Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5

Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5

Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5, một công cụ luyện thi vô cùng hữu ích dành cho học sinh lớp 11. Đề thi được biên soạn theo chương trình học mới, bám sát kiến thức trọng tâm và có độ khó phù hợp, giúp các em làm quen với cấu trúc đề thi thực tế.

Với đề thi này, các em có thể tự đánh giá năng lực, rèn luyện kỹ năng giải đề và chuẩn bị tâm lý tốt nhất cho kỳ thi sắp tới. Đừng bỏ lỡ cơ hội nâng cao điểm số môn Toán của mình!

Đề bài

    Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Cho các số thực \(a,b,\alpha \left( {a > 0;b > 0} \right)\). Mệnh đề nào sau đây đúng?

    • A.
      \({\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha }\)
    • B.
      \({\left( {a - b} \right)^\alpha } = {a^\alpha } - {b^\alpha }\)
    • C.
      \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^{ - \alpha }}}}\)
    • D.
      \({\left( {a + b} \right)^\alpha } = {a^\alpha } + {b^\alpha }\)
    Câu 2 :

    Cho \[{\log _a}b = 3\] và \[{\log _a}c = 2\]. Tính \[P = {\log _a}\left( {b{c^2}} \right)\]

    • A.
      7.
    • B.
      4.
    • C.
      -1.
    • D.
      0.
    Câu 3 :

    Cho hàm số \[f\left( x \right) = \ln \left( {{x^2} - 2x + 4} \right)\]. Tìm các giá trị của \(x\) để \[f'\left( x \right) > 0\]?

    • A.
      \(x \ne 1\)
    • B.
      \(x > 0\)
    • C.
      \(x > 1\)
    • D.
      \(\forall x\)
    Câu 4 :

    Cho \(A\), \(B\) là hai biến cố xung khắc. Đẳng thức nào sau đây đúng?

    • A.
      \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)
    • B.
      \(P\left( {A \cup B} \right) = P\left( A \right).P\left( B \right)\)
    • C.
      \(P\left( {A \cup B} \right) = P\left( A \right) - P\left( B \right)\)
    • D.
      \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right)\)
    Câu 5 :

    Gieo một con xúc xắc có sáu mặt, các mặt 1, 2, 3, 4 được sơn đỏ, mặt 5, 6 sơn xanh. Gọi A là biến cố được mặt số lẻ, B là biến cố được mặt sơn màu đỏ. Xác suất của \(A \cap B\) là:

    • A.

      \(\frac{1}{3}\)

    • B.

      \(\frac{1}{4}\)

    • C.

      \(\frac{2}{3}\)

    • D.

      \(\frac{3}{4}\)

    Câu 6 :

    Cho hàm số \(y = f(x)\) có đồ thị \((C)\) và đạo hàm \(f'(2) = 6.\) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\left( {2;f\left( 2 \right)} \right)\) bằng

    • A.
      2
    • B.
      3
    • C.
      6
    • D.
      12
    Câu 7 :

    Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}.\) Giá trị của \(f''\left( 1 \right)\) bằng?

    • A.
      12
    • B.
      6
    • C.
      24
    • D.
      4
    Câu 8 :

    Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật và \(SA \bot (ABCD).\) Mệnh đề nào dưới đây đúng ?

    • A.
      \(BC \bot (SAD).\)
    • B.
      \(AB \bot (SAD).\)
    • C.
      \(AC \bot (SAD).\)
    • D.
      \(BD \bot (SAD).\)
    Câu 9 :

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\)\(SA \bot (ABCD)\) và \(SA = a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng \((ABCD)\) bằng:

    • A.
      \(45^\circ .\)
    • B.
      \(90^\circ .\)
    • C.
      \(30^\circ .\)
    • D.
      \(60^\circ .\)
    Câu 10 :

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot (ABCD),\)\(AB = a\) và \(SB = \sqrt 2 a.\) Khoảng cách từ điểm \(S\) đến mặt phẳng \((ABCD)\) bằng?

    • A.
      \(a.\)
    • B.
      \(\sqrt 2 a.\)
    • C.
      \(2a.\)
    • D.
      \(\sqrt 3 a.\)
    Câu 11 :

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Kí hiệu \(d(A,(SCD))\) là khoảng cách giữa điểm A và mặt phẳng\((SCD)\). Khẳng định nào sau đây đúng:

    • A.
      \(d(A,(SCD)) = AC\)
    • B.
      \(d(A,(SCD)) = AK\)
    • C.
      \(d(A,(SCD)) = AH\)
    • D.
      \(d(A,(SCD)) = AD\)
    Câu 12 :

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng:

    • A.
      \(BD \bot (SAC)\)
    • B.
      \(AK \bot (SCD)\)
    • C.
      \(BC \bot (SAC)\)
    • D.
      \(AH \bot (SCD)\)
    Phần II. Câu trắc nghiệm đúng sai
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Một chất điểm chuyển động có phương trình chuyển động là \(s = s(t) = {t^2} - 2t\) (t được tính bằng giây, s được tính bẳng mét)

    a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \(2{t_0} - 2\)

    Đúng
    Sai

    b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là \(8\,(m/s)\)

    Đúng
    Sai

    c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 10\)là \(16(m/s)\)

    Đúng
    Sai

    d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 3s\)là 5 (m/s)

    Đúng
    Sai
    Câu 2 :

    Cho hàm số có đồ thị (C): \(y = f\left( x \right) = {x^2} + x + 1\,\,(C)\)

    a) Không tồn tại phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox

    Đúng
    Sai

    b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là\(y = x + 1\)

    Đúng
    Sai

    c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y = - 3x + \frac{7}{3}\)

    Đúng
    Sai

    d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = 3\) là \(y = - 3x - 3\)

    Đúng
    Sai
    Câu 3 :

    Cho lăng trụ tứ giác \(ABCD.A'B'C'D'\). Có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A'\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của cạnh \(AD\), đường thẳng \(A'C\) hợp với mặt phẳng \(\left( {ABCD} \right)\)một góc \({45^o}\).

    a) \(A'H \bot AC\)

    Đúng
    Sai

    b) A’H không vuông góc (BB’C’C)

    Đúng
    Sai

    c) \(\left( {A'C,(ABCD)} \right) = \widehat {A'CH}\)

    Đúng
    Sai

    d) Thể tích khối lăng trụ bằng \(4{a^3}\sqrt 5 \)

    Đúng
    Sai
    Câu 4 :

    Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7.

    a) Xác suất để cả hai động cơ đều chạy tốt là 0,56

    Đúng
    Sai

    b) Xác suất để cả hai hai động cơ đều chạy không tốt là 0,06

    Đúng
    Sai

    c) Xác suất để có ít nhất một động cơ chạy tốt là 0,06

    Đúng
    Sai

    d) Xác suất để chỉ có 1 động cơ chạy tốt 0,3

    Đúng
    Sai
    Phần III. Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6
    Câu 1 :

    Một chất điểm chuyển động có phương trình \(s\left( t \right) = {t^3} - 3{t^2} - 9t\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Tính gia tốc tức thời tại thời điểm \(t = 3s?\)

    Câu 2 :

    Cho hàm số \(y = \frac{{{x^2} - x + 3}}{{x + 1}}\), biết \(y' = \frac{{a{x^2} + bx + c}}{{{{\left( {x + 1} \right)}^2}}}\). Tính \(a + b + c.\)

    Câu 3 :

    Trong một hội thao, thời gian chạy 200 m của một nhóm các vận động viên được ghi lại trong bảng sau:

    Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 0 1

    Dựa vào bảng số liệu trên, ban tổ chứ muốn chọn ra khoảng 50% số vận động viên chạy nhanh nhất để tiếp tục thi vòng 2. Ban tổ chức nên chọn các vận động viên có thời gian chạy không quá bao nhiêu giây?

    Câu 4 :

    Cho hình chóp \(S.ABCD\)có đáy \(ABCD\)là hình chữ nhật, \(AD = 2a,AB = 3a\). Cạnh bên \(SA\) vuông góc với đáy, \(SA = 2a\). Khoảng cách giữa hai đường thẳng \(AB\)và \(SD\) bằng

    Câu 5 :

    Cho hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right).\) Tính \(f'\left( 0 \right).\)

    Câu 6 :

    Tính diện tích của tam giác tạo bởi các trục tọa độ với tiếp tuyến của đồ thị hàm số \(y = \frac{{2{a^2}}}{x}\) (\(a\) là hằng số khác \(0\))

    Lời giải và đáp án

      Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Cho các số thực \(a,b,\alpha \left( {a > 0;b > 0} \right)\). Mệnh đề nào sau đây đúng?

      • A.
        \({\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha }\)
      • B.
        \({\left( {a - b} \right)^\alpha } = {a^\alpha } - {b^\alpha }\)
      • C.
        \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^{ - \alpha }}}}\)
      • D.
        \({\left( {a + b} \right)^\alpha } = {a^\alpha } + {b^\alpha }\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính lũy thừa

      Lời giải chi tiết :

      \({\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha }\)

      \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)

      Đáp án A.

      Câu 2 :

      Cho \[{\log _a}b = 3\] và \[{\log _a}c = 2\]. Tính \[P = {\log _a}\left( {b{c^2}} \right)\]

      • A.
        7.
      • B.
        4.
      • C.
        -1.
      • D.
        0.

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức logarit

      Lời giải chi tiết :

      \[P = {\log _a}\left( {b{c^2}} \right) = {\log _a}b + {\log _a}{c^2} = {\log _a}b + 2{\log _a}c = 3 + 2.2 = 7\]

      Đáp án A.

      Câu 3 :

      Cho hàm số \[f\left( x \right) = \ln \left( {{x^2} - 2x + 4} \right)\]. Tìm các giá trị của \(x\) để \[f'\left( x \right) > 0\]?

      • A.
        \(x \ne 1\)
      • B.
        \(x > 0\)
      • C.
        \(x > 1\)
      • D.
        \(\forall x\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \[\begin{array}{l}f'\left( x \right) = \left[ {\ln \left( {{x^2} - 2x + 4} \right)} \right]' = \frac{{\left( {{x^2} - 2x + 4} \right)'}}{{{x^2} - 2x + 4}} = \frac{{2x - 2}}{{{x^2} - 2x + 4}}\\f'\left( x \right) > 0 \Leftrightarrow \frac{{2x - 2}}{{{x^2} - 2x + 4}} > 0 \Leftrightarrow 2x - 2 > 0 \Leftrightarrow x > 1\end{array}\]

      Đáp án C.

      Câu 4 :

      Cho \(A\), \(B\) là hai biến cố xung khắc. Đẳng thức nào sau đây đúng?

      • A.
        \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)
      • B.
        \(P\left( {A \cup B} \right) = P\left( A \right).P\left( B \right)\)
      • C.
        \(P\left( {A \cup B} \right) = P\left( A \right) - P\left( B \right)\)
      • D.
        \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right)\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức cộng xác suất

      Lời giải chi tiết :

      \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)

      Đáp án A.

      Câu 5 :

      Gieo một con xúc xắc có sáu mặt, các mặt 1, 2, 3, 4 được sơn đỏ, mặt 5, 6 sơn xanh. Gọi A là biến cố được mặt số lẻ, B là biến cố được mặt sơn màu đỏ. Xác suất của \(A \cap B\) là:

      • A.

        \(\frac{1}{3}\)

      • B.

        \(\frac{1}{4}\)

      • C.

        \(\frac{2}{3}\)

      • D.

        \(\frac{3}{4}\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng quy tắc xác suất.

      Lời giải chi tiết :

      Biến cố \(A \cap B\) là: "Gieo được mặt xuất hiện số lẻ và sơn đỏ" \( \Rightarrow n\left( {A \cap B} \right) = 2\).

      Vậy xác suất cần tính là \(P(A \cap B) = \frac{2}{6} = \frac{1}{3}\).

      Câu 6 :

      Cho hàm số \(y = f(x)\) có đồ thị \((C)\) và đạo hàm \(f'(2) = 6.\) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\left( {2;f\left( 2 \right)} \right)\) bằng

      • A.
        2
      • B.
        3
      • C.
        6
      • D.
        12

      Đáp án : C

      Phương pháp giải :

      Đạo hàm của hàm số\(y = f(x)\) tại điểm x0 là hệ số góc của tiếp tuyến với đồ thị (C) của hàm số tại điểm \({M_0}({x_0};f({x_0}))\)

      Khi đó phương trình tiếp tuyến của (C) tại điểm M0 là: \(y = f'({x_0})(x - {x_0}) + f({x_0})\)

      Lời giải chi tiết :

      Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\left( {2;f\left( 2 \right)} \right)\)là \(f'(2) = 6.\)

      Đáp án C.

      Câu 7 :

      Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}.\) Giá trị của \(f''\left( 1 \right)\) bằng?

      • A.
        12
      • B.
        6
      • C.
        24
      • D.
        4

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \[\begin{array}{l}f'\left( x \right) = \left[ {{{\left( {x + 1} \right)}^3}} \right]' = 3(x + 1)'{\left( {x + 1} \right)^2} = 3{\left( {x + 1} \right)^2}\\f''\left( x \right) = \left[ {3{{\left( {x + 1} \right)}^2}} \right]' = 6(x + 1)'\left( {x + 1} \right) = 6\left( {x + 1} \right)\\f''(1) = 12\end{array}\]

      Đáp án A.

      Câu 8 :

      Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật và \(SA \bot (ABCD).\) Mệnh đề nào dưới đây đúng ?

      • A.
        \(BC \bot (SAD).\)
      • B.
        \(AB \bot (SAD).\)
      • C.
        \(AC \bot (SAD).\)
      • D.
        \(BD \bot (SAD).\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 1 1

      a)\(\left\{ \begin{array}{l}BC//AD\\BC \not\subset (SAD),AD \subset (SAD)\end{array} \right. \Rightarrow BC//(SAD)\)

      b)\[\left\{ \begin{array}{l}AB \bot AD\\AB \bot SA\\AD,SA \subset (SAD)\\AD \cap SA\end{array} \right. \Rightarrow AB \bot (SAD)\]

      Đáp án B.

      Câu 9 :

      Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\)\(SA \bot (ABCD)\) và \(SA = a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng \((ABCD)\) bằng:

      • A.
        \(45^\circ .\)
      • B.
        \(90^\circ .\)
      • C.
        \(30^\circ .\)
      • D.
        \(60^\circ .\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng phương pháp xác định góc giữa đường thẳng và mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 1 2

      Do \(SA \bot (ABCD)\)

      Nên AB là hình chiếu của SA lên mp(ABCD)

      Ta có: \(\left( {SB,(ABCD)} \right) = \left( {SB,AB} \right)\)

      Xét tam giác SAB vuông tại A ta có:

      \(\begin{array}{l}\left( {SB,AB} \right) = \widehat {SBA}\\\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{a}{a} = 1 \Rightarrow \widehat {SBA} = {45^0}\end{array}\)

      Đáp án A.

      Câu 10 :

      Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot (ABCD),\)\(AB = a\) và \(SB = \sqrt 2 a.\) Khoảng cách từ điểm \(S\) đến mặt phẳng \((ABCD)\) bằng?

      • A.
        \(a.\)
      • B.
        \(\sqrt 2 a.\)
      • C.
        \(2a.\)
      • D.
        \(\sqrt 3 a.\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính khoảng cách từ điểm đến mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 1 3

      \(Do\,\,SA \bot (ABCD) \Rightarrow d(S,(ABCD)) = SA\)

      Tam giác SAB vuông tại A nên \(SA = \sqrt {S{B^2} - A{B^2}} = a\)

      Đáp án A.

      Câu 11 :

      Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Kí hiệu \(d(A,(SCD))\) là khoảng cách giữa điểm A và mặt phẳng\((SCD)\). Khẳng định nào sau đây đúng:

      • A.
        \(d(A,(SCD)) = AC\)
      • B.
        \(d(A,(SCD)) = AK\)
      • C.
        \(d(A,(SCD)) = AH\)
      • D.
        \(d(A,(SCD)) = AD\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính khoảng cách từ điểm đến mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 1 4

      Ta có:

      \[\begin{array}{l}\left\{ \begin{array}{l}DC \bot AD\\DC \bot SA\\AD,SA \subset (SAD)\\AD \cap SA\end{array} \right. \Rightarrow DC \bot (SAD) \Rightarrow DC \bot AK\\\left\{ \begin{array}{l}AK \bot SD\\AK \bot DC\\SD,DC \subset (SDC)\\SD \cap DC\end{array} \right. \Rightarrow AK \bot (SDC) \Rightarrow d(A,(SCD)) = AK\end{array}\]

      Đáp án A.

      Câu 12 :

      Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng:

      • A.
        \(BD \bot (SAC)\)
      • B.
        \(AK \bot (SCD)\)
      • C.
        \(BC \bot (SAC)\)
      • D.
        \(AH \bot (SCD)\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 1 5

      \[\begin{array}{l}\left\{ \begin{array}{l}DC \bot AD\\DC \bot SA\\AD,SA \subset (SAD)\\AD \cap SA\end{array} \right. \Rightarrow DC \bot (SAD) \Rightarrow DC \bot AK\\\left\{ \begin{array}{l}AK \bot SD\\AK \bot DC\\SD,DC \subset (SDC)\\SD \cap DC\end{array} \right. \Rightarrow AK \bot (SDC)\end{array}\]

      Đáp án B.

      Phần II. Câu trắc nghiệm đúng sai
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Một chất điểm chuyển động có phương trình chuyển động là \(s = s(t) = {t^2} - 2t\) (t được tính bằng giây, s được tính bẳng mét)

      a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \(2{t_0} - 2\)

      Đúng
      Sai

      b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là \(8\,(m/s)\)

      Đúng
      Sai

      c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 10\)là \(16(m/s)\)

      Đúng
      Sai

      d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 3s\)là 5 (m/s)

      Đúng
      Sai
      Đáp án

      a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \(2{t_0} - 2\)

      Đúng
      Sai

      b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là \(8\,(m/s)\)

      Đúng
      Sai

      c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 10\)là \(16(m/s)\)

      Đúng
      Sai

      d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 3s\)là 5 (m/s)

      Đúng
      Sai
      Phương pháp giải :

      Phương trình vận tốc của chất điểm: \(v(t) = s'(t)\)

      Phương trình gia tốc của chất điểm: \(a(t) = v'(t)\)

      Lời giải chi tiết :

      a) Đạo hàm của hàm số \(s(t)\)tại thời điểm \({t_0}\)

      Ta có:

       \(\begin{array}{l}f'({t_0}) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f(t) - f({t_0})}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{{t^2} - 2t - ({t_0}^2 - 2{t_0})}}{{t - {t_0}}}} \right)\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{(t - {t_0})(t + {t_0} - 2)}}{{t - {t_0}}}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \left( {t + {t_0} - 2} \right) = 2{t_0} - 2\end{array}\)

      b) Phương trình vận tốc của chất điểm là: \(v(t) = s' = s'(t) = 2t - 2\)

      Vận tốc tức thời của chuyển động tại thời điểm t = 5 (s) là: \(v(5) = 2.5 - 2 = 8(m.s)\)

      c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 10\)là \(v(10) = 2.10 - 2 = 18\,(m/s)\)

      d) Trong khoảng thời gian từ \(t = 0\) tới \(t = 3s\)thì chất điểm di chuyển được quãng đường: \({3^2} - 2.3 = 3(m)\)

      Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 3s kể từ thời điểm \(t = 0\) là:

      \(\overline v = \frac{{\Delta s}}{{\Delta t}} = \frac{{3 - 0}}{{3 - 0}} = 1(m/s)\)

      Câu 2 :

      Cho hàm số có đồ thị (C): \(y = f\left( x \right) = {x^2} + x + 1\,\,(C)\)

      a) Không tồn tại phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox

      Đúng
      Sai

      b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là\(y = x + 1\)

      Đúng
      Sai

      c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y = - 3x + \frac{7}{3}\)

      Đúng
      Sai

      d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = 3\) là \(y = - 3x - 3\)

      Đúng
      Sai
      Đáp án

      a) Không tồn tại phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox

      Đúng
      Sai

      b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là\(y = x + 1\)

      Đúng
      Sai

      c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y = - 3x + \frac{7}{3}\)

      Đúng
      Sai

      d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = 3\) là \(y = - 3x - 3\)

      Đúng
      Sai
      Phương pháp giải :

      Bước 1: Gọi M(x0; f(x0)) là tọa độ tiếp điểm của tiếp tuyến của (C) thì f'(x0) = k

      Bước 2: Giải phương trình f'(x0) = k với ẩn là x0.

      Bước 3:Phương trình tiếp tuyến của (C) có dạng y = k(x – x0) + f(x0).

      Lời giải chi tiết :

      a) Vì \((C)\) không cắt Ox nên không tồn tại tiếp tuyển thỏa mãn yêu cầu bài toán

      b) Tọa độ giao điểm của \((C)\) với trục Oy là: \((0;1)\)

      Suy ra phương trình tiếp tuyến tại giao điểm \((C)\) với trục Ox là:

      \(y = y'(0)(x - 0) + 1 \Leftrightarrow y = x + 1\)

      c) Tọa độ giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là nghiệm của phương trình :

      \({x^2} + x + 1 = x + 1 \Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\)

      Phương trình tiếp tuyến tại điểm \((0;1)\)là \(y = x + 1\)

      d) Gọi \(M(a;b)\) là tiếp điểm của tiếp tuyến của đồ thị \((C)\) với hệ số góc \(k = - 3\)

      \( \Rightarrow y'(a)) = - 3 \Leftrightarrow 2a + 1 = - 3 \Leftrightarrow a = - 2\)

      Suy ra phương trình tiếp tuyến với hệ số góc \(k = - 3\) là \(y = - 3(x + 2) + 3 \Leftrightarrow y = - 3x - 3\)

      Câu 3 :

      Cho lăng trụ tứ giác \(ABCD.A'B'C'D'\). Có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A'\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của cạnh \(AD\), đường thẳng \(A'C\) hợp với mặt phẳng \(\left( {ABCD} \right)\)một góc \({45^o}\).

      a) \(A'H \bot AC\)

      Đúng
      Sai

      b) A’H không vuông góc (BB’C’C)

      Đúng
      Sai

      c) \(\left( {A'C,(ABCD)} \right) = \widehat {A'CH}\)

      Đúng
      Sai

      d) Thể tích khối lăng trụ bằng \(4{a^3}\sqrt 5 \)

      Đúng
      Sai
      Đáp án

      a) \(A'H \bot AC\)

      Đúng
      Sai

      b) A’H không vuông góc (BB’C’C)

      Đúng
      Sai

      c) \(\left( {A'C,(ABCD)} \right) = \widehat {A'CH}\)

      Đúng
      Sai

      d) Thể tích khối lăng trụ bằng \(4{a^3}\sqrt 5 \)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng; góc giữa đường thẳng với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 1 6

      a) \(A'H \bot (ABCD) \Rightarrow A'H \bot AC\)

      b) A’H không vuông góc (BB’C’C)

      c)d) Ta có: \(A'H \bot (ABCD)\)

      \( \Rightarrow HC\)là hình chiếu của \(A'C\) trên \(\left( {ABCD} \right)\)

      \( \Rightarrow (\widehat {A'C,(ABCD)}) = (\widehat {A'C,HC}) = \widehat {HCA'} = {45^o}\)

      Áp dụng định lý Pitago cho tam giác HDC vuông tại D ta có:

      \(HC = \sqrt {H{D^2} + D{C^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \)

      \( \Rightarrow A'H = HC.\tan {45^o} = a\sqrt 5 \)

      \( \Rightarrow {V_{ABCD.A'B'C'D'}} = A'H.{S_{ABCD}} = a\sqrt 5 .{\left( {2a} \right)^2} = 4{a^3}\sqrt 5 \).

      Câu 4 :

      Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7.

      a) Xác suất để cả hai động cơ đều chạy tốt là 0,56

      Đúng
      Sai

      b) Xác suất để cả hai hai động cơ đều chạy không tốt là 0,06

      Đúng
      Sai

      c) Xác suất để có ít nhất một động cơ chạy tốt là 0,06

      Đúng
      Sai

      d) Xác suất để chỉ có 1 động cơ chạy tốt 0,3

      Đúng
      Sai
      Đáp án

      a) Xác suất để cả hai động cơ đều chạy tốt là 0,56

      Đúng
      Sai

      b) Xác suất để cả hai hai động cơ đều chạy không tốt là 0,06

      Đúng
      Sai

      c) Xác suất để có ít nhất một động cơ chạy tốt là 0,06

      Đúng
      Sai

      d) Xác suất để chỉ có 1 động cơ chạy tốt 0,3

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng công thức nhân xác suất cho hai biến cố độc lập

      Lời giải chi tiết :

      Gọi A là biến cố động cơ I chạy tốt

      B là biến cố động cơ II chạy tốt

      Theo giả thiết: \(P(A) = 0,8;P(B) = 0,7\)

      \( \Rightarrow P(\overline A ) = 1 - 0,8 = 0,2;P(\overline B ) = 1 - 0,7 = 0,3\)

      a)Gọi X là biến cố cả 2 động cơ cùng chạy tốt

      Ta có X=A.B

      Mà 2 biến cố A và B độc lập với nhau nên:

      \(P(X) = P(A).P(B) = 0,8.0,7 = 0,56\)

      b)Gọi Y là biến cố cả 2 động cơ cùng không chạy tốt

      Ta có: \(Y = \overline A .\overline B \)

      Mà 2 biến cố \(\overline A \); \(\overline B \) độc lập với nhau nên: \(P(Y) = P(\overline A ).P(\overline B ) = 0,2.0,3 = 0,06\)

      c) Ta có biến cố: \(\overline Y \) là ít nhất 1 động cơ chạy tốt

      \(P(\overline Y ) = 1 - P(Y) = 1 - 0,06 = 0,94\)

      d)Gọi Z là biến cố chỉ có một động cơ chạy tốt

      \(P(Z) = P(A).P(\overline B ) + P(\overline A ).P(B) = 0,8.0,3 + 0,2.0,7 = 0,38\)

      Phần III. Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6
      Câu 1 :

      Một chất điểm chuyển động có phương trình \(s\left( t \right) = {t^3} - 3{t^2} - 9t\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Tính gia tốc tức thời tại thời điểm \(t = 3s?\)

      Phương pháp giải :

      Phương trình vận tốc của chất điểm: \(v(t) = s'(t)\)

      Phương trình gia tốc của chất điểm: \(a(t) = v'(t)\)

      Lời giải chi tiết :

      Ta có: \(a\left( t \right) = v'\left( t \right) = s''\left( t \right)\)

      \(s\left( t \right) = {t^3} - 3{t^2} - 9t \Rightarrow s'\left( t \right) = 3{t^2} - 6t - 9 \Rightarrow s''\left( t \right) = 6t - 6\)

      Vậy gia tốc tức thời tại thời điểm \(t = 3s\) là \(a\left( 3 \right) = 6.3 - 6 = 12m/{s^2}.\)

      Câu 2 :

      Cho hàm số \(y = \frac{{{x^2} - x + 3}}{{x + 1}}\), biết \(y' = \frac{{a{x^2} + bx + c}}{{{{\left( {x + 1} \right)}^2}}}\). Tính \(a + b + c.\)

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \(y = \frac{{{x^2} - x + 3}}{{x + 1}} \Rightarrow y' = \frac{{{x^2} + 2x - 4}}{{{{\left( {x + 1} \right)}^2}}}\)

      Do đó: \(a + b + c = 1 + 2 - 4 = - 1.\)

      Câu 3 :

      Trong một hội thao, thời gian chạy 200 m của một nhóm các vận động viên được ghi lại trong bảng sau:

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 1 7

      Dựa vào bảng số liệu trên, ban tổ chứ muốn chọn ra khoảng 50% số vận động viên chạy nhanh nhất để tiếp tục thi vòng 2. Ban tổ chức nên chọn các vận động viên có thời gian chạy không quá bao nhiêu giây?

      Phương pháp giải :

      Sử dụng công thức tính trung vị

      Lời giải chi tiết :

      Tổng số vận động viên n = 5 + 12 + 32 + 45 + 30 = 124

      Gọi x1; x2; ...; x124 lần lượt là thời gian chạy của 124 vận động viên tham gia hội thao được xếp theo thứ tự không giảm.

      Ta có: x1; ...; x5 ∈ [21; 21,5), x6; ...; x17 ∈ [21,5; 22), x18; ...; x49 ∈ [22; 22,5), x50; ...; x94 ∈ [22,5; 23), x95; ...; x124 ∈ [23; 23,5).

      Số trung vị của dãy số liệu là: \[\frac{{\left( {{x_{62}} + {x_{63}}} \right)}}{2}\]

      Mà x62; x63 ∈ [22,5; 23) do đó: \({M_e} = 22,5 + \frac{{\frac{{124}}{2} - 49}}{{45}}\left( {23 - 22,5} \right) \approx 22,6\)

      Vậy ban tổ chức nên chọn vận động viên có thời gian chạy không quá 22,6 giây.

      Câu 4 :

      Cho hình chóp \(S.ABCD\)có đáy \(ABCD\)là hình chữ nhật, \(AD = 2a,AB = 3a\). Cạnh bên \(SA\) vuông góc với đáy, \(SA = 2a\). Khoảng cách giữa hai đường thẳng \(AB\)và \(SD\) bằng

      Phương pháp giải :

      Sử dụng phương pháp xác định khoảng cách giữa hai đường thẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 1 8

      Từ \(A\) kẻ \(AH \bot SD \Rightarrow AH\)là đường vuông góc chung

      Chứng minh: Ta có \(AB \bot AH\,\,\left( {Do\,\,AB \bot \left( {SAD} \right)} \right)\)và \(AH \bot SD \Rightarrow AH\)là đường vuông góc chung

      \( \Rightarrow d\left( {AB,\,\,SD} \right) = AH.\)

      Tính \(AH:\) \(AH = \frac{{AS.AD}}{{\sqrt {A{S^2} + A{D^2}} }} = \frac{{2a.2a}}{{\sqrt {{{\left( {2a} \right)}^2} + {{\left( {2a} \right)}^2}} }} = a\sqrt 2 .\)

      Câu 5 :

      Cho hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right).\) Tính \(f'\left( 0 \right).\)

      Phương pháp giải :

      Sử dụng phương pháp tính đạo hàm theo định nghĩa

      Lời giải chi tiết :

      Theo định nghĩa đạo hàm của hàm số tại một điểm:

      \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right)}}{x}\)

      \( = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right)} \right] = \left( { - 1} \right).\left( { - 2} \right).\left( { - 3} \right)....\left( { - 1000} \right) = 1000!\)

      Vậy \(f'\left( 0 \right) = 1000!\)

      Câu 6 :

      Tính diện tích của tam giác tạo bởi các trục tọa độ với tiếp tuyến của đồ thị hàm số \(y = \frac{{2{a^2}}}{x}\) (\(a\) là hằng số khác \(0\))

      Phương pháp giải :

      Lập phương trình diện tích tam giác và tính diện tích theo a

      Lời giải chi tiết :

      Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\},\,\,\)\(y' = - \frac{{2{a^2}}}{{{x^2}}}.\)

      Tiếp tuyến của đồ thị hàm số \(y = \frac{{2{a^2}}}{x}\) tại điểm \(\left( {{x_0};\frac{{2{a^2}}}{{{x_0}}}} \right)\)là đường thẳng \(\left( d \right)\) có dạng:

      \(y = - \frac{{2{a^2}}}{{{x_0}^2}}.\left( {x - {x_0}} \right) + \frac{{2{a^2}}}{{{x_0}}},\,\,\left( {{x_0} \ne 0,a \ne 0} \right).\)

      + Gọi \(A = d \cap Ox:\)Cho\(y = 0 \Rightarrow - \frac{{2{a^2}}}{{{x_0}^2}}\left( {x - {x_0}} \right) + \frac{{2{a^2}}}{{{x_0}}} = 0 \Leftrightarrow x - {x_0} - {x_0} = 0 \Leftrightarrow x = 2{x_0} \Rightarrow A\left( {2{x_0};0} \right).\)

      + Gọi \(B = d \cap Oy:\) Cho \(x = 0 \Rightarrow y = - \frac{{2{a^2}}}{{{x_0}^2}}.\left( { - {x_0}} \right) + \frac{{2{a^2}}}{{{x_0}}} = \frac{{2{a^2}}}{{{x_0}}} + \frac{{2{a^2}}}{{{x_0}}} = \frac{{4{a^2}}}{{{x_0}}} \Rightarrow B\left( {0;\frac{{4{a^2}}}{{{x_0}}}} \right).\)

      + Diện tích tam giác \(OAB\): \(S = \frac{1}{2}OA.OB = \frac{1}{2}.\left| {2{x_0}} \right|.\left| {\frac{{4{a^2}}}{{{x_0}}}} \right| = 4{a^2}\)

      Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng toán math. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5: Phân tích chi tiết và hướng dẫn giải

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 5 là một bài kiểm tra quan trọng đánh giá kiến thức và kỹ năng giải toán của học sinh sau một học kỳ học tập. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như hàm số, đạo hàm, tích phân, hình học không gian và hình học giải tích.

      Cấu trúc đề thi

      Đề thi thường được chia thành các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng nhanh các công thức, định lý.
      • Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải, chứng minh các bài toán.

      Nội dung đề thi

      Các chủ đề thường xuất hiện trong đề thi:

      1. Hàm số: Xét tính đơn điệu, cực trị, giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
      2. Đạo hàm: Tính đạo hàm, ứng dụng đạo hàm để giải các bài toán về cực trị, tối ưu.
      3. Tích phân: Tính tích phân, ứng dụng tích phân để tính diện tích, thể tích.
      4. Hình học không gian: Tính khoảng cách, góc giữa đường thẳng và mặt phẳng, thể tích khối đa diện.
      5. Hình học giải tích: Phương trình đường thẳng, phương trình đường tròn, phương trình elip, hypebol, parabol.

      Hướng dẫn giải đề thi

      Để giải đề thi hiệu quả, học sinh cần:

      • Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý, công thức.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng.
      • Đọc kỹ đề bài: Xác định đúng yêu cầu của bài toán.
      • Trình bày lời giải rõ ràng, logic: Sử dụng các ký hiệu toán học chính xác.
      • Kiểm tra lại kết quả: Đảm bảo tính chính xác của lời giải.

      Ví dụ minh họa

      Bài 1: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.

      Giải:

      1. Tính đạo hàm y' = 3x2 - 6x.
      2. Giải phương trình y' = 0 để tìm các điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
      3. Xét dấu đạo hàm y' để xác định loại cực trị:
        • Khi x < 0, y' > 0 => Hàm số đồng biến.
        • Khi 0 < x < 2, y' < 0 => Hàm số nghịch biến.
        • Khi x > 2, y' > 0 => Hàm số đồng biến.
      4. Kết luận: Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

      Tài liệu tham khảo

      Để chuẩn bị tốt hơn cho kỳ thi, học sinh có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 11 Cánh diều.
      • Sách bài tập Toán 11 Cánh diều.
      • Các đề thi thử Toán 11.
      • Các trang web học toán online uy tín như giaitoan.edu.vn.

      Lời khuyên

      Hãy dành thời gian ôn tập kiến thức, luyện tập giải đề và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn. Chúc các em đạt kết quả tốt nhất trong kỳ thi học kì 2!

      Bảng tổng hợp các dạng bài tập thường gặp

      Dạng bài tậpChủ đềMức độ khó
      Tìm cực trị của hàm sốHàm số, đạo hàmTrung bình
      Tính tích phânTích phânTrung bình - Khó
      Tính khoảng cách giữa đường thẳng và mặt phẳngHình học không gianKhó

      Tài liệu, đề thi và đáp án Toán 11