Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5

Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5

Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5

Chào mừng các em học sinh đến với đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 của giaitoan.edu.vn. Đề thi này được biên soạn dựa trên chương trình học Toán 10 Kết nối tri thức, giúp các em làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Đề thi bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, bao phủ các chủ đề quan trọng trong chương trình học.

Câu 1. Cho mệnh đề chứa biến chia hết cho 5”. Mệnh đề nào sau đây sai? A. (P(2)) B. (P(4)). C. (P(3)). D. (P(7))

Lời giải chi tiết

    I. PHẦN TRẮC NGHIỆM

    1. B

    2. C

    3. D

    4. A

    5. C

    6. B

    7. A

    8. D

    9. B

    10. B

    11. B

    12. C

    13. B

    14. B

    15. A

    Câu 1.

    Cách giải:

    Ta có: \(P(2) = 5,P(4) = 17,P(3) = 10,P(7) = 50\)

    Chọn B

    Câu 2.

    Cách giải:

    Thay \(x = 1,y = - 1\) vào từng bất phương trình, ta được:

     \(1 + ( - 1) - 3 = 3 < 0\) => Lọai A

    \( - 1 - ( - 1) = 0\) => Loại B

    \(1 + 3.( - 1) + 1 = - 1 < 0\) => Chọn C

    \( - 1 - 3.( - 1) - 1 = 1 > 0\) => Loại D

    Chọn C

    Câu 3.

    Cách giải:

    Viết lại mệnh đề đã cho: P: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”

    Suy ra \(\overline P :\) “\(\forall x \in \mathbb{R},{x^2} > 0\)”

    Chọn D

    Câu 4.

    Cách giải:

    Ta có: \(b = AC = 3\sqrt 3 ,c = AB = 3,a = BC = 6\)

    \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{6^2} + {3^2} - {{\left( {3\sqrt 3 } \right)}^2}}}{{2.6.3}} = \frac{1}{2}\)

    \( \Rightarrow B = {60^ \circ }\)

    Chọn A

    Câu 5.

    Cách giải:

    Ta có: \(\cos {30^o} + \sin {60^o} = \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2} = \sqrt 3 \)

    Chọn C

    Câu 6.

    Cách giải:

    Ta có: \(X \cup Y = \{ 1;3;5;7;8;9\} \)

    Chọn B

    Câu 7.

    Cách giải:

    Ta có: \({C_\mathbb{R}}A = [ - 3;11) \Rightarrow A = ( - \infty ; - 3) \cup [11; + \infty )\)

    \({C_\mathbb{R}}B = ( - 8;1] \Rightarrow B = ( - \infty ; - 8] \cup (1; + \infty )\)

    \(\begin{array}{l} \Rightarrow A \cap B = ( - \infty ; - 8] \cup [11; + \infty )\\ \Rightarrow {C_\mathbb{R}}\left( {A \cap B} \right) = ( - 8;11)\end{array}\)

    Chọn A

    Câu 8.

    Cách giải:

    Phủ định của mệnh đề đó là: “Mọi học sinh trong lớp 10A đều thích học môn Toán”.

    Chọn D

    Câu 9.

    Cách giải:

    Ta có

     \(\begin{array}{l}A = \tan {5^o}.\tan {10^o}.\tan {15^o}...\tan {80^o}.\tan {85^o}\\ = \left( {\tan {5^o}.\tan {{85}^o}} \right).\left( {\tan {{10}^o}.\tan {{80}^o}} \right)...\left( {\tan {{40}^o}.\tan {{50}^o}} \right).\tan {45^o}\\ = \left( {\tan {5^o}.\cot {5^o}} \right).\left( {\tan {{10}^o}.\cot {{10}^o}} \right)...\left( {\tan {{40}^o}.\cot {{40}^o}} \right).\tan {45^o}\\ = \tan {45^o} = 1\end{array}\)

    Chọn B

    Câu 10.

    Cách giải:

    Theo định lí sin, ta có \(\frac{a}{{\sin A}} = 2R\)

    Chọn B

    Câu 11.

    Cách giải:

    + Xác định đường thẳng là bở của miền nghiệm:

    Đường thẳng d đi qua \(A(\frac{3}{2};0)\) và \(B(0; - 3)\) \( \Rightarrow d:2x - y = 3\)

    + Điểm O(0;0) thuộc miền nghiệm và \(2.0 - 0 = 0 < 3\)

    Do đó BPT cần tìm là \(2x - y < 3\)

    Chọn B

    Câu 12.

    Cách giải:

    \(M = \{ x \in \mathbb{N}|x\) là bội của \(2\} = \{ 0;2;4;6;8;...\} \)

    \(N = \{ x \in \mathbb{N}|x\) là bội của \(6\} = \{ 0;6;12;18;24;...\} \)

    \(P = \{ x \in \mathbb{N}|x\) là ước của \(2\} = \{ 1;2\} \)

    \(Q = \{ x \in \mathbb{N}|x\) là ước của \(6\} = \{ 1;2;3;6\} \)

    Ta có: \(N \subset M\) và \(P \subset Q\)

    Do đó: \(M \cap N = N\) và \(P \cap Q = P\)

    Chọn C

    Câu 13.

    Cách giải:

    Thay \(x = 2,y = 3\) vào từng bất phương trình, ta được:

    \(2.2 - 3.3 - 1 = - 6 < 0 \Rightarrow A(2;3)\) là nghiệm của BPT \(2x - 3y - 1 < 0\)

    \(2 - 3 = - 1 < 0 \Rightarrow A(2;3)\) không là nghiệm của BPT \(x - y > 0\)

    \(4.2 - 3.3 = - 1 < 0 \Rightarrow A(2;3)\) là nghiệm của BPT \(4x - 3y < 0\)

    \(2 + 3.3 - 7 = 4 \ge 0 \Rightarrow A(2;3)\) là nghiệm của BPT \(x + 3y - 7 \ge 0\)

    Chọn B

    Câu 14.

    Phương pháp

    Định lí “Nếu P thì Q” còn được phát biểu là:

    “P là điều kiện đủ để có Q”

    “Q là điều kiện cần để có P”

    Cách giải:

    Cách phát biểu khác là: “Một tam giác có hai góc bằng nhau là điều kiện đủ để tam giác đó là tam giác cân”

    Chọn B

    Câu 15. Cho \(A = (2; + \infty )\) và \(B = (m; + \infty )\). Điều kiện cần và đủ của m để \(B \subset A\) là

    A.\(m \ge 2\). B. \(m \le 2\). C.\(m = 2\). D. \(m > 2\).

    Cách giải:

    \(B \subset A \Leftrightarrow (m; + \infty ) \subset (2; + \infty ) \Leftrightarrow m \ge 2\)

    Chọn A

    II. PHẦN TỰ LUẬN

    Câu 1:

    Phương pháp:

    a) \(A \cap B = \{ x \in A|x \in B\} \)

    b) \(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)

    c) \(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)

    Cách giải:

    a) Ta có: \((2x + 1)({x^2} - 9) = 0 \Leftrightarrow (2x + 1)(x - 3)(x + 3) = 0\)

    \( \Leftrightarrow \left[ \begin{array}{l}2x + 1 = 0\\x - 3 = 0\\x + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = 3\\x = - 3\end{array} \right.\)

    Mà \( - \frac{1}{2} \notin \mathbb{Z}\)\( \Rightarrow A = \{ - 3;3\} \)

    \(B = \{ x \in \mathbb{N}|x < 4\} = \{ 0;1;2;3\} \)

    Do đó \(A \cap B = \{ 3\} ,A \cup B = \{ - 3;0;1;2;3\} ,A{\rm{\backslash }}B = \{ - 3\} \)

    b) \(M = (0;3)\) và. Để \(M \cap N = N \Leftrightarrow N \subset M\)

    \(\begin{array}{l} \Leftrightarrow [m;m + 1) \subset (0;3)\\ \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m + 1 \le 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m \le 2\end{array} \right. \Leftrightarrow 0 < m \le 2\end{array}\)

    Mà \(m \in \mathbb{Z}\) nên \(m = 1\) hoặc \(m = 2\).

    Vậy \(m = 1\) hoặc \(m = 2\) thì \(M \cap N = N.\)

    Câu 2:

    Cách giải:

    Gọi x là số xe loại A, y là số xe loại B mà công ty cần thuê (đơn vị: chiếc). \((x,y \in \mathbb{N})\)

    Theo đề bài ta có: \(0 \le x \le 10\) và \(0 \le y \le 9\)

    Tổng chi phí thuê xe là \(F(x;y) = 4x + 3y\) (triệu đồng)

    Số người cần chở là 140 mà mỗi xe A chở tối đa 20 người, mỗi xe B chở tối đa 10 người nên ta có \(20x + 10y \ge 140\) hay \(2x + y \ge 14\)

    Số hàng cần chở là 9 tấn mà mỗi xe A chở được 0,6 tấn, mỗi xe B chở được 1,5 tấn nên ta có \(0,6x + 1,5y \ge 9\) hay \(2x + 5y \ge 30\)

    Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\2x + y \ge 14\\2x + 5y \ge 30\end{array} \right.\)

    Biểu diễn miền nghiệm trên hệ trục Oxy, ta được:

    Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 1 1

    Miền nghiệm là miền tứ giác ABCD (kể cả các cạnh) , trong đó \(A(\frac{5}{2};9),B(10;9),C(10;2),D(5;4)\)

    Lần lượt thay tọa độ các điểm A, B, C, D vào biểu thức \(F(x;y) = 4x + 3y\) ta được:

    \(\begin{array}{l}F(\frac{5}{2};9) = 4.\frac{5}{2} + 3.9 = 37\\F(10;9) = 4.10 + 3.9 = 67\\F(10;2) = 4.10 + 3.2 = 46\\F(5;4) = 4.5 + 3.4 = 32\end{array}\)

    Do đó F đạt giá trị nhỏ nhất bằng 32 tại \(x = 5;y = 4\)

    Vậy công ty đó cần thuê 5 xe loại A và 4 xe loại B.

    Câu 3:

    Phương pháp:

    Áp dụng định lí sin: \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

    Cách giải:

    Từ hình vẽ, ta suy ra tam giác ABC có:

    \(\begin{array}{l}\widehat {BAC} = {90^ \circ } - {30^ \circ } = {60^ \circ }\\\widehat {ABC} = {90^ \circ } + {15^ \circ }30' = {105^ \circ }30'\\AB = 70\end{array}\)

    Vì \(A + B + C = {180^ \circ }\) nên \(C = {180^ \circ } - (A + B) = {180^ \circ } - \left( {{{60}^ \circ } + {{105}^ \circ }30'} \right) = {14^ \circ }30'\)

    Áp dụn định lí sin trong tam giác ABC ta có:

    \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {105^ \circ }30'.\frac{{70}}{{\sin {{14}^ \circ }30'}} \approx 269,4\) (m)

    Gọi CH là chiều cao ngọn núi

    Tam giác ACH vuông tại H, \(\widehat {CAH} = {30^ \circ }\)

    \( \Rightarrow CH = AC.\sin A = 269,4.\sin {30^ \circ } = 134,7\)(m)

    Vậy ngọn núi cao khoảng 135m.

    Câu 4:

    Cách giải:

    Đặt \(2u = \sin (a + b) = 2\cos (a - b)\)

    Dễ thấy \(u \ne \pm 1\) do \(\left| {2u} \right| = \left| {\sin (a + b)} \right| \le 1\).

    Ta có:

     \(\begin{array}{l}M = \frac{1}{{2 - \sin 2a}} + \frac{1}{{2 - \sin 2b}} = \frac{{2 - \sin 2b + 2 - \sin 2a}}{{\left( {2 - \sin 2a} \right)\left( {2 - \sin 2b} \right)}}\\ = \frac{{4 - \left( {\sin 2a + \sin 2b} \right)}}{{4 - 2\sin 2a - 2\sin 2b + \sin 2a.\sin 2b}}\\ = \frac{{4 - \left( {\sin 2a + \sin 2b} \right)}}{{4 - 2(\sin 2a + \sin 2b) + \sin 2a.\sin 2b}}\end{array}\)

    Mà:

    \(\sin 2a + \sin 2b = 2\sin \frac{{2a + 2b}}{2}\cos \frac{{2a - 2b}}{2}\)\( = 2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = 2.2u.u = 4{u^2}\);

    \(\begin{array}{l}\sin 2a.\sin 2b = - \frac{1}{2}\left[ {\cos \left( {2a + 2b} \right) - \cos \left( {2a - 2b} \right)} \right]\\ = - \frac{1}{2}\left[ {1 - 2{{\sin }^2}(a + b) - 2{{\cos }^2}(a - b) + 1} \right]\\ = {\cos ^2}(a + b) + {\sin ^2}(a - b) - 1\\ = {u^2} + {(2u)^2} - 1 = 5{u^2} - 1\end{array}\)

    \( \Rightarrow M = \frac{{4 - 4{u^2}}}{{4 - 2.4{u^2} + 5{u^2} - 1}} = \frac{{4 - 4{u^2}}}{{3 - 3{u^2}}} = \frac{4}{3}\)

     Vậy \(M = \frac{4}{3}\) không phụ thuộc vào a,b.

    Đề bài

      I. PHẦN TRẮC NGHIỆM

      Câu 1. Cho mệnh đề chứa biến chia hết cho 5”. Mệnh đề nào sau đây sai?

      A. \(P(2)\) B. \(P(4)\). C. \(P(3)\). D. \(P(7)\)

      Câu 2. Cặp số \((1; - 1)\) là nghiệm của bất phương trình nào sau đây?

      A. \(x + y - 3 > 0\) B. \( - x - y < 0\). C. \(x + 3y + 1 < 0\). D. \( - x - 3y - 1 < 0\)

      Câu 3. Mệnh đề phủ định của mệnh đề “Có một số thực sao cho bình phương của nó không là số nguyên dương”

      A. \(\exists x \in \mathbb{R},{x^2} > 0\) B. \(\exists x \in \mathbb{R},{x^2} \le 0\). C. \(\forall x \in \mathbb{R},{x^2} \le 0\). D. \(\forall x \in \mathbb{R},{x^2} > 0\)

      Câu 4. Cho tam giác ABC có \(AC = 3\sqrt 3 ,AB = 3,BC = 6\). Tính số đo góc B?

      A. \({60^o}\) B. \({45^o}\). C. \({30^o}\). D. \({120^o}\)

      Câu 5. Giá trị của \(\cos {30^o} + \sin {60^o}\) bằng?

      A. \(\frac{{\sqrt 3 }}{3}\) B. \(\frac{{\sqrt 3 }}{2}\). C. \(\sqrt 3 \). D. \(1\)

      Câu 6. Cho hai tập hợp \(X = \{ 1;3;5;8\} ,Y = \{ 3;5;7;9\} \). Tập hợp \(X \cup Y\) bằng tập hợp nào sau đây?

      A. \(\{ 3;5\} \) B. \(\{ 1;3;5;7;8;9\} \). C. \(\{ 1;7;9\} \). D. \(\{ 1;3;5\} \)

      Câu 7. Biết rằng \({C_\mathbb{R}}A = [ - 3;11)\) và \({C_\mathbb{R}}B = ( - 8;1]\). Khi đó, \({C_\mathbb{R}}\left( {A \cap B} \right)\) bằng?

      A. \(( - 8;11)\) B. \([3;1]\). C. \(( - \infty ; - 8] \cup [11; + \infty )\). D. \(( - \infty ; - 3) \cup (1; + \infty )\)

      Câu 8. Cho mệnh đề: “Có học sinh trong lớp 10A không thích học môn Toán”. Mệnh đề phủ định của mệnh đề này là:

      A. Mọi học sinh trong lớp 10A đều thích học môn Văn.

      B. Mọi học sinh trong lớp 10A đều không thích học môn Toán.

      C. Có học sinh trong lớp 10A thích học môn Toán.

      D. Mọi học sinh trong lớp 10A đều thích học môn Toán.

      Câu 9. Giá trị của \(A = \tan {5^o}.\tan {10^o}.\tan {15^o}...\tan {80^o}.\tan {85^o}\)

      A.\(2\). B. \(1\). C.\(0\). D.\( - 1\).

      Câu 10. Cho tam giác ABC có bán kính đường tròn ngoại tiếp là R. Đẳng thức nào sau đây là đúng?

      A.\(\frac{a}{{\sin A}} = R\). B. \(\frac{a}{{\sin A}} = 2R\). C. \(\frac{a}{{\sin A}} = 3R\). D. \(\frac{a}{{\sin A}} = 4R\).

      Câu 11. Trong mặt phẳng Oxy, phần nửa mặt phẳng không tô màu (không kể bờ) trong hình dưới đây biểu diễn tập nghiệm của bất phương trình nào?

      Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 0 1

      A.\(2x - y > 3\). B. \(2x - y < 3\). C. \(x - 2y > 3\). D. \(x - 2y < 3\).

      Câu 12. Cho \(M = \{ x \in \mathbb{N}|x\) là bội của \(2\} \), \(N = \{ x \in \mathbb{N}|x\) là bội của \(6\} \), \(P = \{ x \in \mathbb{N}|x\) là ước của \(2\} \), \(Q = \{ x \in \mathbb{N}|x\) là ước của \(6\} \). Khẳng định nào dưới đây đúng?

      A.\(M \subset N\). B. \(Q \subset P\). C.\(M \cap N = N\). D. \(P \cap Q = Q\).

      Câu 13. Cặp số \((2;3)\) không là nghiệm của bất phươn trình nào sau đây?

      A.\(2x - 3y - 1 < 0\). B. \(x - y > 0\). C.\(4x - 3y < 0\). D. \(x + 3y - 7 \ge 0\).

      Câu 14. Cách phát biểu khác của định lý “Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân”?

      A. Một tam giác có hai góc bằng nhau là điều kiện cần để tam giác đó là tam giác cân.

      B. Một tam giác có hai góc bằng nhau là điều kiện đủ để tam giác đó là tam giác cân.

      C. Một tam giác có hai góc bằng nhau khi và chỉ khi tam giác đó là tam giác đều.

      D. Nếu một tam giác là tam giác cân thì tam giác đó có hai góc bằng nhau.

      Câu 15. Cho \(A = (2; + \infty )\) và \(B = (m; + \infty )\). Điều kiện cần và đủ của m để \(B \subset A\) là

      A.\(m \ge 2\). B. \(m \le 2\). C.\(m = 2\). D. \(m > 2\).

      II. PHẦN TỰ LUẬN

      Câu 1.

      a) Cho hai tập hợp \(A = \{ x \in \mathbb{Z}|(2x + 1)({x^2} - 9) = 0\} \) và \(B = \{ x \in \mathbb{N}|x < 4\} \). Xác định các tập hợp \(A \cap B,A \cup B,A{\rm{\backslash }}B\)

      b) Cho hai tập hợp \(M = (0;3)\) và \(N = [m;m + 1)\). Tìm \(m \in \mathbb{Z}\) để \(M \cap N = N\)

      Câu 2. Trong một đợt quảng cáo và bán khuyến mãi sản phẩm mới, công ty X cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó xe loại A có 10 chiếc, mỗi chiếc chở được tối đa 20 người và 0,6 tấn hàng, giá thuê là 4 triệu; xe loại B có 9 chiếc, mỗi chiếc chở được tối đa 10 người và 1,5 tấn hàng, giá thuê là 3 triệu. Hỏi công ty cần thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất?

      Câu 3. Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi như hình dưới. Biết rằng AB = 70m, phương nhìn AC tạo với phương nằm ngang góc \({30^o}\), phương nhìn BC tạo với phương nằm ngang góc \({15^o}30'\). Tính chiều cao của ngọn núi (làm tròn đến hàng đơn vị).

      Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 0 2

      Câu 4. Cho \(\sin (a + b) = 2\cos (a - b)\). Chứng minh biểu thức \(M = \frac{1}{{2 - \sin 2a}} + \frac{1}{{2 - \sin 2b}}\) không phụ thuộc vào a,b.

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải chi tiết
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      I. PHẦN TRẮC NGHIỆM

      Câu 1. Cho mệnh đề chứa biến chia hết cho 5”. Mệnh đề nào sau đây sai?

      A. \(P(2)\) B. \(P(4)\). C. \(P(3)\). D. \(P(7)\)

      Câu 2. Cặp số \((1; - 1)\) là nghiệm của bất phương trình nào sau đây?

      A. \(x + y - 3 > 0\) B. \( - x - y < 0\). C. \(x + 3y + 1 < 0\). D. \( - x - 3y - 1 < 0\)

      Câu 3. Mệnh đề phủ định của mệnh đề “Có một số thực sao cho bình phương của nó không là số nguyên dương”

      A. \(\exists x \in \mathbb{R},{x^2} > 0\) B. \(\exists x \in \mathbb{R},{x^2} \le 0\). C. \(\forall x \in \mathbb{R},{x^2} \le 0\). D. \(\forall x \in \mathbb{R},{x^2} > 0\)

      Câu 4. Cho tam giác ABC có \(AC = 3\sqrt 3 ,AB = 3,BC = 6\). Tính số đo góc B?

      A. \({60^o}\) B. \({45^o}\). C. \({30^o}\). D. \({120^o}\)

      Câu 5. Giá trị của \(\cos {30^o} + \sin {60^o}\) bằng?

      A. \(\frac{{\sqrt 3 }}{3}\) B. \(\frac{{\sqrt 3 }}{2}\). C. \(\sqrt 3 \). D. \(1\)

      Câu 6. Cho hai tập hợp \(X = \{ 1;3;5;8\} ,Y = \{ 3;5;7;9\} \). Tập hợp \(X \cup Y\) bằng tập hợp nào sau đây?

      A. \(\{ 3;5\} \) B. \(\{ 1;3;5;7;8;9\} \). C. \(\{ 1;7;9\} \). D. \(\{ 1;3;5\} \)

      Câu 7. Biết rằng \({C_\mathbb{R}}A = [ - 3;11)\) và \({C_\mathbb{R}}B = ( - 8;1]\). Khi đó, \({C_\mathbb{R}}\left( {A \cap B} \right)\) bằng?

      A. \(( - 8;11)\) B. \([3;1]\). C. \(( - \infty ; - 8] \cup [11; + \infty )\). D. \(( - \infty ; - 3) \cup (1; + \infty )\)

      Câu 8. Cho mệnh đề: “Có học sinh trong lớp 10A không thích học môn Toán”. Mệnh đề phủ định của mệnh đề này là:

      A. Mọi học sinh trong lớp 10A đều thích học môn Văn.

      B. Mọi học sinh trong lớp 10A đều không thích học môn Toán.

      C. Có học sinh trong lớp 10A thích học môn Toán.

      D. Mọi học sinh trong lớp 10A đều thích học môn Toán.

      Câu 9. Giá trị của \(A = \tan {5^o}.\tan {10^o}.\tan {15^o}...\tan {80^o}.\tan {85^o}\)

      A.\(2\). B. \(1\). C.\(0\). D.\( - 1\).

      Câu 10. Cho tam giác ABC có bán kính đường tròn ngoại tiếp là R. Đẳng thức nào sau đây là đúng?

      A.\(\frac{a}{{\sin A}} = R\). B. \(\frac{a}{{\sin A}} = 2R\). C. \(\frac{a}{{\sin A}} = 3R\). D. \(\frac{a}{{\sin A}} = 4R\).

      Câu 11. Trong mặt phẳng Oxy, phần nửa mặt phẳng không tô màu (không kể bờ) trong hình dưới đây biểu diễn tập nghiệm của bất phương trình nào?

      Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 1

      A.\(2x - y > 3\). B. \(2x - y < 3\). C. \(x - 2y > 3\). D. \(x - 2y < 3\).

      Câu 12. Cho \(M = \{ x \in \mathbb{N}|x\) là bội của \(2\} \), \(N = \{ x \in \mathbb{N}|x\) là bội của \(6\} \), \(P = \{ x \in \mathbb{N}|x\) là ước của \(2\} \), \(Q = \{ x \in \mathbb{N}|x\) là ước của \(6\} \). Khẳng định nào dưới đây đúng?

      A.\(M \subset N\). B. \(Q \subset P\). C.\(M \cap N = N\). D. \(P \cap Q = Q\).

      Câu 13. Cặp số \((2;3)\) không là nghiệm của bất phươn trình nào sau đây?

      A.\(2x - 3y - 1 < 0\). B. \(x - y > 0\). C.\(4x - 3y < 0\). D. \(x + 3y - 7 \ge 0\).

      Câu 14. Cách phát biểu khác của định lý “Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân”?

      A. Một tam giác có hai góc bằng nhau là điều kiện cần để tam giác đó là tam giác cân.

      B. Một tam giác có hai góc bằng nhau là điều kiện đủ để tam giác đó là tam giác cân.

      C. Một tam giác có hai góc bằng nhau khi và chỉ khi tam giác đó là tam giác đều.

      D. Nếu một tam giác là tam giác cân thì tam giác đó có hai góc bằng nhau.

      Câu 15. Cho \(A = (2; + \infty )\) và \(B = (m; + \infty )\). Điều kiện cần và đủ của m để \(B \subset A\) là

      A.\(m \ge 2\). B. \(m \le 2\). C.\(m = 2\). D. \(m > 2\).

      II. PHẦN TỰ LUẬN

      Câu 1.

      a) Cho hai tập hợp \(A = \{ x \in \mathbb{Z}|(2x + 1)({x^2} - 9) = 0\} \) và \(B = \{ x \in \mathbb{N}|x < 4\} \). Xác định các tập hợp \(A \cap B,A \cup B,A{\rm{\backslash }}B\)

      b) Cho hai tập hợp \(M = (0;3)\) và \(N = [m;m + 1)\). Tìm \(m \in \mathbb{Z}\) để \(M \cap N = N\)

      Câu 2. Trong một đợt quảng cáo và bán khuyến mãi sản phẩm mới, công ty X cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó xe loại A có 10 chiếc, mỗi chiếc chở được tối đa 20 người và 0,6 tấn hàng, giá thuê là 4 triệu; xe loại B có 9 chiếc, mỗi chiếc chở được tối đa 10 người và 1,5 tấn hàng, giá thuê là 3 triệu. Hỏi công ty cần thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất?

      Câu 3. Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi như hình dưới. Biết rằng AB = 70m, phương nhìn AC tạo với phương nằm ngang góc \({30^o}\), phương nhìn BC tạo với phương nằm ngang góc \({15^o}30'\). Tính chiều cao của ngọn núi (làm tròn đến hàng đơn vị).

      Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 2

      Câu 4. Cho \(\sin (a + b) = 2\cos (a - b)\). Chứng minh biểu thức \(M = \frac{1}{{2 - \sin 2a}} + \frac{1}{{2 - \sin 2b}}\) không phụ thuộc vào a,b.

      I. PHẦN TRẮC NGHIỆM

      1. B

      2. C

      3. D

      4. A

      5. C

      6. B

      7. A

      8. D

      9. B

      10. B

      11. B

      12. C

      13. B

      14. B

      15. A

      Câu 1.

      Cách giải:

      Ta có: \(P(2) = 5,P(4) = 17,P(3) = 10,P(7) = 50\)

      Chọn B

      Câu 2.

      Cách giải:

      Thay \(x = 1,y = - 1\) vào từng bất phương trình, ta được:

       \(1 + ( - 1) - 3 = 3 < 0\) => Lọai A

      \( - 1 - ( - 1) = 0\) => Loại B

      \(1 + 3.( - 1) + 1 = - 1 < 0\) => Chọn C

      \( - 1 - 3.( - 1) - 1 = 1 > 0\) => Loại D

      Chọn C

      Câu 3.

      Cách giải:

      Viết lại mệnh đề đã cho: P: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”

      Suy ra \(\overline P :\) “\(\forall x \in \mathbb{R},{x^2} > 0\)”

      Chọn D

      Câu 4.

      Cách giải:

      Ta có: \(b = AC = 3\sqrt 3 ,c = AB = 3,a = BC = 6\)

      \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{6^2} + {3^2} - {{\left( {3\sqrt 3 } \right)}^2}}}{{2.6.3}} = \frac{1}{2}\)

      \( \Rightarrow B = {60^ \circ }\)

      Chọn A

      Câu 5.

      Cách giải:

      Ta có: \(\cos {30^o} + \sin {60^o} = \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2} = \sqrt 3 \)

      Chọn C

      Câu 6.

      Cách giải:

      Ta có: \(X \cup Y = \{ 1;3;5;7;8;9\} \)

      Chọn B

      Câu 7.

      Cách giải:

      Ta có: \({C_\mathbb{R}}A = [ - 3;11) \Rightarrow A = ( - \infty ; - 3) \cup [11; + \infty )\)

      \({C_\mathbb{R}}B = ( - 8;1] \Rightarrow B = ( - \infty ; - 8] \cup (1; + \infty )\)

      \(\begin{array}{l} \Rightarrow A \cap B = ( - \infty ; - 8] \cup [11; + \infty )\\ \Rightarrow {C_\mathbb{R}}\left( {A \cap B} \right) = ( - 8;11)\end{array}\)

      Chọn A

      Câu 8.

      Cách giải:

      Phủ định của mệnh đề đó là: “Mọi học sinh trong lớp 10A đều thích học môn Toán”.

      Chọn D

      Câu 9.

      Cách giải:

      Ta có

       \(\begin{array}{l}A = \tan {5^o}.\tan {10^o}.\tan {15^o}...\tan {80^o}.\tan {85^o}\\ = \left( {\tan {5^o}.\tan {{85}^o}} \right).\left( {\tan {{10}^o}.\tan {{80}^o}} \right)...\left( {\tan {{40}^o}.\tan {{50}^o}} \right).\tan {45^o}\\ = \left( {\tan {5^o}.\cot {5^o}} \right).\left( {\tan {{10}^o}.\cot {{10}^o}} \right)...\left( {\tan {{40}^o}.\cot {{40}^o}} \right).\tan {45^o}\\ = \tan {45^o} = 1\end{array}\)

      Chọn B

      Câu 10.

      Cách giải:

      Theo định lí sin, ta có \(\frac{a}{{\sin A}} = 2R\)

      Chọn B

      Câu 11.

      Cách giải:

      + Xác định đường thẳng là bở của miền nghiệm:

      Đường thẳng d đi qua \(A(\frac{3}{2};0)\) và \(B(0; - 3)\) \( \Rightarrow d:2x - y = 3\)

      + Điểm O(0;0) thuộc miền nghiệm và \(2.0 - 0 = 0 < 3\)

      Do đó BPT cần tìm là \(2x - y < 3\)

      Chọn B

      Câu 12.

      Cách giải:

      \(M = \{ x \in \mathbb{N}|x\) là bội của \(2\} = \{ 0;2;4;6;8;...\} \)

      \(N = \{ x \in \mathbb{N}|x\) là bội của \(6\} = \{ 0;6;12;18;24;...\} \)

      \(P = \{ x \in \mathbb{N}|x\) là ước của \(2\} = \{ 1;2\} \)

      \(Q = \{ x \in \mathbb{N}|x\) là ước của \(6\} = \{ 1;2;3;6\} \)

      Ta có: \(N \subset M\) và \(P \subset Q\)

      Do đó: \(M \cap N = N\) và \(P \cap Q = P\)

      Chọn C

      Câu 13.

      Cách giải:

      Thay \(x = 2,y = 3\) vào từng bất phương trình, ta được:

      \(2.2 - 3.3 - 1 = - 6 < 0 \Rightarrow A(2;3)\) là nghiệm của BPT \(2x - 3y - 1 < 0\)

      \(2 - 3 = - 1 < 0 \Rightarrow A(2;3)\) không là nghiệm của BPT \(x - y > 0\)

      \(4.2 - 3.3 = - 1 < 0 \Rightarrow A(2;3)\) là nghiệm của BPT \(4x - 3y < 0\)

      \(2 + 3.3 - 7 = 4 \ge 0 \Rightarrow A(2;3)\) là nghiệm của BPT \(x + 3y - 7 \ge 0\)

      Chọn B

      Câu 14.

      Phương pháp

      Định lí “Nếu P thì Q” còn được phát biểu là:

      “P là điều kiện đủ để có Q”

      “Q là điều kiện cần để có P”

      Cách giải:

      Cách phát biểu khác là: “Một tam giác có hai góc bằng nhau là điều kiện đủ để tam giác đó là tam giác cân”

      Chọn B

      Câu 15. Cho \(A = (2; + \infty )\) và \(B = (m; + \infty )\). Điều kiện cần và đủ của m để \(B \subset A\) là

      A.\(m \ge 2\). B. \(m \le 2\). C.\(m = 2\). D. \(m > 2\).

      Cách giải:

      \(B \subset A \Leftrightarrow (m; + \infty ) \subset (2; + \infty ) \Leftrightarrow m \ge 2\)

      Chọn A

      II. PHẦN TỰ LUẬN

      Câu 1:

      Phương pháp:

      a) \(A \cap B = \{ x \in A|x \in B\} \)

      b) \(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)

      c) \(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)

      Cách giải:

      a) Ta có: \((2x + 1)({x^2} - 9) = 0 \Leftrightarrow (2x + 1)(x - 3)(x + 3) = 0\)

      \( \Leftrightarrow \left[ \begin{array}{l}2x + 1 = 0\\x - 3 = 0\\x + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = 3\\x = - 3\end{array} \right.\)

      Mà \( - \frac{1}{2} \notin \mathbb{Z}\)\( \Rightarrow A = \{ - 3;3\} \)

      \(B = \{ x \in \mathbb{N}|x < 4\} = \{ 0;1;2;3\} \)

      Do đó \(A \cap B = \{ 3\} ,A \cup B = \{ - 3;0;1;2;3\} ,A{\rm{\backslash }}B = \{ - 3\} \)

      b) \(M = (0;3)\) và. Để \(M \cap N = N \Leftrightarrow N \subset M\)

      \(\begin{array}{l} \Leftrightarrow [m;m + 1) \subset (0;3)\\ \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m + 1 \le 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m \le 2\end{array} \right. \Leftrightarrow 0 < m \le 2\end{array}\)

      Mà \(m \in \mathbb{Z}\) nên \(m = 1\) hoặc \(m = 2\).

      Vậy \(m = 1\) hoặc \(m = 2\) thì \(M \cap N = N.\)

      Câu 2:

      Cách giải:

      Gọi x là số xe loại A, y là số xe loại B mà công ty cần thuê (đơn vị: chiếc). \((x,y \in \mathbb{N})\)

      Theo đề bài ta có: \(0 \le x \le 10\) và \(0 \le y \le 9\)

      Tổng chi phí thuê xe là \(F(x;y) = 4x + 3y\) (triệu đồng)

      Số người cần chở là 140 mà mỗi xe A chở tối đa 20 người, mỗi xe B chở tối đa 10 người nên ta có \(20x + 10y \ge 140\) hay \(2x + y \ge 14\)

      Số hàng cần chở là 9 tấn mà mỗi xe A chở được 0,6 tấn, mỗi xe B chở được 1,5 tấn nên ta có \(0,6x + 1,5y \ge 9\) hay \(2x + 5y \ge 30\)

      Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\2x + y \ge 14\\2x + 5y \ge 30\end{array} \right.\)

      Biểu diễn miền nghiệm trên hệ trục Oxy, ta được:

      Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 3

      Miền nghiệm là miền tứ giác ABCD (kể cả các cạnh) , trong đó \(A(\frac{5}{2};9),B(10;9),C(10;2),D(5;4)\)

      Lần lượt thay tọa độ các điểm A, B, C, D vào biểu thức \(F(x;y) = 4x + 3y\) ta được:

      \(\begin{array}{l}F(\frac{5}{2};9) = 4.\frac{5}{2} + 3.9 = 37\\F(10;9) = 4.10 + 3.9 = 67\\F(10;2) = 4.10 + 3.2 = 46\\F(5;4) = 4.5 + 3.4 = 32\end{array}\)

      Do đó F đạt giá trị nhỏ nhất bằng 32 tại \(x = 5;y = 4\)

      Vậy công ty đó cần thuê 5 xe loại A và 4 xe loại B.

      Câu 3:

      Phương pháp:

      Áp dụng định lí sin: \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

      Cách giải:

      Từ hình vẽ, ta suy ra tam giác ABC có:

      \(\begin{array}{l}\widehat {BAC} = {90^ \circ } - {30^ \circ } = {60^ \circ }\\\widehat {ABC} = {90^ \circ } + {15^ \circ }30' = {105^ \circ }30'\\AB = 70\end{array}\)

      Vì \(A + B + C = {180^ \circ }\) nên \(C = {180^ \circ } - (A + B) = {180^ \circ } - \left( {{{60}^ \circ } + {{105}^ \circ }30'} \right) = {14^ \circ }30'\)

      Áp dụn định lí sin trong tam giác ABC ta có:

      \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {105^ \circ }30'.\frac{{70}}{{\sin {{14}^ \circ }30'}} \approx 269,4\) (m)

      Gọi CH là chiều cao ngọn núi

      Tam giác ACH vuông tại H, \(\widehat {CAH} = {30^ \circ }\)

      \( \Rightarrow CH = AC.\sin A = 269,4.\sin {30^ \circ } = 134,7\)(m)

      Vậy ngọn núi cao khoảng 135m.

      Câu 4:

      Cách giải:

      Đặt \(2u = \sin (a + b) = 2\cos (a - b)\)

      Dễ thấy \(u \ne \pm 1\) do \(\left| {2u} \right| = \left| {\sin (a + b)} \right| \le 1\).

      Ta có:

       \(\begin{array}{l}M = \frac{1}{{2 - \sin 2a}} + \frac{1}{{2 - \sin 2b}} = \frac{{2 - \sin 2b + 2 - \sin 2a}}{{\left( {2 - \sin 2a} \right)\left( {2 - \sin 2b} \right)}}\\ = \frac{{4 - \left( {\sin 2a + \sin 2b} \right)}}{{4 - 2\sin 2a - 2\sin 2b + \sin 2a.\sin 2b}}\\ = \frac{{4 - \left( {\sin 2a + \sin 2b} \right)}}{{4 - 2(\sin 2a + \sin 2b) + \sin 2a.\sin 2b}}\end{array}\)

      Mà:

      \(\sin 2a + \sin 2b = 2\sin \frac{{2a + 2b}}{2}\cos \frac{{2a - 2b}}{2}\)\( = 2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = 2.2u.u = 4{u^2}\);

      \(\begin{array}{l}\sin 2a.\sin 2b = - \frac{1}{2}\left[ {\cos \left( {2a + 2b} \right) - \cos \left( {2a - 2b} \right)} \right]\\ = - \frac{1}{2}\left[ {1 - 2{{\sin }^2}(a + b) - 2{{\cos }^2}(a - b) + 1} \right]\\ = {\cos ^2}(a + b) + {\sin ^2}(a - b) - 1\\ = {u^2} + {(2u)^2} - 1 = 5{u^2} - 1\end{array}\)

      \( \Rightarrow M = \frac{{4 - 4{u^2}}}{{4 - 2.4{u^2} + 5{u^2} - 1}} = \frac{{4 - 4{u^2}}}{{3 - 3{u^2}}} = \frac{4}{3}\)

       Vậy \(M = \frac{4}{3}\) không phụ thuộc vào a,b.

      Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

      Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5: Tổng quan và hướng dẫn giải chi tiết

      Đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5 là một công cụ hữu ích cho học sinh trong quá trình ôn tập và chuẩn bị cho kỳ thi quan trọng. Đề thi này không chỉ giúp học sinh đánh giá năng lực hiện tại mà còn làm quen với các dạng bài tập thường gặp trong đề thi chính thức.

      Cấu trúc đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5

      Đề thi thường bao gồm hai phần chính: trắc nghiệm và tự luận. Phần trắc nghiệm thường chiếm khoảng 40-50% tổng số điểm, tập trung vào các kiến thức cơ bản và khả năng vận dụng nhanh của học sinh. Phần tự luận chiếm khoảng 50-60% tổng số điểm, đòi hỏi học sinh phải trình bày bài giải một cách logic và chính xác.

      Các chủ đề chính trong đề thi

      • Mệnh đề và tập hợp: Các bài tập về mệnh đề, tập hợp, phép toán trên tập hợp, và các ứng dụng của tập hợp trong giải toán.
      • Hàm số bậc nhất và hàm số bậc hai: Các bài tập về xác định hàm số, vẽ đồ thị hàm số, tìm tập xác định, tập giá trị, và các tính chất của hàm số.
      • Bất phương trình bậc nhất và bất phương trình bậc hai: Các bài tập về giải bất phương trình, tìm tập nghiệm, và ứng dụng của bất phương trình trong giải toán thực tế.
      • Hệ phương trình bậc nhất hai ẩn: Các bài tập về giải hệ phương trình, tìm nghiệm, và ứng dụng của hệ phương trình trong giải toán.
      • Vectơ: Các bài tập về các phép toán trên vectơ, tích vô hướng của hai vectơ, và ứng dụng của vectơ trong hình học.

      Hướng dẫn giải chi tiết một số bài tập tiêu biểu

      Để giúp học sinh hiểu rõ hơn về cấu trúc đề thi và cách giải các bài tập, chúng ta sẽ cùng nhau phân tích một số bài tập tiêu biểu trong đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5.

      Bài tập 1: Mệnh đề và tập hợp

      Cho hai tập hợp A = {1, 2, 3} và B = {2, 4, 5}. Tìm A ∪ B và A ∩ B.

      Giải:

      • A ∪ B = {1, 2, 3, 4, 5} (hợp của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc A hoặc B).
      • A ∩ B = {2} (giao của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc cả A và B).
      Bài tập 2: Hàm số bậc nhất

      Cho hàm số y = 2x + 1. Tìm giá trị của y khi x = 3.

      Giải:

      Thay x = 3 vào hàm số y = 2x + 1, ta được y = 2 * 3 + 1 = 7.

      Bài tập 3: Bất phương trình bậc nhất

      Giải bất phương trình 3x - 2 > 1.

      Giải:

      1. 3x - 2 > 1
      2. 3x > 3
      3. x > 1

      Vậy tập nghiệm của bất phương trình là x > 1.

      Lời khuyên khi làm bài thi giữa kì 1 Toán 10 Kết nối tri thức

      • Đọc kỹ đề bài: Trước khi bắt đầu giải bài, hãy đọc kỹ đề bài để hiểu rõ yêu cầu và các điều kiện của bài toán.
      • Lập kế hoạch giải bài: Xác định các bước cần thực hiện để giải bài và lập kế hoạch giải bài một cách hợp lý.
      • Kiểm tra lại kết quả: Sau khi giải xong bài, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
      • Quản lý thời gian: Phân bổ thời gian hợp lý cho từng bài để đảm bảo hoàn thành bài thi trong thời gian quy định.

      Tài liệu tham khảo và hỗ trợ học tập

      Ngoài đề thi giữa kì 1 Toán 10 Kết nối tri thức - Đề số 5, giaitoan.edu.vn còn cung cấp nhiều tài liệu tham khảo và hỗ trợ học tập khác, như:

      • Sách giáo khoa Toán 10 Kết nối tri thức: Sách giáo khoa là nguồn tài liệu cơ bản và quan trọng nhất để học Toán 10.
      • Bài tập và giải bài tập Toán 10: Các bài tập và giải bài tập giúp học sinh rèn luyện kỹ năng giải toán và củng cố kiến thức.
      • Video bài giảng Toán 10: Các video bài giảng giúp học sinh hiểu rõ hơn về các khái niệm và phương pháp giải toán.
      • Diễn đàn Toán học: Diễn đàn Toán học là nơi học sinh có thể trao đổi kiến thức, hỏi đáp và chia sẻ kinh nghiệm học tập.

      Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi giữa kì 1 Toán 10 Kết nối tri thức!

      Tài liệu, đề thi và đáp án Toán 10