} + 2\)

B. \({u_n} = 14 + n\)

C. \({u_n} = 13 + n\)

D. \({u_n} = {u_{n - 1}} + 1\)

Câu 9: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{na + 3}}{{n + 1}}\). Với giá trị nào của a thì \(\left( {{u_n}} \right)\) là dãy số giảm?

A. \(a = 3\)

B. \(a < 3\)

C. \(a < 4\)

D. \(a > 3\)

Câu 10: Trong các dãy số sau, dãy nào là cấp số cộng với công sai âm?

A. \(19;16;13;10;...\)

B. \(19;22;25;28;...\)

C. \(\frac{1}{2};\frac{{ - 1}}{4};\frac{1}{8};\frac{{ - 1}}{{16}};...\)

D. Cả A, B, C đều sai

Câu 11: Một cấp số cộng có số hạng thứ tám là 75 và số hạng thứ hai mươi là 39. Công thức tổng quát của cấp số cộng là:

A. \({u_n} = 99 - 2n\)

B. \({u_n} = 99 - 4n\)

C. \({u_n} = 97 - 2n\)

D. \({u_n} = 99 - 3n\)

Câu 12:

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 2

Một bức tường trang trí có dạng hình thang, rộng 4,8m ở đáy và rộng 2,4m ở đỉnh (hình vẽ bên). Các viên gạch hình vuông có kích thước \(20cm \times 20cm\) phải được đặt sao cho mỗi hàng ở phía trên chứa ít hơn một viên so với hàng ở ngay phía dưới nó. Hỏi sẽ cần bao nhiêu viên gạch hình vuông như vậy để ốp hết bức tường?

A. 232 viên gạch

B. 233 viên gạch

C. 234 viên gạch

D. 235 viên gạch

Câu 13: Dãy số nào sau đây là dãy số tăng?

A. \(1;4;5;8;10,...\)

B. \(1; - 2;3; - 4;5;...\)

C. \(16;10;9;5; - 2\)

D. \(1; - 1;2; - 2;3;...\)

Câu 14: Cho hình chóp S. ABCD, khi đó mặt đáy của hình chóp là:

A. SAB

B. SAC

C. SBC

D. ABCD

Câu 15: Cho hai đường thẳng m, n cắt nhau và không đi qua điểm P. Xác định được nhiều nhất bao nhiêu mặt phẳng bởi m, n và P?

A. 1 mặt phẳng

B. 2 mặt phẳng

C. 3 mặt phẳng

D. 4 mặt phẳng

Câu 16: Cho hình chóp S. ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SC. Giao điểm I của đường thẳng AM và mặt phẳng (SBD) là:

A. Trọng tâm tam giác SAC

B. Trọng tâm của tam giác SBD

C. Trực tâm tam giác SAC

D. Trung điểm của SO

Câu 17: Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?

A. 1

B. 2

C. 3

D. 4

Câu 18: Cho hình bình hành ABCD và một điểm S không nằm trong mặt phẳng (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng nào sau đây?

A. AD

B. AB

C. AC

D. BC

Câu 19: Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, CD. Gọi d là giao tuyến của hai mặt phẳng (SAD) và mặt phẳng (SBC). Trong các đường thẳng AD, MN, CB, AC, BD, đường thẳng d song song với bao nhiêu đường thẳng?

A. 1

B. 2

C. 3

D. 4

Câu 20: Để tích lũy tiền cho việc học đại học của con gái, cô H quyết định hằng tháng bỏ ra 600 nghìn đồng vào tài khoản tiết kiệm, được trả lãi 0,5% cộng dồn hằng tháng. Cô H sẽ tích lũy được bao nhiêu tiền vào thời điểm gửi khoản tiền thứ 185?

A. 180,9275 triệu đồng

B. 182,9275 triệu đồng

C. 185,9275 triệu đồng

D. 181,9275 triệu đồng 

Phần tự luận (5 điểm)

Bài 1. (1,5 điểm)

1) Giải các phương trình sau:

a) \({\sin ^4}x + {\cos ^4}x = 1\)

b) \(\tan x + \tan 3x = 0\)

2) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {\sin ^4}x + {\cos ^4}x\)

3) Giải phương trình: Giải phương trình \(\sqrt {1 - \sin x} + \sqrt {1 - \cos x} = 1\)

Bài 2. (1,5 điểm)

a) Vào năm 2020, dân số của một thành phố là khoảng 1,4 triệu người. Giả sử mỗi năm, dân số của thành phố này tăng thêm khoảng 40 nghìn người. Hãy ước tính dân số của thành phố này vào năm 2030.

b) Một công ty dược phẩm đang thử nghiệm một loại thuốc mới. Một thí nghiệm bắt đầu với \(1,0 \times {10^8}\) vi khuẩn. Một liều thuốc được sử dụng sau mỗi bốn giờ có thể tiêu diệt được \(4,0 \times {10^7}\) vi khuẩn. Giữa các liều thuốc, số lượng vi khuẩn có thể tăng lên 25%. Viết công thức truy hồi cho lượng vi khuẩn sống trước mỗi lần sử dụng.

Bài 3. (1,0 điểm) Cho hình chóp S. ABCD có đáy là tứ giác ABCD có hai cạnh đối diện không song song. Lấy điểm M thuộc miền trong của tam giác SCD. Tìm giao tuyến của mặt phẳng (ABM) và mặt phẳng (SAC).

Bài 4. (1,0 điểm)

a) Cho hình chóp S. ABCD có đáy là hình thang, đáy lớn AB. Các điểm M, N lần lượt là trung điểm của AD, CD. Tìm giao tuyến của mặt phẳng (SAC) và mặt phẳng (SMN).

b) Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm của AB, BC và Q là một điểm nằm trên cạnh AD và P là giao điểm của CD với mặt phẳng (MNQ). Chứng minh rằng PQ//CA.

-------- Hết --------

Lời giải chi tiết

Phần trắc nghiệm (5 điểm)

Câu 1: B

Câu 2: A

Câu 3: C

Câu 4: D

Câu 5: A

Câu 6: C

Câu 7: D

Câu 8: C

Câu 9: B

Câu 10: A

Câu 11: D

Câu 12: C

Câu 13: A

Câu 14: D

Câu 15: C

Câu 16: A

Câu 17: C

Câu 18: B

Câu 19: C

Câu 20: D

Câu 1: Giá trị biểu thức \(P = {\cos ^2}\frac{\pi }{3} - \tan \frac{\pi }{4} + {\cot ^2}\frac{\pi }{6} + \sin \frac{\pi }{2}\) là:

A. \(\frac{9}{4}\)

B. \(\frac{{13}}{4}\)

C. \(\frac{{17}}{4}\)

D. \(\frac{{19}}{4}\)

Phương pháp

Sử dụng kiến thức: \(\cos \frac{\pi }{3} = \frac{1}{2},\tan \frac{\pi }{4} = 1,\cot \frac{\pi }{6} = \sqrt 3 ,\sin \frac{\pi }{2} = 1\)

Lời giải

\(P = {\cos ^2}\frac{\pi }{3} - \tan \frac{\pi }{4} + {\cot ^2}\frac{\pi }{6} + \sin \frac{\pi }{2} = {\left( {\frac{1}{2}} \right)^2} - 1 + {\left( {\sqrt 3 } \right)^2} + 1 = \frac{{13}}{4}\)

Đáp án B

Câu 2: Cho \(D = {\tan ^2}\frac{\pi }{8}.\tan \frac{{3\pi }}{8}.\tan \frac{{5\pi }}{8}\). Chọn đáp án đúng.

A. \(D = - 1\)

B. \(D = 1\)

C. \(D = \frac{1}{2}\)

D. \(D = 0\)

Phương pháp

Sử dụng công thức: \(\tan \left( {\frac{\pi }{2} - \alpha } \right) = \cot \alpha \)

Lời giải

\(D = - \left( {\tan \frac{\pi }{8}.\tan \frac{{3\pi }}{8}} \right).\left[ {\tan \left( { - \frac{\pi }{8}} \right)\tan \frac{{5\pi }}{8}} \right]\)

Mà \(\frac{\pi }{8} + \frac{{3\pi }}{8} = \frac{\pi }{2},{\mkern 1mu} - \frac{\pi }{8} + \frac{{5\pi }}{8} = \frac{\pi }{2} \Rightarrow \tan \frac{{3\pi }}{8} = \cot \frac{\pi }{8},{\mkern 1mu} \tan \frac{{5\pi }}{8} = \cot \left( { - \frac{\pi }{8}} \right)\)

Nên \(D = - \left( {\tan \frac{\pi }{8}.\cot \frac{\pi }{8}} \right).\left[ {\tan \left( { - \frac{\pi }{8}} \right)\cot \left( { - \frac{\pi }{8}} \right)} \right] = - 1\)

Đáp án A

Câu 3: Chọn khẳng định đúng:

A. \({\sin ^4}\alpha + {\cos ^4}\alpha = \frac{3}{4} - \frac{{\cos 4\alpha }}{4}\)

B. \({\sin ^4}\alpha + {\cos ^4}\alpha = - \frac{3}{4} + \frac{{\cos 4\alpha }}{4}\)

C. \({\sin ^4}\alpha + {\cos ^4}\alpha = \frac{3}{4} + \frac{{\cos 4\alpha }}{4}\)

D. Cả A, B, C đều sai.

Phương pháp

Sử dụng công thức: \({\sin ^2}\alpha = \frac{{1 - \cos 2\alpha }}{2},2\sin \alpha \cos \alpha = \sin 2\alpha \)

Lời giải

Ta có \({\sin ^4}\alpha + {\cos ^4}\alpha = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} - 2{\sin ^2}\alpha {\cos ^2}\alpha = 1 - \frac{1}{2}{\sin ^2}2\alpha \)\( = 1 - \frac{{1 - \cos 4\alpha }}{4} = \frac{3}{4} + \frac{{\cos 4\alpha }}{4}\)

Đáp án C

Câu 4: Chọn đáp án đúng.

A. Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( { - x} \right)\)

B. Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x + 2T} \right) = 2f\left( x \right)\)

C. Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x - 2T} \right) = 2f\left( x \right)\)

D. Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( x \right)\)

Phương pháp

Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( x \right)\)

Lời giải

Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại 1 số T khác 0 sao cho \(\forall x \in D\) thì \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( x \right)\)

Đáp án D

Câu 5: Nhiệt độ ngoài trời T (tính bằng oC) vào thời điểm t giờ trong một ngày ở thành phố X được cho bởi hàm số \(T = 22 + 4\sin \left( {\frac{\pi }{{12}}t - \frac{{5\pi }}{6}} \right)\). Để bảo quản các tác phẩm nghệ thuật, hệ thống điều hòa của một bảo tàng tự động bật khi nhiệt độ ngoài trời từ 24oC trở lên. Dựa vào đồ thị của hàm số sin, xác định khoảng thời gian t trong ngày \(\left( {0 \le t \le 24} \right)\) hệ thống điều hòa được bật.

A. 12 giờ đến 20 giờ

B. 11 giờ đến 20 giờ

C. 11 giờ đến 19 giờ

D. 12 giờ đến 19 giờ

Phương pháp

Sử dụng kiến thức về đồ thị của hàm số \(y = \sin x\) để xác định khoảng thời gian t trong ngày hệ thống điều hòa được bật

Lời giải

Ta có: \(T \ge 24\) nên \(22 + 4\sin \left( {\frac{\pi }{{12}}t - \frac{{5\pi }}{6}} \right) \ge 24\) hay \(\sin \left( {\frac{\pi }{{12}}t - \frac{{5\pi }}{6}} \right) \ge \frac{1}{2}\)

Vì \(0 \le t \le 24\) nên \( - \frac{{5\pi }}{6} \le \frac{\pi }{{12}}t - \frac{{5\pi }}{6} \le \frac{{7\pi }}{6}\).

Xét đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\frac{{ - 5\pi }}{6};\frac{{7\pi }}{6}} \right]\):

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 3

Ta thấy \(\sin \left( {\frac{\pi }{{12}}t - \frac{{5\pi }}{6}} \right) \ge \frac{1}{2} \Leftrightarrow \frac{\pi }{6} \le \frac{\pi }{{12}}t - \frac{{5\pi }}{6} \le \frac{{5\pi }}{6}\) hay \(12 \le t \le 20\)

Vậy hệ thống điều hòa được bật trong khoảng thời gian từ 12 giờ đến 20 giờ trong ngày.

Đáp án A

Câu 6: Sử dụng máy tính cầm tay để giải phương trình \(5\sin x - 3 = 0\) với kết quả là radian (làm tròn kết quả đến hàng phần trăm) là:

A. \(x \approx 0,64 + k2\pi ,k \in \mathbb{Z}\)

B. \(x \approx \pi - 0,64 + k2\pi ,k \in \mathbb{Z}\)

C. Cả A và B đều đúng

D. Cả A và B đều sai

Phương pháp

Sử dụng máy tính cầm tay để tìm nghiệm của phương trình

Lời giải

Ta có: \(5\sin x - 3 = 0 \Leftrightarrow \sin x = 0,6\)

Sau khi chuyển máy tính sang chế độ “radian”. Bấm liên tiếp

SHIFT

sin

0

.

6

=

Ta được kết quả gần đúng là 0,64.

Vậy phương trình \(5\sin x - 3 = 0\) có nghiệm là \(x \approx 0,64 + k2\pi ,k \in \mathbb{Z}\); \(x \approx \pi - 0,64 + k2\pi ,k \in \mathbb{Z}\)

Đáp án C

Câu 7: Phương trình \(\frac{{2\sin x + \cos x + 1}}{{\sin x - 2\cos x + 3}} = a\) có nghiệm khi:

A. \(a \ge \frac{{ - 1}}{2}\)

B. \(a \le 2\)

C. \(\frac{{ - 1}}{2} \le a \le \frac{5}{2}\)

D. \(\frac{{ - 1}}{2} \le a \le 2\)

Phương pháp

Sử dụng kiến thức: Phương trình \(a\sin x + b\cos x = c\) có nghiệm khi \({c^2} \le {a^2} + {b^2}\)

Lời giải

\(\frac{{2\sin x + \cos x + 1}}{{\sin x - 2\cos x + 3}} = a \Leftrightarrow 2\sin x + \cos x + 1 = a\left( {\sin x - 2\cos x + 3} \right)\)\( \Leftrightarrow \left( {2 - a} \right)\sin x + \left( {2a + 1} \right)\cos x = 3a - 1\left( 1 \right)\)

Phương trình (1) có nghiệm khi và chỉ khi \({\left( {2 - a} \right)^2} + {\left( {2a + 1} \right)^2} \ge {\left( {3a - 1} \right)^2} \Leftrightarrow 4{a^2} - 6a - 4 \le 0 \Leftrightarrow \frac{{ - 1}}{2} \le a \le 2\)

Đáp án D

Câu 8:

Một chồng cột gỗ được xếp thành các hàng, hai hàng liên tiếp hơn kém nhau 1 cột gỗ (hình bên). Gọi \({u_n}\) là số cột gỗ nằm ở hàng thứ n tính từ trên xuống và cho biết hàng trên cùng có 14 cột gỗ. Công thức số hạng tổng quát của dãy số \({u_n}\) là:

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 4

A. \({u_n} = {u_{n - 1}} + 2\)

B. \({u_n} = 14 + n\)

C. \({u_n} = 13 + n\)

D. \({u_n} = {u_{n - 1}} + 1\)

Phương pháp

Tìm công thức số hạng tổng quát của dãy số số \(\left( {{u_n}} \right)\): Tính một vài số hạng đầu của dãy số. Từ đó dự đoán công thức của \(\left( {{u_n}} \right)\) theo n để tìm được công thức của số hạng tổng quát.

Lời giải

Ta có: \({u_1} = 14 = 13 + 1,{u_2} = 15 = 13 + 2,{u_3} = 16 = 13 + 3,{u_4} = 17 = 13 + 4\)

Khi đó, số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là \({u_n} = 13 + n\).

Đáp án C

Câu 9: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{na + 3}}{{n + 1}}\). Với giá trị nào của a thì \(\left( {{u_n}} \right)\) là dãy số giảm?

A. \(a = 3\)

B. \(a < 3\)

C. \(a < 4\)

D. \(a > 3\)

Phương pháp

Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu \({u_{n + 1}} < {u_n}\) với mọi \(n \in \mathbb{N}*\).

Lời giải

Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right)a + 3}}{{n + 1 + 1}} = \frac{{na + a + 3}}{{n + 2}}\)

Xét: \({u_{n + 1}} - {u_n} = \frac{{na + a + 3}}{{n + 2}} - \frac{{na + 3}}{{n + 1}} = \frac{{\left( {na + a + 3} \right)\left( {n + 1} \right) - \left( {na + 3} \right)\left( {n + 2} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)

\( = \frac{{{n^2}a + na + 3n + na + a + 3 - {n^2}a - 3n - 2na - 6}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{{a - 3}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)

Để \(\left( {{u_n}} \right)\) là dãy số giảm thì \({u_{n + 1}} - {u_n} < 0\) với mọi \(n \in \mathbb{N}*\), tức là \(\frac{{a - 3}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} < 0\) với mọi \(n \in \mathbb{N}*\)

Mà \(\left( {n + 1} \right)\left( {n + 2} \right) > 0\) với mọi \(n \in \mathbb{N}*\) nên \(\frac{{a - 3}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} < 0 \Leftrightarrow a - 3 < 0 \Leftrightarrow a < 3\)

Vậy \(\left( {{u_n}} \right)\) là dãy số giảm khi \(a < 3\)

Đáp án B

Câu 10: Trong các dãy số sau, dãy nào là cấp số cộng với công sai âm?

A. \(19;16;13;10;...\)

B. \(19;22;25;28;...\)

C. \(\frac{1}{2};\frac{{ - 1}}{4};\frac{1}{8};\frac{{ - 1}}{{16}};...\)

D. Cả A, B, C đều sai

Phương pháp

Cấp số cộng là một dãy số, trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng của số hạng đứng ngay trước nó với một số không đổi d, tức là: \({u_n} = {u_{n - 1}} + d\) với \(n \ge 2\)

Lời giải

Xét dãy số: \(19;16;13;10;...\), ta có: \(16 = 19 - 3,13 = 16 - 3,10 = 13 - 3,...\)

Do đó, dãy số \(19;16;13;10;...\) là cấp số cộng với công sai \(d = - 3 < 0\)

Đáp án A

Câu 11: Một cấp số cộng có số hạng thứ tám là 75 và số hạng thứ hai mươi là 39. Công thức tổng quát của cấp số cộng là:

A. \({u_n} = 99 - 2n\)

B. \({u_n} = 99 - 4n\)

C. \({u_n} = 97 - 2n\)

D. \({u_n} = 99 - 3n\)

Phương pháp

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát được xác định theo công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\)

Lời giải

Ta có: \(\left\{ \begin{array}{l}{u_8} = 75\\{u_{20}} = 39\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 7d = 75\\{u_1} + 19d = 39\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 96\\d = - 3\end{array} \right.\)

Vậy số hạng tổng quát là: \({u_n} = 96 - 3\left( {n - 1} \right) = 99 - 3n\)

Đáp án D

Câu 12:

Một bức tường trang trí có dạng hình thang, rộng 4,8m ở đáy và rộng 2,4m ở đỉnh (hình vẽ bên). Các viên gạch hình vuông có kích thước \(20cm \times 20cm\) phải được đặt sao cho mỗi hàng ở phía trên chứa ít hơn một viên so với hàng ở ngay phía dưới nó. Hỏi sẽ cần bao nhiêu viên gạch hình vuông như vậy để ốp hết bức tường?

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 5

A. 232 viên gạch

B. 233 viên gạch

C. 234 viên gạch

D. 235 viên gạch

Phương pháp

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n}\).

Khi đó: \({S_n} = \frac{{\left( {{u_1} + {u_n}} \right)n}}{2} = \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}}{2}\)

Lời giải

Đổi \(2,4m = 240cm,4,8m = 480cm\)

Số viên gạch ở hàng đầu tiên (ứng với đáy lớn là) \({u_1} = 480:20 = 24\) (viên)

Số gạch ở hàng trên cùng (ứng với đáy nhỏ) là: \({u_n} = 240:20 = 12\) (viên)

Vì mỗi hàng ở phía trên chứa ít hơn một viên so với hàng ở ngay phía dưới nó nên ta thu được cấp số cộng có công sai \(d = - 1\)

Như vậy, \({u_n} = 12 = {u_1} + \left( {n - 1} \right)\left( { - 1} \right) \Rightarrow 12 = 24 - n + 1 \Rightarrow n = 13\)

Vậy số viên gạch hình vuông cần thiết để ốp hết bức tường đó là:

\({S_{13}} = \frac{{\left( {{u_1} + {u_{13}}} \right).13}}{2} = 234\) (viên gạch)

Đáp án C

Câu 13: Dãy số nào sau đây là dãy số tăng?

A. \(1;4;5;8;10,...\)

B. \(1; - 2;3; - 4;5;...\)

C. \(16;10;9;5; - 2\)

D. \(1; - 1;2; - 2;3;...\)

Phương pháp

Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu \({u_{n + 1}} > {u_n}\) với mọi \(n \in \mathbb{N}*\).

Lời giải

Vì \(1 < 4 < 5 < 8 < 10,...\) nên dãy số \(1;4;5;8;10,...\) là dãy số tăng.

Đáp án A

Câu 14: Cho hình chóp S. ABCD, khi đó mặt đáy của hình chóp là:

A. SAB

B. SAC

C. SBC

D. ABCD

Phương pháp

Trong hình chóp \(S.{A_1}{A_2}{A_3}....{A_n}\), ta gọi đa giác \({A_1}{A_2}{A_3}....{A_n}\) là mặt đáy.

Lời giải

Hình chóp S. ABCD có mặt đáy là ABCD

Đáp án D

Câu 15: Cho hai đường thẳng m, n cắt nhau và không đi qua điểm P. Xác định được nhiều nhất bao nhiêu mặt phẳng bởi m, n và P?

A. 1 mặt phẳng

B. 2 mặt phẳng

C. 3 mặt phẳng

D. 4 mặt phẳng

Phương pháp

Một mặt phẳng được xác định hoàn toàn khi:

+ Biết nó đi qua một điểm và chứa một đường thẳng không đi qua điểm đó.

+ Nó chứa hai đường thẳng cắt nhau.

Lời giải

Ta xác định được các mặt phẳng là: mặt phẳng (m, n), mặt phẳng (S, m), mặt phẳng (S, n). Vậy tạo được nhiều nhất ba mặt phẳng bởi m, n và P.

Đáp án C

Câu 16: Cho hình chóp S. ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SC. Giao điểm I của đường thẳng AM và mặt phẳng (SBD) là:

A. Trọng tâm tam giác SAC

B. Trọng tâm của tam giác SBD

C. Trực tâm tam giác SAC

D. Trung điểm của SO

Phương pháp

Cách tìm giao điểm của đường thẳng d và mặt phẳng \(\left( \alpha \right)\):

Trường hợp 1: \(\left( \alpha \right)\) chứa đường thẳng d’ và d’ cắt đường thẳng d tại I. Khi đó, \(I = d \cap d' \Rightarrow I = d \cap \left( \alpha \right)\)

Trường hợp 2: \(\left( \alpha \right)\) không chứa đường thẳng nào cắt d.

+ Tìm mặt phẳng \(\left( \beta \right)\) chứa d và \(\left( \alpha \right) \cap \left( \beta \right) = d'\)

+ Tìm \(I = d \cap d'\). Khi đó, \(I = d \cap \left( \alpha \right)\)

Lời giải

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 6

Trong mặt phẳng (SAC): Gọi I là giao điểm của AM và SO.

Mà \(SO \subset mp\left( {SBD} \right)\) nên I là giao điểm của AM và mặt phẳng (SBD).

Vì ABCD là hình bình hành nên O là trung điểm của AC.

Tam giác SAC có hai đường trung tuyến SO và AM cắt nhau tại I. Khi đó, I là trọng tâm của tam giác SAC

Đáp án A

Câu 17: Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?

A. 1

B. 2

C. 3

D. 4

Phương pháp

Hai đường thẳng phân biệt có ba vị trí tương đối là: song song, cắt nhau, chéo nhau.

Lời giải

Hai đường thẳng phân biệt có ba vị trí tương đối là: song song, cắt nhau, chéo nhau.

Đáp án C

Câu 18: Cho hình bình hành ABCD và một điểm S không nằm trong mặt phẳng (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng nào sau đây?

A. AD

B. AB

C. AC

D. BC

Phương pháp

Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

Lời giải

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 7

Vì ABCD là hình bình hành nên AB//CD

Mà \(AB \subset mp\left( {SAB} \right),CD \subset mp\left( {SCD} \right)\) và S thuộc cả hai mặt phẳng (SAB) và (SCD) nên giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song đi qua S và song song với AB.

Đáp án B

Câu 19: Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, CD. Gọi d là giao tuyến của hai mặt phẳng (SAD) và mặt phẳng (SBC). Trong các đường thẳng AD, MN, CB, AC, BD, đường thẳng d song song với bao nhiêu đường thẳng?

A. 1

B. 2

C. 3

D. 4

Phương pháp

Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.

Lời giải

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 8

Vì ABCD là hình bình hành nên AD//CB

Mà \(AD \subset mp\left( {SAD} \right),CB \subset mp\left( {SCB} \right)\) và S thuộc cả hai mặt phẳng (SAD) và (SCB) nên giao tuyến d của hai mặt phẳng (SAD) và (SCB) là một đường thẳng song song đi qua S và song song với AD, CB.

Lại có, M, N lần lượt là trung điểm của AB, CD trong hình bình hành ABCD nên MN//AD//BC. Suy ra: d// MN//AD//BC

Vậy đường thẳng d song song với 3 đường thẳng là: MN, AD, BC.

Đáp án C

Câu 20: Để tích lũy tiền cho việc học đại học của con gái, cô H quyết định hằng tháng bỏ ra 600 nghìn đồng vào tài khoản tiết kiệm, được trả lãi 0,5% cộng dồn hằng tháng. Cô H sẽ tích lũy được bao nhiêu tiền vào thời điểm gửi khoản tiền thứ 185?

A. 180,9275 triệu đồng

B. 182,9275 triệu đồng

C. 185,9275 triệu đồng

D. 181,9275 triệu đồng 

Phương pháp

Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu là \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\)

Lời giải

Gọi \({u_n}\) là số triệu đồng mà cô H có ở tài khoản tiết kiệm tích lũy gửi lần thứ n (vào đầu tháng thứ n). Kí hiệu \(a = 0,5\) triệu đồng, \(r = 0,5\% \)

Số tiền của cô H ở tài khoản tiết kiệm ở đầu tháng thứ 1 là: \({u_1} = a\).

Số tiền của cô H ở tài khoản tiết kiệm ở đầu tháng thứ 2 là: \({u_2} = {u_1}\left( {1 + r} \right) + a = a\left( {1 + r} \right) + a\).

Số tiền của cô H ở tài khoản tiết kiệm ở đầu tháng thứ 3 là:

\({u_3} = {u_2}\left( {1 + r} \right) + a = a{\left( {1 + r} \right)^2} + a\left( {1 + r} \right) + a\).

Tương tự cho các tháng tiếp theo, suy ra số tiền cô H ở tài khoản tiết kiệm ở đầu tháng thứ n là:

\({u_n} = a{\left( {1 + r} \right)^{n - 1}} + a{\left( {1 + r} \right)^{n - 2}} + ... + a\left( {1 + r} \right) + a = a.\frac{{{{\left( {1 + r} \right)}^n} - 1}}{{1 + r - 1}} = a\frac{{{{\left( {1 + r} \right)}^n} - 1}}{r}\)

Vào thời điểm gửi khoản tiền thứ 185, cô H sẽ tích lũy được: \({u_{185}} = a.\frac{{{{\left( {1 + r} \right)}^{185}} - 1}}{r} = 181,9275\) (triệu đồng)

Đáp án D

Phần tự luận (5 điểm)

Bài 1. (1,5 điểm)

1) Giải các phương trình sau:

a) \({\sin ^4}x + {\cos ^4}x = 1\)

b) \(\tan x + \tan 3x = 0\)

2) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {\sin ^4}x + {\cos ^4}x\)

3) Giải phương trình: Giải phương trình \(\sqrt {1 - \sin x} + \sqrt {1 - \cos x} = 1\)

Phương pháp

1) a) \(\sin x = 0 \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right)\)

b) Gọi \(\alpha \) là số thực thuộc khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho \(\tan \alpha = m\). Khi đó, với mọi \(m \in \mathbb{R}\), ta có:

\(\tan x = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\)

2) Sử dụng kiến thức \( - 1 \le \sin x \le 1\)

3) Sử dụng kiến thức: \(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

Lời giải

1) a) \({\sin ^4}x + {\cos ^4}x = 1 \Leftrightarrow {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x = 1 \Leftrightarrow \frac{1}{2}{\sin ^2}2x = 0\)

\( \Leftrightarrow \sin 2x = 0 \Leftrightarrow 2x = k\pi \left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có họ nghiệm là \(x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)

b) \(\tan x + \tan 3x = 0 \Leftrightarrow \tan 3x = - \tan x \Leftrightarrow \tan 3x = \tan \left( {\pi - x} \right) \Leftrightarrow 3x = \pi - x + k\pi \left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{4}\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có họ nghiệm là \(x = \frac{\pi }{4} + \frac{{k\pi }}{4}\left( {k \in \mathbb{Z}} \right)\)

2) Ta có: \(y = {\sin ^4}x + {\cos ^4}x = {\sin ^4}x + 2{\sin ^2}x.{\cos ^2}x + {\cos ^4}x - 2{\sin ^2}x.{\cos ^2}x\)

\( = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x = {1^2} - \frac{1}{2}.4{\sin ^2}x.{\cos ^2}x\)\( = 1 - \frac{1}{2}{\left( {2\sin x.\cos x} \right)^2} = 1 - \frac{1}{2}{\sin ^2}2x.\)

Vì \(0 \le {\sin ^2}2x \le 1\) nên \(0 \le \frac{1}{2}{\sin ^2}2x \le \frac{1}{2}\) vì vậy \(\frac{1}{2} \le 1 - \frac{1}{2}{\sin ^2}2x \le 1\)với mọi \(x \in \mathbb{R}\).

Giá trị lớn nhất của hàm số là 1, đạt được khi \({\sin ^2}2x = 0 \Rightarrow \sin 2x = 0 \Rightarrow 2x = k\pi \Rightarrow x = k\frac{\pi }{2}\left( {k \in \mathbb{R}} \right)\)

Và giá trị nhỏ nhất của hàm số là \(\frac{1}{2}\), đạt được khi

\({\sin ^2}2x = 1 \Rightarrow \sin 2x = \pm 1 \Rightarrow 2x = \frac{\pi }{2} + k\pi \Rightarrow x = \frac{\pi }{4} + k\frac{\pi }{2}\left( {k \in \mathbb{R}} \right)\)

3) Điều kiện: \(1 - \sin x \ge 0;1 - \cos x \ge 0\)

\(\sqrt {1 - \sin x} + \sqrt {1 - \cos x} = 1\)\( \Leftrightarrow 1 - \sin x + 2\sqrt {\left( {1 - \sin x} \right)\left( {1 - \cos x} \right)} + 1 - \cos x = 1\)

\( \Leftrightarrow 1 - \left( {\sin x + \cos x} \right) + 2\sqrt {1 - \left( {\sin x + \cos x} \right) + \sin x\cos x} = 0\left( 1 \right)\)

Đặt \(t = \sin x + \cos x\), điều kiện \(\left| t \right| \le \sqrt 2 \), khi đó \(\sin x\cos x = \frac{{{t^2} - 1}}{2}\), thay vào phương trình (1) ta có:

\(1 - t + 2\sqrt {\frac{{{t^2} - 2t + 1}}{2}} = 0 \Leftrightarrow 1 - t + \sqrt 2 \sqrt {{{\left( {t - 1} \right)}^2}} = 0 \Leftrightarrow 1 - t + \sqrt 2 \left| {t - 1} \right| = 0 \Leftrightarrow \sqrt 2 \left| {t - 1} \right| = t - 1\)

\( \Leftrightarrow \left\{ \begin{array}{l}2{\left( {t - 1} \right)^2} = {\left( {t - 1} \right)^2}\\t - 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {t - 1} \right)^2} = 0\\t \ge 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t \ge 1\end{array} \right. \Leftrightarrow t = 1\) (thỏa mãn điều kiện)

Với \(t = 1\) thì \(\sin x + \cos x = 1 \Leftrightarrow \cos \left( {x - \frac{\pi }{4}} \right) = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}x - \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x - \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k2\pi \\x = k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) (tmđk)

Vậy phương trình đã cho có họ nghiệm là: \(x = k2\pi ,x = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Bài 2. (1,5 điểm)

a) Vào năm 2020, dân số của một thành phố là khoảng 1,4 triệu người. Giả sử mỗi năm, dân số của thành phố này tăng thêm khoảng 40 nghìn người. Hãy ước tính dân số của thành phố này vào năm 2030.

b) Một công ty dược phẩm đang thử nghiệm một loại thuốc mới. Một thí nghiệm bắt đầu với \(1,0 \times {10^8}\) vi khuẩn. Một liều thuốc được sử dụng sau mỗi bốn giờ có thể tiêu diệt được \(4,0 \times {10^7}\) vi khuẩn. Giữa các liều thuốc, số lượng vi khuẩn có thể tăng lên 25%. Viết công thức truy hồi cho lượng vi khuẩn sống trước mỗi lần sử dụng.

Phương pháp

a) Nếu một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\)

b) Công thức truy hồi là hệ thức biểu thị số hạng thứ n của dãy số qua số hạng (hay vài số hạng) đứng trước nó.

Lời giải

a) Ta có: 1,4 triệu người\( = 1400\) nghìn người

Dân số mỗi năm của thành phố từ năm 2020 đến năm 2030 lập thành một cấp số cộng gồm 11 số hạng, số hạng đầu \({u_1} = 1\;400\), công sai \(d = 40\) nên số hạng tổng quát của cấp số cộng là:\({u_n} = {u_1} + \left( {n - 1} \right)d = 1\;400 + \left( {n - 1} \right).40\)

Do đó, \({u_{11}} = {u_1} + \left( {11 - 1} \right)d = 1\;400 + 10.40 = 1\;800\) (nghìn người)

Vậy dân số của thành phố vào năm 2030 là 1,8 triệu người.

b) Gọi \({u_0} = 1,{0.10^8}\) là số vi khuẩn tại thời điểm ban đầu và \({u_n}\) là số vi khuẩn trước lần dùng thuốc lần thứ n.

Do mỗi liều thuốc được sử dụng sau bốn giờ có thể tiêu diệt \(4,0 \times {10^7}\) vi khuẩn và giữa các liều thuốc, số lượng vi khuẩn có thể tăng lên 25% nên ta có \({u_{n + 1}} = \left( {{u_n} - 4,{{0.10}^7}} \right) + 25\% .{u_n} = 1,25{u_n} - 4,{0.10^7}\)

Bài 3. (1,0 điểm) Cho hình chóp S. ABCD có đáy là tứ giác ABCD có hai cạnh đối diện không song song. Lấy điểm M thuộc miền trong của tam giác SCD. Tìm giao tuyến của mặt phẳng (ABM) và mặt phẳng (SAC).

Phương pháp

Nếu hai mặt phân biệt (P) và (Q) có điểm chung thì chúng có một đường thẳng chung duy nhất d chứa tất cả các điểm chung của hai mặt phẳng đó. Đường thẳng d đó gọi là giao tuyến của hai mặt phẳng (P) và (Q), kí hiệu \(d = \left( P \right) \cap \left( Q \right)\)

Lời giải

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 9

Trong mặt phẳng (ABCD), gọi I là giao điểm của AB và CD.

Vì \(I \in AB \Rightarrow I \in \left( {ABM} \right),I \in SC \Rightarrow I \in \left( {SCD} \right)\)

Trong mặt phẳng (SAC), gọi J là giao điểm của IM và SC.

Ta có: \(J \in SC \Rightarrow J \in mp\left( {SAC} \right),J \in IM \Rightarrow J \in mp\left( {ABM} \right)\)

Lại có: \(A \in mp\left( {SAC} \right),A \in mp\left( {ABM} \right)\).

Do đó, giao tuyến của mặt phẳng (ABM) và mặt phẳng (SAC) là đường thẳng AJ.

Bài 4. (1,0 điểm)

a) Cho hình chóp S. ABCD có đáy là hình thang, đáy lớn AB. Các điểm M, N lần lượt là trung điểm của AD, CD. Tìm giao tuyến của mặt phẳng (SAC) và mặt phẳng (SMN).

b) Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm của AB, BC và Q là một điểm nằm trên cạnh AD và P là giao điểm của CD với mặt phẳng (MNQ). Chứng minh rằng PQ//CA.

Phương pháp

a) Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

b) Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song.

Lời giải

a) Vì M, N lần lượt là trung điểm của AD, CD nên MN là đường trung bình của tam giác ACD. Do đó, AC//MN.

Mà mặt phẳng (SAC) đi qua AC, mặt phẳng (SMN) đi qua MN và điểm S là điểm chung của mặt phẳng (SAC) và mặt phẳng (SMN). Do đó, giao tuyến của mặt phẳng (SAC) và mặt phẳng (SMN) là đường thẳng qua S song song với AC và MN.

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 10

b) Vì M, N theo thứ tự là trung điểm của AB, BC nên MN là đường trung bình của tam giác ABC. Do đó, MN//AC.

Ba mặt phẳng (ABC), (ACD) và (MNQ) lần lượt cắt nhau theo các giao tuyến AC, MN và PQ.

Mà MN//AC nên PQ//MN//AC

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 11
Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3: Tổng quan và Phân tích chi tiết

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 đóng vai trò quan trọng trong việc đánh giá năng lực học tập của học sinh sau một nửa học kì. Đề thi này không chỉ kiểm tra kiến thức mà còn đánh giá khả năng vận dụng kiến thức vào giải quyết các bài toán thực tế. Việc nắm vững cấu trúc đề thi và các dạng bài tập thường gặp là yếu tố then chốt để đạt kết quả tốt.

Cấu trúc đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3

Thông thường, đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 sẽ bao gồm các phần sau:

  • Phần trắc nghiệm: Chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản, định nghĩa, tính chất và công thức.
  • Phần tự luận: Chiếm khoảng 60-70% tổng số điểm, bao gồm các bài toán vận dụng, bài toán chứng minh và bài toán giải quyết vấn đề.

Các chủ đề chính xuất hiện trong đề thi

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 thường tập trung vào các chủ đề sau:

  1. Vecto: Các phép toán vecto, tích vô hướng, ứng dụng của vecto trong hình học.
  2. Hàm số lượng giác: Khái niệm hàm số lượng giác, đồ thị hàm số lượng giác, phương trình lượng giác.
  3. Tam giác: Định lý sin, định lý cosin, diện tích tam giác, các đường trung tuyến, đường cao, đường phân giác.
  4. Phương trình và bất phương trình lượng giác: Giải phương trình và bất phương trình lượng giác cơ bản.

Hướng dẫn giải đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3

Để giải đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3 hiệu quả, học sinh cần:

  • Đọc kỹ đề bài: Hiểu rõ yêu cầu của từng câu hỏi trước khi bắt đầu giải.
  • Lập kế hoạch giải: Xác định các bước cần thực hiện để giải quyết bài toán.
  • Sử dụng kiến thức đã học: Vận dụng các định nghĩa, tính chất, công thức và phương pháp giải toán đã học.
  • Kiểm tra lại kết quả: Đảm bảo kết quả giải đúng và hợp lý.

Luyện tập với các đề thi khác

Ngoài Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 3, học sinh nên luyện tập với các đề thi khác để làm quen với nhiều dạng bài tập và rèn luyện kỹ năng giải toán. Giaitoan.edu.vn cung cấp một kho đề thi phong phú và đa dạng, đáp ứng nhu cầu ôn tập của học sinh.

Tầm quan trọng của việc ôn tập và luyện đề

Việc ôn tập và luyện đề thường xuyên là yếu tố then chốt để đạt kết quả tốt trong các kỳ thi. Thông qua việc luyện đề, học sinh có thể:

  • Nắm vững kiến thức: Củng cố và hệ thống hóa kiến thức đã học.
  • Rèn luyện kỹ năng: Nâng cao kỹ năng giải toán, tư duy logic và khả năng phân tích.
  • Làm quen với cấu trúc đề thi: Hiểu rõ cấu trúc đề thi và các dạng bài tập thường gặp.
  • Tăng tốc độ giải đề: Giải quyết bài toán nhanh chóng và chính xác.

Giaitoan.edu.vn – Đồng hành cùng học sinh trên con đường chinh phục toán học

Giaitoan.edu.vn là một nền tảng học toán online uy tín và chất lượng, cung cấp các khóa học, bài giảng, đề thi và tài liệu ôn tập đa dạng. Chúng tôi cam kết đồng hành cùng học sinh trên con đường chinh phục toán học, giúp các em đạt được kết quả tốt nhất.

Bảng tổng hợp các dạng bài tập thường gặp

Dạng bài tậpChủ đềMức độ khó
Tính góc giữa hai vectoVectoTrung bình
Giải phương trình lượng giácHàm số lượng giácKhó
Tính diện tích tam giácTam giácDễ

Tài liệu, đề thi và đáp án Toán 11