Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2

Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2

Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2, một công cụ hỗ trợ học sinh ôn tập và làm quen với cấu trúc đề thi thực tế. Đề thi được biên soạn bám sát chương trình học và có đáp án chi tiết, giúp các em tự đánh giá năng lực và cải thiện kết quả học tập.

Với đề thi này, các em sẽ có cơ hội rèn luyện các kỹ năng giải toán quan trọng, từ đó tự tin hơn khi bước vào phòng thi.

Đề bài

    Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Cho hàm số \(f(x) = \frac{{{x^3}}}{3} - \frac{3}{2}{x^2} - 4x + 6.\) Phương trình \(f'(x) = 0\)có nghiệm là

    • A.

      \(x = - 1\)

    • B.

      \(x = 1,\,\,x = 4\)

    • C.

      \(x = - 1,\,\,x = 4\)

    • D.

      \(x = 0,\,\,x = 3\)

    Câu 2 :

    Gọi (d) là tiếp tuyến của đồ thị hàm số\(y = f(x) = - {x^3} + x\) tại điểm\(M( - 2;6).\) Phương trình của (d) là

    • A.
      y = -11x +30.
    • B.
      y = 13x + 34.
    • C.
      y = -11x – 16.
    • D.
      y = 13x – 18.
    Câu 3 :

    Tính thời gian trung bình giải bài tập của học sinh lớp 11A được cho trong bảng sau:

    Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 0 1

    • A.
      17
    • B.
      15
    • C.
      13,4
    • D.
      14,3
    Câu 4 :

    Cho \(u = u\left( x \right),v = v\left( x \right),v\left( x \right) \ne 0\); với k là hằng số. Hãy chọn khẳng định sai?

    • A.

      \({\left( {\frac{1}{v}} \right)^\prime } = - \frac{{v'}}{{{v^{}}}}\)

    • B.

      \({\left( {k.u} \right)^\prime } = k.u'\)

    • C.

      \({\left( {u + v} \right)^\prime } = u' + v'\)

    • D.

      \(\left( {u.v} \right)' = u'.v + u.v'\)

    Câu 5 :

    Đạo hàm của hàm số \(y = \frac{{2x - 1}}{{1 - x}}\)là

    • A.

      \(y' = \frac{3}{{{{\left( { - x + 1} \right)}^2}}}\)

    • B.

      \(y' = \frac{1}{{{{\left( {x - 1} \right)}^2}}}\)

    • C.

      \(y' = \frac{{ - 1}}{{{{\left( {1 - x} \right)}^2}}}\)

    • D.

      \(y' = \frac{{ - 3}}{{{{\left( {1 - x} \right)}^2}}}\)

    Câu 6 :

    Cho hàm số: \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\quad khi\;x \ne 1\\m\quad \quad \quad khi\;x = 1\end{array} \right.\) . Để f(x) liên tục tại điểm x0 = 1 thì m bằng:

    • A.
      -1
    • B.
      1
    • C.
      2
    • D.
      0
    Câu 7 :

    Tìm đạo hàm của hàm số sau \(y = {x^4} - 3{x^2} + 2x - 1\) 

    • A.

      \(y' = 4{x^3} - 3x + 2\)

    • B.

      \(y' = 4{x^4} - 6x + 2\)

    • C.

      \(y' = 4{x^3} - 6x + 3\)

    • D.

      \(y' = 4{x^3} - 6x + 2\)

    Câu 8 :

    Cho hàm số \(f(x) = \frac{{a{x^2} + 4x + 3}}{{3x - 2a{x^2}}},(a \in R,a \ne 0)\). Khi đó \(\mathop {\lim }\limits_{x \to - \infty } f(x)\) bằng

    • A.

      \( - \frac{1}{2}\)

    • B.

      \( + \infty \)

    • C.

      \(\frac{a}{3}\)

    • D.

      \( - \infty \)

    Câu 9 :

    Cho hình chóp \(S.ABC\) có đáy ABC là tam giác vuông tại B và SA vuông góc mặt đáy \(\left( {ABC} \right)\), \(SB = 2a\), \(AB = a\)( tham khảo hình vẽ). Tính góc giữa SB và \(mp\left( {ABC} \right)\)

    Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 0 2

    • A.

      \(90^\circ .\)

    • B.

      \(60^\circ .\)

    • C.

      \(45^\circ .\)

    • D.

      \(30^\circ .\)

    Câu 10 :

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy. Khẳng định nào sau đây đúng?

    • A.

      \((SDC) \bot (SAC)\)

    • B.

      \((SCD) \bot (SAD)\)

    • C.

      \((SBD) \bot (SAC)\)

    • D.

      \((SBC) \bot (SAC)\)

    Câu 11 :

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây đúng ?

    • A.

      \(AC \bot (SBD)\)

    • B.

      \(AB \bot (SAD)\)

    • C.

      \(AC \bot (SBD)\)

    • D.

      \(SO \bot (ABCD)\)

    Câu 12 :

    Với hàm số \(g\left( x \right) = \frac{{\left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}}}{{x - 1}};\,g'\left( 2 \right)\)bằng

    • A.
      232.
    • B.
      72.
    • C.
      152.
    • D.
      -75.
    Phần II. Câu trắc nghiệm đúng sai
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Trong một chiếc hộp có 20 viên bi, trong đó có 8 viên bi màu đỏ, 7 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên ra 3 viên bi

    a) Xác suất để 3 viên bi lấy ra đều màu đỏ là \(\frac{{14}}{{285}}\)

    Đúng
    Sai

    b) Xác suất để 3 viên bi lấy ra có không quá hai màu là \(\frac{{43}}{{57}}\)

    Đúng
    Sai

    c) Xác suất để 3 viên bi lấy ra đều có màu vàng là \(\frac{1}{7}\)

    Đúng
    Sai

    d) Xác suất để 3 viên bi lấy ra có đủ cả ba màu là \(\frac{{14}}{{57}}\)

    Đúng
    Sai
    Câu 2 :

    Cho mẫu số liệu về cân nặng (kg) của 45 học sinh lớp 11A được cho bởi bảng sau:

    Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 0 3

    a) Tứ phân vị thứ nhất \({Q_1}\) là 47

    Đúng
    Sai

    b) Trung vị \({M_e}\) là 51,4

    Đúng
    Sai

    c) Tứ phân vị thứ ba \({Q_3}\) là 54,2

    Đúng
    Sai

    d) Mốt \({M_o} = 20\)

    Đúng
    Sai
    Câu 3 :

    Cho hình chóp S.ABC có SA ⊥ (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.

    a) \(d((MNP),(ABC)) = h\)

    Đúng
    Sai

    b) \(d(NP,(ABC)) = \frac{h}{2}\)

    Đúng
    Sai

    c) \(d(A,(SBC)) = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)

    Đúng
    Sai

    d) \((MNP)//(ABC)\)

    Đúng
    Sai
    Câu 4 :

    Cho hàm số \(y = \sin x\)

    a) Đạo hàm của hàm số là \(y' = - cosx\)

    Đúng
    Sai

    b) Biểu thức \(y'(\frac{\pi }{2}) = 0\)

    Đúng
    Sai

    c) Biểu thức \(y''(\frac{\pi }{2}) = 0\)

    Đúng
    Sai

    d) Biểu thức \({y^{(2024)}} = \sin (x + 1012\pi )\)

    Đúng
    Sai
    Phần III. Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6
    Câu 1 :

    Tính giới hạn: \(\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {4x + 1} - 3}}{{x - 2}}\).

    Câu 2 :

    Cho hàm số: \(y = {\left( {{x^4} - 1} \right)^4}\). Tính \(y'(1)\)

    Câu 3 :

    Tìm m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{x - 1}}\,\,\,\;khi\,\,x \ne 1\\1 - mx\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\)liên tục tại điểm\({x_0} = 1\)

    Câu 4 :

    Cho hình chóp S.ABCD đáy là hình vuông cạnh a , cạnh bên SA \( \bot \)(ABCD) và

    SA = a\(\sqrt 2 \). Tính tan của góc giữa hai mp (SBC) và (ABCD).

    Câu 5 :

    Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\). Tìm tọa độ điểm M thuộc đồ thị sao cho khoảng cách từ điểm \(I( - 1;2)\)tới tiếp tuyến của đồ thị tại M là lớn nhất.

    Câu 6 :

    Với mức tiêu thụ thức ăn cho cá hàng ngày của hộ gia đình A không đổi như dự định thì lượng thức ăn dự trữ sẽ hết sau 50 ngày. Nhưng trên thực tế, mức tiêu thụ thức ăn tăng thêm 3% từ ngày đầu tiên và cứ tiếp tục như vậy, ngày sau tăng thêm 3% so với ngày kề trước đó. Hỏi thực tế, lượng thức ăn dự trữ đó sẽ hết sau bao nhiêu ngày? (làm tròn đến hàng đơn vị).

    Lời giải và đáp án

      Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Cho hàm số \(f(x) = \frac{{{x^3}}}{3} - \frac{3}{2}{x^2} - 4x + 6.\) Phương trình \(f'(x) = 0\)có nghiệm là

      • A.

        \(x = - 1\)

      • B.

        \(x = 1,\,\,x = 4\)

      • C.

        \(x = - 1,\,\,x = 4\)

      • D.

        \(x = 0,\,\,x = 3\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng công thức đạo hàm.

      Lời giải chi tiết :

      \(\begin{array}{l}f'(x) = \left( {\frac{{{x^3}}}{3} - \frac{3}{2}{x^2} - 4x + 6} \right)' = 3{x^2} - 3x - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 4\end{array} \right.\end{array}\)

      Đáp án C.

      Câu 2 :

      Gọi (d) là tiếp tuyến của đồ thị hàm số\(y = f(x) = - {x^3} + x\) tại điểm\(M( - 2;6).\) Phương trình của (d) là

      • A.
        y = -11x +30.
      • B.
        y = 13x + 34.
      • C.
        y = -11x – 16.
      • D.
        y = 13x – 18.

      Đáp án : C

      Phương pháp giải :

      Phương trình tiếp tuyến với đồ thị (C): \(y = f(x) = - {x^3} + x\) tại điểm \(M({x_0};f({x_0})).\)là:

      \(y = f'(x{}_0)(x - x{}_0) + f(x{}_0)\)

      Trong đó:

      \(M({x_0};f({x_0}))\) gọi là tiếp điểm.

      \(k = f'(x{}_0)\)là hệ số góc.

      Lời giải chi tiết :

      \(y' = f'(x) = \left( { - {x^3} + x} \right)' = - 3{x^2} + 1\)

      Phương trình tiếp tuyến của đồ thị \(y = f(x) = - {x^3} + x\)tại điểm \(M({x_0};f({x_0})).\)

      \(y' = f'( - 2)(x + 2) + 6 = - 11(x + 2) + 6 = - 11x - 16\)

      Đáp án C.

      Câu 3 :

      Tính thời gian trung bình giải bài tập của học sinh lớp 11A được cho trong bảng sau:

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 1

      • A.
        17
      • B.
        15
      • C.
        13,4
      • D.
        14,3

      Đáp án : C

      Phương pháp giải :

      Sử dụng công thức tính số trung bình của mẫu số liệu

      Lời giải chi tiết :

      Trong mỗi khoảng thời gian, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 2

      Tổng số học sinh là n = 45. Thời gian trung bình giải bài toán của học sinh lớp 11 A là:

      \(\overline x = \frac{{6.9 + 17.12 + 17.15 + 5.18}}{{45}} = \frac{{67}}{5} = 13,4\) (phút)

      Đáp án C.

      Câu 4 :

      Cho \(u = u\left( x \right),v = v\left( x \right),v\left( x \right) \ne 0\); với k là hằng số. Hãy chọn khẳng định sai?

      • A.

        \({\left( {\frac{1}{v}} \right)^\prime } = - \frac{{v'}}{{{v^{}}}}\)

      • B.

        \({\left( {k.u} \right)^\prime } = k.u'\)

      • C.

        \({\left( {u + v} \right)^\prime } = u' + v'\)

      • D.

        \(\left( {u.v} \right)' = u'.v + u.v'\)

      Đáp án : A

      Phương pháp giải :

      Áp dụng công thức tính đạo hàm.

      Lời giải chi tiết :

      Ta có:

      \({\left( {\frac{1}{v}} \right)^\prime } = - \frac{{v'}}{{{v^2}}}\).

      \({\left( {k.u} \right)^\prime } = k.u'\).

      \({\left( {u + v} \right)^\prime } = u' + v'\).

      \(\left( {u.v} \right)' = u'.v + u.v'\).

      Vậy đáp án A sai.

      Câu 5 :

      Đạo hàm của hàm số \(y = \frac{{2x - 1}}{{1 - x}}\)là

      • A.

        \(y' = \frac{3}{{{{\left( { - x + 1} \right)}^2}}}\)

      • B.

        \(y' = \frac{1}{{{{\left( {x - 1} \right)}^2}}}\)

      • C.

        \(y' = \frac{{ - 1}}{{{{\left( {1 - x} \right)}^2}}}\)

      • D.

        \(y' = \frac{{ - 3}}{{{{\left( {1 - x} \right)}^2}}}\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm phân thức: \(y' = \left( {\frac{{ax + b}}{{cx + d}}} \right)' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\)

      Lời giải chi tiết :

      \(y' = \left( {\frac{{2x - 1}}{{1 - x}}} \right)' = \left( {\frac{{2x - 1}}{{ - x + 1}}} \right)' = \frac{1}{{{{\left( { - x + 1} \right)}^2}}}\)

      Đáp án B.

      Câu 6 :

      Cho hàm số: \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\quad khi\;x \ne 1\\m\quad \quad \quad khi\;x = 1\end{array} \right.\) . Để f(x) liên tục tại điểm x0 = 1 thì m bằng:

      • A.
        -1
      • B.
        1
      • C.
        2
      • D.
        0

      Đáp án : C

      Phương pháp giải :

      Điều kiện để hàm số liên tục tại \(x = {x_0}\):

      \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\)

      Lời giải chi tiết :

      Hàm số đã cho xác định trên R

      Ta có:

      \(\begin{array}{l}f(1) = m\\\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{x + 1}} = \frac{1}{2}\end{array}\)

      Hàm số liên tục tại \(x = 1\) khi \(f(1) = \mathop {\lim }\limits_{x \to 1} f(x) \Leftrightarrow m = \frac{1}{2}\)

      Vậy khi m =  2 thì hàm số liên tục tại \(x = 1\)

      Đáp án C.

      Câu 7 :

      Tìm đạo hàm của hàm số sau \(y = {x^4} - 3{x^2} + 2x - 1\) 

      • A.

        \(y' = 4{x^3} - 3x + 2\)

      • B.

        \(y' = 4{x^4} - 6x + 2\)

      • C.

        \(y' = 4{x^3} - 6x + 3\)

      • D.

        \(y' = 4{x^3} - 6x + 2\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \(y' = 4{x^3} - 6x + 2\)

      Đáp án D.

      Câu 8 :

      Cho hàm số \(f(x) = \frac{{a{x^2} + 4x + 3}}{{3x - 2a{x^2}}},(a \in R,a \ne 0)\). Khi đó \(\mathop {\lim }\limits_{x \to - \infty } f(x)\) bằng

      • A.

        \( - \frac{1}{2}\)

      • B.

        \( + \infty \)

      • C.

        \(\frac{a}{3}\)

      • D.

        \( - \infty \)

      Đáp án : A

      Phương pháp giải :

      Nhận dạng: \(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\)

      TH1: Nếu f(x) , g(x) là các đa thức thì chia cả tử và mẫu cho lũy thừa cao nhất của x.

      TH2: Nếu f(x) , g(x) chứa căn thì có thể chia cả tử và mẫu cho lũy thừa cao nhất của x hoặc nhân lượng liên hợp

      Lời giải chi tiết :

      \(\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } \frac{{a{x^2} + 4x + 3}}{{3x - 2a{x^2}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}(a + \frac{4}{x} + \frac{3}{{{x^2}}})}}{{{x^2}( - 2a + \frac{3}{x})}} = \frac{a}{{ - 2a}} = \frac{{ - 1}}{2}\)

      Đáp án A.

      Câu 9 :

      Cho hình chóp \(S.ABC\) có đáy ABC là tam giác vuông tại B và SA vuông góc mặt đáy \(\left( {ABC} \right)\), \(SB = 2a\), \(AB = a\)( tham khảo hình vẽ). Tính góc giữa SB và \(mp\left( {ABC} \right)\)

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 3

      • A.

        \(90^\circ .\)

      • B.

        \(60^\circ .\)

      • C.

        \(45^\circ .\)

      • D.

        \(30^\circ .\)

      Đáp án : B

      Phương pháp giải :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 4

      Bước 1: Tìm giao điểm O của đường thẳng a và \((\alpha )\)

      Bước 2: Xác định hình chiếu A’ của điểm A xuống \((\alpha )\)

      Bước 3: Suy ra: \(\left( {AO,(\alpha )} \right) = \left( {AO,A'O} \right) = \widehat {AOA'}\)

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 5

      Do \(SA \bot (ABC)\)nên A là hình chiếu của S lên (ABC)

      Ta có: \(\left( {SB,(ABC)} \right) = (SB,AB)\)

      Xét \(\Delta SAB\) vuông tại A có:

       \(\begin{array}{l}\tan \left( {SB,AB} \right) = \tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{\sqrt {S{B^2} - A{B^2}} }}{{AB}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \\ \Rightarrow \widehat {SBA} = {60^0}\end{array}\)

      Đáp án B.

      Câu 10 :

      Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy. Khẳng định nào sau đây đúng?

      • A.

        \((SDC) \bot (SAC)\)

      • B.

        \((SCD) \bot (SAD)\)

      • C.

        \((SBD) \bot (SAC)\)

      • D.

        \((SBC) \bot (SAC)\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng và hai mặt phẳng vuông góc với nhau

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 6

      Ta có:

      \(\begin{array}{l}\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\\SA,AD \subset (SAD)\\SA \cap AD\end{array} \right. \Rightarrow CD \bot (SAD)\\CD \subset (SCD) \Rightarrow (SCD) \bot (SAD)\end{array}\)

      Đáp án B.

      Câu 11 :

      Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây đúng ?

      • A.

        \(AC \bot (SBD)\)

      • B.

        \(AB \bot (SAD)\)

      • C.

        \(AC \bot (SBD)\)

      • D.

        \(SO \bot (ABCD)\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 7

      Ta có:

      \(\left\{ \begin{array}{l}AC \bot BD\\AC \bot SO\\BD,SO \subset (SBD)\\BD \cap SO\end{array} \right. \Rightarrow AC \bot (SBD)\)

      Đáp án C.

      Câu 12 :

      Với hàm số \(g\left( x \right) = \frac{{\left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}}}{{x - 1}};\,g'\left( 2 \right)\)bằng

      • A.
        232.
      • B.
        72.
      • C.
        152.
      • D.
        -75.

      Đáp án : B

      Phương pháp giải :

      Sử dụng phương tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \(\begin{array}{l}g'\left( x \right) = \left[ {\frac{{\left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}}}{{x - 1}}} \right]' = \left( {\frac{{18{x^3} - 15{x^2} - 4x + 4}}{{x - 1}}} \right)'\\ = \frac{{\left( {18{x^3} - 15{x^2} - 4x + 4} \right)'(x - 1) - (18{x^3} - 15{x^2} - 4x + 4)(x - 1)'}}{{{{\left( {x - 1} \right)}^2}}}\\ = \frac{{36{x^3} - 69{x^2} + 30x}}{{{{\left( {x - 1} \right)}^2}}}\\g'\left( 2 \right) = 72\end{array}\)

      Đáp án B.

      Phần II. Câu trắc nghiệm đúng sai
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Trong một chiếc hộp có 20 viên bi, trong đó có 8 viên bi màu đỏ, 7 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên ra 3 viên bi

      a) Xác suất để 3 viên bi lấy ra đều màu đỏ là \(\frac{{14}}{{285}}\)

      Đúng
      Sai

      b) Xác suất để 3 viên bi lấy ra có không quá hai màu là \(\frac{{43}}{{57}}\)

      Đúng
      Sai

      c) Xác suất để 3 viên bi lấy ra đều có màu vàng là \(\frac{1}{7}\)

      Đúng
      Sai

      d) Xác suất để 3 viên bi lấy ra có đủ cả ba màu là \(\frac{{14}}{{57}}\)

      Đúng
      Sai
      Đáp án

      a) Xác suất để 3 viên bi lấy ra đều màu đỏ là \(\frac{{14}}{{285}}\)

      Đúng
      Sai

      b) Xác suất để 3 viên bi lấy ra có không quá hai màu là \(\frac{{43}}{{57}}\)

      Đúng
      Sai

      c) Xác suất để 3 viên bi lấy ra đều có màu vàng là \(\frac{1}{7}\)

      Đúng
      Sai

      d) Xác suất để 3 viên bi lấy ra có đủ cả ba màu là \(\frac{{14}}{{57}}\)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng các quy tắc đếm để xác định số phần tử của không gian mẫu và biến cố

      Lời giải chi tiết :

      Không gian mẫu: \((\Omega ) = C_{20}^3 = 1140\)

      a) Gọi A là biến cố: “3 viên bi lấy ra đều màu đỏ”; \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{C_8^3}}{{C_{20}^3}} = \frac{{56}}{{1140}} = \frac{{14}}{{285}}\)

      b) B là biến cố: “3 viên bi lấy ra có không quá hai màu”

      TH1: Số cách lấy ra 3 viên bi lấy ra chỉ có một màu: \(C_8^3 + C_7^3 + C_5^3 = 101\)

      TH2: Số cách lấy ra 3 viên bi lấy ra chỉ có đúng hai màu: \(\left[ {C_{15}^3 - \left( {C_8^3 + C_7^3} \right)} \right] + \left[ {C_{13}^3 - \left( {C_8^3 + C_5^3} \right)} \right] + \left[ {C_{12}^3 - \left( {C_5^3 + C_7^3} \right)} \right] = 759\)

      Nên: \(P(B) = \frac{{n(B)}}{{n(\Omega )}} = \frac{{101 + 759}}{{1140}} = \frac{{43}}{{57}}\)

      c) C là biến cố: “3 viên bi lấy ra đều có màu vàng”; \(P(C) = \frac{{n(C)}}{{n(\Omega )}} = \frac{{C_5^3}}{{C_{20}^3}} = \frac{{10}}{{1140}} = \frac{1}{{114}}\)

      d) D là biến cố: “3 viên bi lấy ra có đủ cả ba màu”: \(P(D) = \frac{{n(D)}}{{n(\Omega )}} = \frac{{C_8^1.C_7^1.C_5^1}}{{C_{20}^3}} = \frac{{280}}{{1140}} = \frac{{14}}{{57}}\)

      Câu 2 :

      Cho mẫu số liệu về cân nặng (kg) của 45 học sinh lớp 11A được cho bởi bảng sau:

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 8

      a) Tứ phân vị thứ nhất \({Q_1}\) là 47

      Đúng
      Sai

      b) Trung vị \({M_e}\) là 51,4

      Đúng
      Sai

      c) Tứ phân vị thứ ba \({Q_3}\) là 54,2

      Đúng
      Sai

      d) Mốt \({M_o} = 20\)

      Đúng
      Sai
      Đáp án

      a) Tứ phân vị thứ nhất \({Q_1}\) là 47

      Đúng
      Sai

      b) Trung vị \({M_e}\) là 51,4

      Đúng
      Sai

      c) Tứ phân vị thứ ba \({Q_3}\) là 54,2

      Đúng
      Sai

      d) Mốt \({M_o} = 20\)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng công thức tính tứ phân vị của mẫu số liệu và Mốt

      Lời giải chi tiết :

      Cỡ mẫu là n = 7 + 10 + 20 + 6 + 2 = 45

      Gọi x1, x2, ….., x45 là cân nặng của 45 học sinh và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần.

      Khi đó, trung vị là x23. Do giá trị x23 thuộc nhóm [50; 55) nên nhóm này chứa trung vị.

      Do đó p = 3; a3 = 50, m3 = 20; m1 + m2 = 7 + 10 = 17; a4 – a3 = 55 – 50 = 5

      Khi đó

      \({M_e} = {a_3} + \frac{{\frac{n}{2} - ({m_1} + {m_2})}}{{{m_3}}}({a_4} - {a_3}) = 50 + \frac{{\frac{{45}}{2} - 17}}{{20}}.5 \approx 51,4\).

      Vậy Me = 51,4.

      Từ Me = 51,4, suy ra Q2 = 51,4.

      - Tứ phân vị thứ nhất Q1 là trung vị của nửa dãy bên trái Q2 nên \({Q_1} = \frac{{{x_{11}} + {x_{12}}}}{2}\)

      Do x11 và x12 đều thuộc nhóm [45; 50) nên nhóm này chứa Q1. Do đó, p = 2, a2 = 45, m2 = 10, m1 = 7; a3 – a2 = 5.

      Ta có \({Q_1} = {a_2} + \frac{{\frac{n}{4} - {m_1}}}{{{m_2}}}({a_3} - {a_2}) = 45 + \frac{{\frac{{45}}{2} - 7}}{{10}}.5 \approx 47,1\)

      - Tứ phân vị thứ ba Q3 là trung vị của nửa dãy bên phải Q2 nên \({Q_3} = \frac{{{x_{34}} + {x_{35}}}}{2}\).

      Do x34 và x35 đều thuộc nhóm [50; 55) nên nhóm này chứa Q3. Do đó, p = 3, a3 = 50, m3 = 20, m1 + m2 = 7 + 10 = 17; a4 – a3 = 55 – 50 = 5.

      Ta có \({Q_3} = {a_3} + \frac{{\frac{{3n}}{4} - ({m_1} + {m_2})}}{{{m_3}}}({a_4} - {a_3}) = 50 + \frac{{\frac{{3.45}}{4} - 17}}{{20}}.5 \approx 54,2\) .

      Vậy tứ phân vị: Q1 ≈ 47,1; Q2 ≈ 51,4; Q3 ≈ 54,2.

      - Ta thấy tần số lớn nhất là 20 nên nhóm chứa mốt là nhóm [50; 55).

      Ta có j = 3, a3 = 50, m3 = 20, m2 = 10, m4 = 6, h = 55 – 50 = 5

      Khi đó

      \({M_0} = {a_3} + \frac{{{m_3} - {m_2}}}{{\left( {{m_3} - {m_2}} \right) + \left( {{m_3} - {m_4}} \right)}}h = 50 + \frac{{20 - 10}}{{(20 - 10) + (20 - 6)}}.5 \approx 52,1\)

      Vậy Mo ≈ 52,1.

      Câu 3 :

      Cho hình chóp S.ABC có SA ⊥ (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.

      a) \(d((MNP),(ABC)) = h\)

      Đúng
      Sai

      b) \(d(NP,(ABC)) = \frac{h}{2}\)

      Đúng
      Sai

      c) \(d(A,(SBC)) = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)

      Đúng
      Sai

      d) \((MNP)//(ABC)\)

      Đúng
      Sai
      Đáp án

      a) \(d((MNP),(ABC)) = h\)

      Đúng
      Sai

      b) \(d(NP,(ABC)) = \frac{h}{2}\)

      Đúng
      Sai

      c) \(d(A,(SBC)) = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)

      Đúng
      Sai

      d) \((MNP)//(ABC)\)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng phương pháp tính khoảng cách từ điểm đến mặt phẳng và khoảng cách từ đường thẳng đến mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 9

      a) Xét tam giác SAB có M là trung điểm của SA, N là trung điểm của SB nên MN là đường trung bình của tam giác SAB. Suy ra \(MN//AB\),do đó \(MN//(ABC)\)

      Xét tam giác SBC có N là trung điểm của SB, P là trung điểm của SC nên PN là đường trung bình của tam giác SBC. Suy ra \(PN//BC\),do đó \(PN//(ABC)\)

      Khi đó, \(d((MNP),(ABC)) = d(M,(ABC))\)

      Vì \(SA \bot (ABC)\) nên \(MA \bot (ABC)\). Do đó \(d(M,(ABC)) = MA\)

      Vì M là trung điểm SA nên \(AM = \frac{{SA}}{2} = \frac{h}{2}\)

      Do đó \(d((MNP),(ABC)) = \frac{h}{2}\)

      b) Vì \(PN//(ABC)\) nên \(d(NP,(ABC)) = d(N,(ABC))\)

      Vì \(MN//(ABC)\) nên \(d(N,(ABC)) = d(M,(ABC)) = MA = \frac{h}{2}\)

      Vậy \(d(N,(ABC)) = \frac{h}{2}\)

      c) Vì tam giác ABC là tam giác vuông tại B nên \(BC \bot AB\)

      Vì \(SA \bot (ABC)\) nên \(SA \bot BC\)mà \(BC \bot AB\) nên \(BC \bot (SAB)\), suy ra \((SBC) \bot (SAB)\)

      Kẻ \(AH \bot SB\) tại H

      Vì \(\left\{ \begin{array}{l}(SBC) \bot (SAB)\\(SBC) \cap (SAB) = SB\\AH \subset (SAB)\\AH \bot SB\end{array} \right. \Rightarrow AH \bot (SBC)\)

      Khi đó \(d(A,(SBC)) = AH\)\(\)

      Vì \(SA \bot (SBC)\) nên \(SA \bot AB\)

      Xét tam giác SAB vuông tại A, AH là đường cao, có:

      \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{{h^2}}} + \frac{1}{{{a^2}}} = \frac{{{a^2} + {h^2}}}{{{a^2}{h^2}}} \Rightarrow AH = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)

      Vậy \(d(A,(SBC)) = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)

      d)\(MN//(ABC)\) mà \(MN \subset (MNP) \Rightarrow (MNP)//(ABC)\)

      Câu 4 :

      Cho hàm số \(y = \sin x\)

      a) Đạo hàm của hàm số là \(y' = - cosx\)

      Đúng
      Sai

      b) Biểu thức \(y'(\frac{\pi }{2}) = 0\)

      Đúng
      Sai

      c) Biểu thức \(y''(\frac{\pi }{2}) = 0\)

      Đúng
      Sai

      d) Biểu thức \({y^{(2024)}} = \sin (x + 1012\pi )\)

      Đúng
      Sai
      Đáp án

      a) Đạo hàm của hàm số là \(y' = - cosx\)

      Đúng
      Sai

      b) Biểu thức \(y'(\frac{\pi }{2}) = 0\)

      Đúng
      Sai

      c) Biểu thức \(y''(\frac{\pi }{2}) = 0\)

      Đúng
      Sai

      d) Biểu thức \({y^{(2024)}} = \sin (x + 1012\pi )\)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm số lượng giác

      Lời giải chi tiết :

      a) \(y' = (\sin x)' = cosx\)

      b) \(y'(\frac{\pi }{2}) = \cos \frac{\pi }{2} = 0\)

      c) \(\begin{array}{l}y'' = \left( {cosx} \right)' = - \sin x\\y''\left( {\frac{\pi }{2}} \right) = - 1\end{array}\)

      d) \(\begin{array}{l}{y^{(n)}} = \sin (x + n\frac{\pi }{2})\\{y^{(2024)}} = \sin (x + 1012\pi )\end{array}\)

      Phần III. Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6
      Câu 1 :

      Tính giới hạn: \(\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {4x + 1} - 3}}{{x - 2}}\).

      Phương pháp giải :

      Sử dụng phương pháp nhân liên hợp và phân tích thành nhân tử.

      Lời giải chi tiết :

      \(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {4x + 1} - 3}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {\sqrt {4x + 1} - 3} \right)\left( {\sqrt {4x + 1} + 3} \right)}}{{\left( {x - 2} \right)\left( {\sqrt {4x + 1} + 3} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{(4x + 1) - 9}}{{\left( {x - 2} \right)\left( {\sqrt {4x + 1} + 3} \right)}}\)

      \( = \mathop {\lim }\limits_{x \to 2} \frac{{4x - 8}}{{\left( {x - 2} \right)\left( {\sqrt {4x + 1} + 3} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{4(x - 2)}}{{\left( {x - 2} \right)\left( {\sqrt {4x + 1} + 3} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{4}{{\sqrt {4x + 1} + 3}} = \frac{4}{{\sqrt {4.2 + 1} + 3}} = \frac{2}{3}\).

      Câu 2 :

      Cho hàm số: \(y = {\left( {{x^4} - 1} \right)^4}\). Tính \(y'(1)\)

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \(\begin{array}{l}y' = \left[ {{{\left( {{x^4} - 1} \right)}^4}} \right]' = 4.{\left( {{x^4} - 1} \right)^3}.4{x^3} = 16{x^3}{\left( {{x^4} - 1} \right)^3}\\y'(1) = 0\end{array}\)

      Câu 3 :

      Tìm m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{x - 1}}\,\,\,\;khi\,\,x \ne 1\\1 - mx\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\)liên tục tại điểm\({x_0} = 1\)

      Phương pháp giải :

      Bước 1:Tính \(f({x_0}) = {f_2}({x_0})\)

      Bước 2: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = \mathop {\lim }\limits_{x \to {x_0}} {f_1}(x) = L\)

      Bước 3: Nếu \({f_2}({x_0}) = L\) thì hàm số f(x) liên tục tại \({x_0}\)

       Nếu \({f_2}({x_0}) \ne L\)thì hàm số f(x) không liên tục tại \({x_0}\).

      (Đối với bài toán tìm tham số m để hàm số liên tục tại x0, ta thay bước 3 thành: Giải phương trình L = f2(x0), tìm m)

      Lời giải chi tiết :

      Hàm số đã cho xác định trên R

      Ta có: \(f(1) = 1 - m\)

      \(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)(x - 2)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x - 2) = - 1\)

      Để hàm số liên tục tại x = 1 khi \(f(1) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{x - 1}} \Leftrightarrow 1 - m = - 1 \Leftrightarrow m = 2\)

      Câu 4 :

      Cho hình chóp S.ABCD đáy là hình vuông cạnh a , cạnh bên SA \( \bot \)(ABCD) và

      SA = a\(\sqrt 2 \). Tính tan của góc giữa hai mp (SBC) và (ABCD).

      Phương pháp giải :

      Sử dụng phương pháp tính góc giữa hai mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 1 10

      \(\begin{array}{l}\left\{ \begin{array}{l}BC \bot AB\,\\BC \bot SA\,\,(Do\,\,SA \bot (ABCD))\\AB,SA \subset (SAB)\\AB \cap SA\end{array} \right. \Rightarrow BC \bot (SAB)\\ \Rightarrow BC \bot SB\end{array}\)\(SA \bot (ABCD) \Rightarrow SA \bot AB\)

      Ta có: \(\left\{ \begin{array}{l}(SBC) \cap (ABCD) = BC\\SB \subset (SBC),SB \bot BC\\AB \subset (ABCD),AB \bot BC\end{array} \right. \Rightarrow \left( {(SBC),(ABCD)} \right) = (SB,AB)\)

      Do \(SA \bot (ABCD) \Rightarrow SA \bot AB\). Xét tam giác SAB vuông tại A có:

      \(\tan (SB,AB) = \tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 2 }}{a} = \sqrt 2 \)

      Câu 5 :

      Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\). Tìm tọa độ điểm M thuộc đồ thị sao cho khoảng cách từ điểm \(I( - 1;2)\)tới tiếp tuyến của đồ thị tại M là lớn nhất.

      Phương pháp giải :

      Lập biểu thức tính khoảng cách từ điểm \(I( - 1;2)\) tới tiếp tuyển của đồ thị

      Sử dụng BĐT Cauchy để tìm giá trị lớn nhất của biểu thức

      Lời giải chi tiết :

      Giả sử \(M({x_0};2 - \frac{3}{{{x_0} + 1}}) \in (C)\). PTTT của (C) tại M là:

      \(y = \frac{3}{{{{({x_0} + 1)}^2}}}(x - {x_0}) + 2 - \frac{3}{{{x_0} + 1}}\,\,\,(\Delta )\)

      Hay \(\begin{array}{l}(\Delta ):\,\,\,\frac{3}{{{{({x_0} + 1)}^2}}}x - y + \left[ {\frac{{3{x_0}}}{{{{({x_0} + 1)}^2}}} + 2 - \frac{3}{{{x_0} + 1}}} \right] = 0\,\,\,\\(\Delta ):\,\frac{3}{{{{({x_0} + 1)}^2}}}x - y + 2 - \frac{3}{{{{({x_0} + 1)}^2}}} = 0\\d(I,\Delta ) = \frac{{|\frac{3}{{{{({x_0} + 1)}^2}}}{x_0} - (2 - \frac{3}{{{x_0} + 1}}) + 2 - \frac{3}{{{{({x_0} + 1)}^2}}}|}}{{\sqrt {\frac{9}{{{{({x_0} + 1)}^4}}} + 1} }} = \frac{{6|{x_0} + 1|}}{{\sqrt {9 + {{({x_0} + 1)}^4}} }} = \frac{6}{{\sqrt {\frac{9}{{{{({x_0} + 1)}^2}}} + {{({x_0} + 1)}^2}} }}\end{array}\)

      Áp dụng BĐT Cauchy: \(\frac{9}{{{{({x_0} + 1)}^2}}} + {({x_0} + 1)^2} \ge 2\sqrt 9 = 6 \Rightarrow d \le \sqrt 6 \)

      Dấu “=” xảy ra khi \(\frac{9}{{{{({x_0} + 1)}^2}}} = {({x_0} + 1)^2} \Leftrightarrow {x_0} = - 1 \pm \sqrt 3 \)

      Vậy có hai điểm cần tìm là \(M( - 1 + \sqrt 3 ;2 - \sqrt 3 )\) hoặc \(M( - 1 - \sqrt 3 ;2 + \sqrt 3 )\)

      Câu 6 :

      Với mức tiêu thụ thức ăn cho cá hàng ngày của hộ gia đình A không đổi như dự định thì lượng thức ăn dự trữ sẽ hết sau 50 ngày. Nhưng trên thực tế, mức tiêu thụ thức ăn tăng thêm 3% từ ngày đầu tiên và cứ tiếp tục như vậy, ngày sau tăng thêm 3% so với ngày kề trước đó. Hỏi thực tế, lượng thức ăn dự trữ đó sẽ hết sau bao nhiêu ngày? (làm tròn đến hàng đơn vị).

      Phương pháp giải :

      Lượng thức ăn mà trang trại ăn hết ở ngày thứ k là: \(M{(1 + r\% )^{k - 1}},k \in N*\)

      Trong đó:

       M: là lượng thứ ăn trang trại ăn hết trong mỗi ngày

      r (%): là % mức tiêu thụ thức ăn tăng thêm mỗi ngày

      Lời giải chi tiết :

      Theo dự định, mỗi ngày, trang trại ăn hết: \(1:50 = \frac{1}{{50}}\)(lượng thức ăn)

      Lượng thức ăn mà trang trại ăn hết ở ngày thứ k là: \(\frac{1}{{50}}{(1 + 3\% )^{k - 1}},k \in N*\)

      Xác định số tự nhiên n nhỏ nhât để:

      \(\begin{array}{l}\frac{1}{{50}} + \frac{1}{{50}}(1 + 3\% ) + \frac{1}{{50}}{(1 + 3\% )^2} + ... + \frac{1}{{50}}{(1 + 3\% )^{n - 1}} \ge 1\\ \Leftrightarrow \frac{1}{{50}}(1 + 1,03 + 1,{03^2} + ... + 1,{03^{n - 1}}) \ge 1\\ \Leftrightarrow \frac{1}{{50}}.\frac{{1,{{03}^{n - 1}} - 1}}{{1,03 - 1}} \ge 1 \Leftrightarrow 1,{03^{n - 1}} - 1 \ge 1,5 \Leftrightarrow 1,{03^{n - 1}} \ge 2,5 \Leftrightarrow n - 1 \ge {\log _{1,03}}2,5 \Leftrightarrow n \ge 31,99 \Rightarrow {n_{Min}} = 32\end{array}\)

      Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2: Phân tích chi tiết và hướng dẫn giải

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 là một bài kiểm tra quan trọng đánh giá kiến thức và kỹ năng của học sinh sau một học kỳ học tập. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như hàm số, đạo hàm, tích phân, hình học không gian và hình học giải tích.

      Cấu trúc đề thi

      Đề thi thường được chia thành các phần sau:

      1. Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng nhanh các công thức, định lý.
      2. Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải, chứng minh các bài toán.

      Nội dung đề thi

      Các chủ đề thường xuất hiện trong đề thi:

      • Hàm số: Xét tính đơn điệu, cực trị, giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
      • Đạo hàm: Tính đạo hàm, ứng dụng đạo hàm để giải các bài toán về cực trị, tối ưu.
      • Tích phân: Tính tích phân, ứng dụng tích phân để tính diện tích, thể tích.
      • Hình học không gian: Tính khoảng cách, góc giữa đường thẳng và mặt phẳng, thể tích khối đa diện.
      • Hình học giải tích: Phương trình đường thẳng, phương trình đường tròn, phương trình elip, hypebol, parabol.

      Hướng dẫn giải một số bài toán tiêu biểu

      Bài 1: Tìm đạo hàm của hàm số y = x3 - 2x2 + 5x - 1.

      Giải:

      y' = 3x2 - 4x + 5

      Bài 2: Tính tích phân ∫01 x2 dx.

      Giải:

      01 x2 dx = [x3/3]01 = 1/3

      Mẹo làm bài thi hiệu quả

      • Đọc kỹ đề bài, xác định đúng yêu cầu của câu hỏi.
      • Sử dụng các công thức, định lý một cách chính xác.
      • Trình bày lời giải rõ ràng, mạch lạc.
      • Kiểm tra lại kết quả trước khi nộp bài.

      Tầm quan trọng của việc luyện tập

      Luyện tập thường xuyên với các đề thi khác nhau là cách tốt nhất để nâng cao kiến thức và kỹ năng giải toán. Việc này giúp học sinh làm quen với các dạng bài tập khác nhau, rèn luyện tư duy logic và khả năng giải quyết vấn đề. Giaitoan.edu.vn cung cấp nhiều đề thi học kì 2 Toán 11 Cánh diều khác nhau, cùng với đáp án chi tiết và hướng dẫn giải, giúp học sinh ôn tập hiệu quả và đạt kết quả tốt nhất trong kỳ thi.

      Phân tích đáp án chi tiết

      Sau khi hoàn thành đề thi, việc phân tích đáp án chi tiết là vô cùng quan trọng. Nó giúp học sinh hiểu rõ hơn về cách giải các bài toán, xác định những lỗi sai và rút ra kinh nghiệm cho những lần thi sau. Giaitoan.edu.vn cung cấp đáp án chi tiết cho từng câu hỏi, kèm theo lời giải thích rõ ràng, giúp học sinh tự học và cải thiện kết quả.

      Ứng dụng công nghệ vào việc học toán

      Hiện nay, có rất nhiều ứng dụng và công cụ hỗ trợ học toán online, giúp học sinh học tập hiệu quả hơn. Các ứng dụng này cung cấp các bài giảng, bài tập, đề thi và đáp án chi tiết, giúp học sinh tự học và ôn tập mọi lúc mọi nơi. Giaitoan.edu.vn cũng là một nền tảng học toán online uy tín, cung cấp nhiều tài liệu và công cụ hữu ích cho học sinh.

      Kết luận

      Đề thi học kì 2 Toán 11 Cánh diều - Đề số 2 là một công cụ hữu ích giúp học sinh ôn tập và chuẩn bị cho kỳ thi. Việc luyện tập thường xuyên, phân tích đáp án chi tiết và ứng dụng công nghệ vào việc học tập sẽ giúp học sinh đạt kết quả tốt nhất. Chúc các em học sinh thành công!

      Tài liệu, đề thi và đáp án Toán 11