Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều

Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều

Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều, một công cụ hỗ trợ học sinh ôn luyện và đánh giá năng lực bản thân trước kỳ thi quan trọng. Đề thi được biên soạn theo chương trình học Toán 6, sách Cánh diều, bao gồm các dạng bài tập đa dạng và có đáp án chi tiết.

Đề thi này không chỉ giúp các em làm quen với cấu trúc đề thi mà còn rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và áp dụng kiến thức đã học vào thực tế.

Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Lời giải

    Phần I: Trắc nghiệm

    1. D

    2. C

    3. B

    4. A

    Câu 1

    Phương pháp:

    Cứ qua 2 điểm ta vẽ 1 đường thẳng nên với \(n\) điểm không thẳng hàng có tất cả: \(\dfrac{{n.\left( {n - 1} \right)}}{2}\) (đường thẳng)

    Cách giải:

    Qua 6 điểm trong đó không có 3 điểm nào thẳng hàng ta vẽ được: \(\dfrac{{6.5}}{2} = 15\) (đường thẳng)

    Chọn D.

    Câu 2

    Phương pháp:

    Hai tia Ox, Oy phân biệt tạo thành góc \(\angle xOy\).

    Cách giải:

    Góc đã cho được kí hiệu là \(\angle xAy\).

    Chọn C.

    Câu 3

    Phương pháp:

    Sau khi được giảm 20%, số tiền phải trả bằng 80% số tiền ban đầu. Ta lấy số hết Hòa đã trả chia 80%.

    Cách giải:

    Số tiền Hòa phải trả là: \(500:\dfrac{{100 - 20}}{{100}} = 625\)(nghìn đồng)

    Chọn B.

    Câu 4

    Phương pháp

    Xác suất thực nghiệm xuất hiện mặt i chấm khi tung xúc xắc nhiều lần là: Số lần xuất hiện mặt i chấm : Tổng số lần tung xúc xắc.

    Cách giải:

    Xác suất thực nghiệm xuất hiện mặt hai chấm khi tung xúc xắc nhiều lần là: \(\dfrac{7}{{13}}\).

    Chọn A.

    Phần II: Tự luận

    Bài 1

    Phương pháp

    a) Nhóm các số hạng có cùng mẫu số, rồi thực hiện cộng trừ các phân số có cùng mẫu số.

    b) Tách hỗn số thành hai phần: phần nguyên và phần phân số, rồi cộng phần nguyên với nhau, cộng phần phân số với nhau.

    Chú ý: Muốn cộng (trừ) hai phân số có cùng mẫu số, ta cộng (trừ) tử số với nhau và giữ nguyên mẫu số.

    Cách giải:

    \(a)\,\dfrac{{31}}{{17}} + \dfrac{{ - 5}}{{13}} + \dfrac{{ - 8}}{{13}} - \dfrac{{14}}{{17}} = \left( {\dfrac{{31}}{{17}} - \dfrac{{14}}{{17}}} \right) + \left( {\dfrac{{ - 5}}{{13}} + \dfrac{{ - 8}}{{13}}} \right) = \dfrac{{17}}{{17}} + \dfrac{{ - 13}}{{13}} = 1 + \left( { - 1} \right)\, = 0\)

    \(\begin{array}{l}b)\,7\dfrac{5}{{11}} - \left( {2\dfrac{3}{7} + 3\dfrac{5}{{11}}} \right) = 7 + \dfrac{5}{{11}} - \left( {2 + \dfrac{3}{7} + 3 + \dfrac{5}{{11}}} \right) = 7 + \dfrac{5}{{11}} - 2 - 3 - \dfrac{3}{7} - \dfrac{5}{{11}}\\\, = \left( {7 - 2 - 3} \right) + \left( {\dfrac{5}{{11}} - \dfrac{5}{{11}}} \right) - \dfrac{3}{7} = 2 + 0 - \dfrac{3}{7}\, = \dfrac{{11}}{7}\end{array}\)

    Bài 2

    Phương pháp

    Áp dụng các kiến thức:

    - Sử dụng các công thức lũy thừa và quy tắc bỏ ngoặc để tìm x

    Áp dụng quy tắc chuyển vế đổi dấu x.

    - Đặt điều kiện để các phân số có nghĩa, tìm x.

    Chú ý sau khi tìm được \(x\) cần đối chiếu với điều kiện rồi kết luận \(x\)

    Cách giải:

    a) \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)

    \(\begin{array}{l}\dfrac{1}{3}x + \dfrac{2}{5}x - \dfrac{2}{5} = 0\\\left( {\dfrac{1}{3} + \dfrac{2}{5}} \right)x = \dfrac{2}{5}\\\dfrac{{11}}{{15}}x = \dfrac{2}{5}\end{array}\)

    \(x = \dfrac{2}{5}:\dfrac{{11}}{{15}}\)

    \(\begin{array}{l}x = \dfrac{2}{5} \cdot \dfrac{{15}}{{11}}\\x = \dfrac{6}{{11}}\end{array}\)

    Vậy \(x = \dfrac{6}{{11}} \cdot \)

    b) \(3.{\left( {3x - \dfrac{1}{2}} \right)^3} + \dfrac{1}{9} = 0\)

    \(\begin{array}{l}3.{\left( {3x - \dfrac{1}{2}} \right)^3} = - \dfrac{1}{9}\\{\left( {3x - \dfrac{1}{2}} \right)^3} = - \dfrac{1}{9}:3\\{\left( {3x - \dfrac{1}{2}} \right)^3} = - \dfrac{1}{{27}} = \left( {\dfrac{{ - 1}}{3}} \right)\end{array}\)

    \( \Rightarrow 3x - \dfrac{1}{2} = {\dfrac{{ - 1}}{3}^3}\)

    \(\begin{array}{l}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 3x = \dfrac{{ - 1}}{3} + \dfrac{1}{2}{\kern 1pt} {\kern 1pt} \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 3x = \dfrac{{ - 2}}{6} + \dfrac{3}{6}\\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 3x = \dfrac{1}{6}{\kern 1pt} {\kern 1pt} \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = \dfrac{1}{{18}}\end{array}\)

    Vậy \(x = \dfrac{1}{{18}} \cdot \)

    c) \(12,3:x - 4,5:x = 15\)

    \(\begin{array}{l}\left( {12,3 - 4,5} \right):x = 15\\7,8:x = 15\\x = 7,8:15\\x = 0,52\end{array}\)

    Vậy \(x = 0,52\)

    d) \(\dfrac{{3 - x}}{{5 - x}} = {\left( {\dfrac{{ - 3}}{5}} \right)^2}\)

    Điều kiện: \(5 - x \ne 0 \Leftrightarrow x \ne 5.\)

    \(\begin{array}{*{20}{l}}{ \Rightarrow \dfrac{{3 - x}}{{5 - x}} = \dfrac{9}{{25}}}\\{ \Rightarrow \left( {3 - x} \right).25 = 9.\left( {5 - x} \right)}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 75 - 25x = 45 - 9x{\kern 1pt} }\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - 25x + 9x = 45 - 75}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - 16x = {\rm{ \;}} - 30}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = \dfrac{{ - 30}}{{ - 16}} = \dfrac{{15}}{8}}\end{array}\)

    Vậy \(x = \dfrac{{15}}{8} \cdot \)

    Bài 3

    Phương pháp:

    a) Áp dụng quy tắc: Muốn tìm \(\dfrac{m}{n}{\kern 1pt} \) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {m,n \in \mathbb{N},{\kern 1pt} {\kern 1pt} n \ne 0} \right).\)

    b) Áp dụng quy tắc tìm tỉ số phần trăm của hai số : Muốn tìm tỉ số phần trăm của hai số \(a\) và \(b\), ta nhân \(a\) với 100 rồi chia cho \(b\) và viết kí hiệu \(\% \) vào kết quả : \(\dfrac{{a.100}}{b}\% \).

    Cách giải:

    a) Lớp học đó có số học sinh trung bình là :

    \(50.\dfrac{3}{{10}} = 15\) (học sinh)

    Lớp đó có số học sinh giỏi và khá là :

    \(50 - 15 = 35\) (học sinh)

    Lớp đó có số học sinh khá là :

    \(35.40\% {\rm{\;}} = 14\) (học sinh)

    Lớp đó có số học sinh giỏi là :

    \(35 - 14 = 21\) (học sinh)

    b) Tỉ số phần trăm của học sinh giỏi so với số học sinh cả lớp là:

    \(21:50.100\% {\rm{\;}} = 42\% \)

    Bài 4

    Phương pháp

    a) Chứng minh K nằm giữa A và Q và suy ra AK + KQ = AQ.

    b) Chứng minh A nằm giữa C và K. Tính CK = AC + AK.

    Chỉ ra A nằm giữa C, K và AC = AK. Từ đó suy ra A là trung điểm của CK.

    c) Tính BA.

    Chứng minh A nằm giữa B và K. Tính BK = BA + AK.

    So sánh BK và AQ.

    Cách giải:

    Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều 1 1

     a) Vì AK < AQ (3cm < 4cm) nên K nằm giữa A và Q.

    => AK + KQ = AQ

    => 3 + KQ = 4

    => KQ = 4 – 3

    => KQ = 1 (cm)

    b) Vì C và K nằm trên hai tia đối An và Am nên A nằm giữa C và K.

    => CK = AC + AK

    => CK = 3 + 3

    => CK = 6 (cm)

    Ta có: A nằm giữa C và K.

    AC = AK = 3cm.

    => A là trung điểm của CK.

    c) Vì B là trung điểm của AC nên BA = AC : 2 = 3 : 2 = 1,5 (cm).

    Vì B, K nằm trên hai tia đối nhau An và Am nên A nằm giữa B và K.

    => BK = BA + AK

    => BK = 1,5 + 3

    => BK = 4,5 (cm)

    Mà AQ = 4 (cm)

    => BK > AQ.

    Bài 5

    Phương pháp

    Phân tích \(A = a + \dfrac{b}{{2 - n}}\), với \(a,\,\,b \in \mathbb{Z}\).

    Để \(A \in \mathbb{Z}\) thì \(2 - n \in U\left( b \right)\).

    Cách giải:

    \(\begin{array}{l}A = \dfrac{{3n - 4}}{{2 - n}} = \dfrac{{3n - 6 + 2}}{{ - n + 2}}\\\,\,\,\,\, = \dfrac{{3n - 6}}{{ - n + 2}} + \dfrac{2}{{ - n + 2}}\\\,\,\,\,\, = \dfrac{{ - 3\left( { - n + 2} \right)}}{{ - n + 2}} + \dfrac{2}{{ - n + 2}}\\\,\,\,\,\, = - 3 + \dfrac{2}{{ - n + 2}}\end{array}\)

    Để A nhận giá trị nguyên thì \( - 3 + \dfrac{2}{{ - n + 2}} \in \mathbb{Z} \Rightarrow \dfrac{2}{{ - n + 2}} \in \mathbb{Z}\)\( \Rightarrow - n + 2 \in \left\{ { \pm 1; \pm 2} \right\}\)

    Ta có bảng giá trị sau:

    \( - n + 2\)

    1

    -1

    2

    -2

    \(n\)

    1 (TM)

    3 (TM)

    0 (TM)

    4 (TM)

    Vậy \(n \in \left\{ {1;3;0;4} \right\}\).

    Đề bài

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Cho 6 điểm trong đó không có ba điểm nào thẳng hàng. Qua hai điểm vẽ được một đường thẳng. Số đường thẳng vẽ được là:

      A. 10 B. 18 C. 12 D. 15

      Câu 2:Viết tên góc ở hình vẽ bên bằng kí hiệu.

      Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều 0 1

      A. \(\angle Axy\) B. \(\angle xyA\) C. \(\angle xAy\) D. \(\angle xy\)

      Câu 3: Bạn Hòa đi siêu thị mua thực phẩm tổng hết 500 nghìn đồng. Ngày hôm đó siêu thị giảm giá 20%. Số tiền Hòa phải trả nếu không được giảm là:

      A. 600 nghìn đồng B. 625 nghìn đồng C. 450 nghìn đồng D. 400 nghìn đồng

      Câu 4:Gieo một con xúc xắc sáu mặt 13 lần liên tiếp, có 7 lần xuất hiện mặt hai chấm thì xác suất thực nghiệm xuất hiện mặt hai chấm là:

      A. \(\dfrac{7}{{13}}\) B. \(\dfrac{2}{7}\) C. \(\dfrac{2}{{13}}\) D. \(\dfrac{9}{{13}}\)

      Phần II. Tự luận (8 điểm):

      Bài 1: (1.5 điểm) Thực hiện các phép tính:

      \(a)\,\dfrac{{31}}{{17}} + \dfrac{{ - 5}}{{13}} + \dfrac{{ - 8}}{{13}} - \dfrac{{14}}{{17}}\)

      \(b)\,7\dfrac{5}{{11}} - \left( {2\dfrac{3}{7} + 3\dfrac{5}{{11}}} \right)\)

      Bài 2:(2 điểm)Tìm x biết:

      a) \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)

      b) \(3 \cdot {\left( {3x - \dfrac{1}{2}} \right)^3} + \dfrac{1}{9} = 0\)

      c) \(12,3:x - 4,5:x = 15\)

      d) \(\dfrac{{3 - x}}{{5 - x}} = {\left( {\dfrac{{ - 3}}{5}} \right)^2}\)

      Bài 3 (1,5 điểm) Một lớp học có 50 học sinh gồm: giỏi, khá, trung bình. Số học sinh trung bình chiếm \(\dfrac{3}{{10}}\) số học sinh cả lớp. Số học sinh khá bằng \(40\% \) số học sinh còn lại.

      a) Tính số học sinh mỗi loại của lớp đó.

      b) Tính tỉ số phần trăm của học sinh giỏi so với số học sinh cả lớp.

      Bài 4: (2,5 điểm) Cho hai điểm \(M,N\) thuộc tia \(Ox\) sao cho \(OM = 2cm;ON = 5cm\). Điểm \(P\) thuộc tia đối của tia \(Ox\) sao cho \(OP = 3cm\).

      a) Điểm \(M\) có nằm giữa hai điểm \(O\) và \(N\) không? Tại sao? Tính \(MN.\)

      b) So sánh\(MN\) và \(OP.\)

      c) Gọi \(I\) là trung điềm của \(OM\). Tính \(IO\) và \(IP.\)

      d) Điểm \(I\) có là trung điềm của \(NP\) không? Tại sao?

      Bài 5:(0,5 điểm)Tìm các số nguyên n để biểu thức sau nhận giá trị là số nguyên: \(A = \dfrac{{3n - 4}}{{2 - n}}\).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Cho 6 điểm trong đó không có ba điểm nào thẳng hàng. Qua hai điểm vẽ được một đường thẳng. Số đường thẳng vẽ được là:

      A. 10 B. 18 C. 12 D. 15

      Câu 2:Viết tên góc ở hình vẽ bên bằng kí hiệu.

      Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều 1

      A. \(\angle Axy\) B. \(\angle xyA\) C. \(\angle xAy\) D. \(\angle xy\)

      Câu 3: Bạn Hòa đi siêu thị mua thực phẩm tổng hết 500 nghìn đồng. Ngày hôm đó siêu thị giảm giá 20%. Số tiền Hòa phải trả nếu không được giảm là:

      A. 600 nghìn đồng B. 625 nghìn đồng C. 450 nghìn đồng D. 400 nghìn đồng

      Câu 4:Gieo một con xúc xắc sáu mặt 13 lần liên tiếp, có 7 lần xuất hiện mặt hai chấm thì xác suất thực nghiệm xuất hiện mặt hai chấm là:

      A. \(\dfrac{7}{{13}}\) B. \(\dfrac{2}{7}\) C. \(\dfrac{2}{{13}}\) D. \(\dfrac{9}{{13}}\)

      Phần II. Tự luận (8 điểm):

      Bài 1: (1.5 điểm) Thực hiện các phép tính:

      \(a)\,\dfrac{{31}}{{17}} + \dfrac{{ - 5}}{{13}} + \dfrac{{ - 8}}{{13}} - \dfrac{{14}}{{17}}\)

      \(b)\,7\dfrac{5}{{11}} - \left( {2\dfrac{3}{7} + 3\dfrac{5}{{11}}} \right)\)

      Bài 2:(2 điểm)Tìm x biết:

      a) \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)

      b) \(3 \cdot {\left( {3x - \dfrac{1}{2}} \right)^3} + \dfrac{1}{9} = 0\)

      c) \(12,3:x - 4,5:x = 15\)

      d) \(\dfrac{{3 - x}}{{5 - x}} = {\left( {\dfrac{{ - 3}}{5}} \right)^2}\)

      Bài 3 (1,5 điểm) Một lớp học có 50 học sinh gồm: giỏi, khá, trung bình. Số học sinh trung bình chiếm \(\dfrac{3}{{10}}\) số học sinh cả lớp. Số học sinh khá bằng \(40\% \) số học sinh còn lại.

      a) Tính số học sinh mỗi loại của lớp đó.

      b) Tính tỉ số phần trăm của học sinh giỏi so với số học sinh cả lớp.

      Bài 4: (2,5 điểm) Cho hai điểm \(M,N\) thuộc tia \(Ox\) sao cho \(OM = 2cm;ON = 5cm\). Điểm \(P\) thuộc tia đối của tia \(Ox\) sao cho \(OP = 3cm\).

      a) Điểm \(M\) có nằm giữa hai điểm \(O\) và \(N\) không? Tại sao? Tính \(MN.\)

      b) So sánh\(MN\) và \(OP.\)

      c) Gọi \(I\) là trung điềm của \(OM\). Tính \(IO\) và \(IP.\)

      d) Điểm \(I\) có là trung điềm của \(NP\) không? Tại sao?

      Bài 5:(0,5 điểm)Tìm các số nguyên n để biểu thức sau nhận giá trị là số nguyên: \(A = \dfrac{{3n - 4}}{{2 - n}}\).

      Phần I: Trắc nghiệm

      1. D

      2. C

      3. B

      4. A

      Câu 1

      Phương pháp:

      Cứ qua 2 điểm ta vẽ 1 đường thẳng nên với \(n\) điểm không thẳng hàng có tất cả: \(\dfrac{{n.\left( {n - 1} \right)}}{2}\) (đường thẳng)

      Cách giải:

      Qua 6 điểm trong đó không có 3 điểm nào thẳng hàng ta vẽ được: \(\dfrac{{6.5}}{2} = 15\) (đường thẳng)

      Chọn D.

      Câu 2

      Phương pháp:

      Hai tia Ox, Oy phân biệt tạo thành góc \(\angle xOy\).

      Cách giải:

      Góc đã cho được kí hiệu là \(\angle xAy\).

      Chọn C.

      Câu 3

      Phương pháp:

      Sau khi được giảm 20%, số tiền phải trả bằng 80% số tiền ban đầu. Ta lấy số hết Hòa đã trả chia 80%.

      Cách giải:

      Số tiền Hòa phải trả là: \(500:\dfrac{{100 - 20}}{{100}} = 625\)(nghìn đồng)

      Chọn B.

      Câu 4

      Phương pháp

      Xác suất thực nghiệm xuất hiện mặt i chấm khi tung xúc xắc nhiều lần là: Số lần xuất hiện mặt i chấm : Tổng số lần tung xúc xắc.

      Cách giải:

      Xác suất thực nghiệm xuất hiện mặt hai chấm khi tung xúc xắc nhiều lần là: \(\dfrac{7}{{13}}\).

      Chọn A.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      a) Nhóm các số hạng có cùng mẫu số, rồi thực hiện cộng trừ các phân số có cùng mẫu số.

      b) Tách hỗn số thành hai phần: phần nguyên và phần phân số, rồi cộng phần nguyên với nhau, cộng phần phân số với nhau.

      Chú ý: Muốn cộng (trừ) hai phân số có cùng mẫu số, ta cộng (trừ) tử số với nhau và giữ nguyên mẫu số.

      Cách giải:

      \(a)\,\dfrac{{31}}{{17}} + \dfrac{{ - 5}}{{13}} + \dfrac{{ - 8}}{{13}} - \dfrac{{14}}{{17}} = \left( {\dfrac{{31}}{{17}} - \dfrac{{14}}{{17}}} \right) + \left( {\dfrac{{ - 5}}{{13}} + \dfrac{{ - 8}}{{13}}} \right) = \dfrac{{17}}{{17}} + \dfrac{{ - 13}}{{13}} = 1 + \left( { - 1} \right)\, = 0\)

      \(\begin{array}{l}b)\,7\dfrac{5}{{11}} - \left( {2\dfrac{3}{7} + 3\dfrac{5}{{11}}} \right) = 7 + \dfrac{5}{{11}} - \left( {2 + \dfrac{3}{7} + 3 + \dfrac{5}{{11}}} \right) = 7 + \dfrac{5}{{11}} - 2 - 3 - \dfrac{3}{7} - \dfrac{5}{{11}}\\\, = \left( {7 - 2 - 3} \right) + \left( {\dfrac{5}{{11}} - \dfrac{5}{{11}}} \right) - \dfrac{3}{7} = 2 + 0 - \dfrac{3}{7}\, = \dfrac{{11}}{7}\end{array}\)

      Bài 2

      Phương pháp

      Áp dụng các kiến thức:

      - Sử dụng các công thức lũy thừa và quy tắc bỏ ngoặc để tìm x

      Áp dụng quy tắc chuyển vế đổi dấu x.

      - Đặt điều kiện để các phân số có nghĩa, tìm x.

      Chú ý sau khi tìm được \(x\) cần đối chiếu với điều kiện rồi kết luận \(x\)

      Cách giải:

      a) \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)

      \(\begin{array}{l}\dfrac{1}{3}x + \dfrac{2}{5}x - \dfrac{2}{5} = 0\\\left( {\dfrac{1}{3} + \dfrac{2}{5}} \right)x = \dfrac{2}{5}\\\dfrac{{11}}{{15}}x = \dfrac{2}{5}\end{array}\)

      \(x = \dfrac{2}{5}:\dfrac{{11}}{{15}}\)

      \(\begin{array}{l}x = \dfrac{2}{5} \cdot \dfrac{{15}}{{11}}\\x = \dfrac{6}{{11}}\end{array}\)

      Vậy \(x = \dfrac{6}{{11}} \cdot \)

      b) \(3.{\left( {3x - \dfrac{1}{2}} \right)^3} + \dfrac{1}{9} = 0\)

      \(\begin{array}{l}3.{\left( {3x - \dfrac{1}{2}} \right)^3} = - \dfrac{1}{9}\\{\left( {3x - \dfrac{1}{2}} \right)^3} = - \dfrac{1}{9}:3\\{\left( {3x - \dfrac{1}{2}} \right)^3} = - \dfrac{1}{{27}} = \left( {\dfrac{{ - 1}}{3}} \right)\end{array}\)

      \( \Rightarrow 3x - \dfrac{1}{2} = {\dfrac{{ - 1}}{3}^3}\)

      \(\begin{array}{l}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 3x = \dfrac{{ - 1}}{3} + \dfrac{1}{2}{\kern 1pt} {\kern 1pt} \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 3x = \dfrac{{ - 2}}{6} + \dfrac{3}{6}\\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 3x = \dfrac{1}{6}{\kern 1pt} {\kern 1pt} \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = \dfrac{1}{{18}}\end{array}\)

      Vậy \(x = \dfrac{1}{{18}} \cdot \)

      c) \(12,3:x - 4,5:x = 15\)

      \(\begin{array}{l}\left( {12,3 - 4,5} \right):x = 15\\7,8:x = 15\\x = 7,8:15\\x = 0,52\end{array}\)

      Vậy \(x = 0,52\)

      d) \(\dfrac{{3 - x}}{{5 - x}} = {\left( {\dfrac{{ - 3}}{5}} \right)^2}\)

      Điều kiện: \(5 - x \ne 0 \Leftrightarrow x \ne 5.\)

      \(\begin{array}{*{20}{l}}{ \Rightarrow \dfrac{{3 - x}}{{5 - x}} = \dfrac{9}{{25}}}\\{ \Rightarrow \left( {3 - x} \right).25 = 9.\left( {5 - x} \right)}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 75 - 25x = 45 - 9x{\kern 1pt} }\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - 25x + 9x = 45 - 75}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - 16x = {\rm{ \;}} - 30}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = \dfrac{{ - 30}}{{ - 16}} = \dfrac{{15}}{8}}\end{array}\)

      Vậy \(x = \dfrac{{15}}{8} \cdot \)

      Bài 3

      Phương pháp:

      a) Áp dụng quy tắc: Muốn tìm \(\dfrac{m}{n}{\kern 1pt} \) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {m,n \in \mathbb{N},{\kern 1pt} {\kern 1pt} n \ne 0} \right).\)

      b) Áp dụng quy tắc tìm tỉ số phần trăm của hai số : Muốn tìm tỉ số phần trăm của hai số \(a\) và \(b\), ta nhân \(a\) với 100 rồi chia cho \(b\) và viết kí hiệu \(\% \) vào kết quả : \(\dfrac{{a.100}}{b}\% \).

      Cách giải:

      a) Lớp học đó có số học sinh trung bình là :

      \(50.\dfrac{3}{{10}} = 15\) (học sinh)

      Lớp đó có số học sinh giỏi và khá là :

      \(50 - 15 = 35\) (học sinh)

      Lớp đó có số học sinh khá là :

      \(35.40\% {\rm{\;}} = 14\) (học sinh)

      Lớp đó có số học sinh giỏi là :

      \(35 - 14 = 21\) (học sinh)

      b) Tỉ số phần trăm của học sinh giỏi so với số học sinh cả lớp là:

      \(21:50.100\% {\rm{\;}} = 42\% \)

      Bài 4

      Phương pháp

      a) Chứng minh K nằm giữa A và Q và suy ra AK + KQ = AQ.

      b) Chứng minh A nằm giữa C và K. Tính CK = AC + AK.

      Chỉ ra A nằm giữa C, K và AC = AK. Từ đó suy ra A là trung điểm của CK.

      c) Tính BA.

      Chứng minh A nằm giữa B và K. Tính BK = BA + AK.

      So sánh BK và AQ.

      Cách giải:

      Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều 2

       a) Vì AK < AQ (3cm < 4cm) nên K nằm giữa A và Q.

      => AK + KQ = AQ

      => 3 + KQ = 4

      => KQ = 4 – 3

      => KQ = 1 (cm)

      b) Vì C và K nằm trên hai tia đối An và Am nên A nằm giữa C và K.

      => CK = AC + AK

      => CK = 3 + 3

      => CK = 6 (cm)

      Ta có: A nằm giữa C và K.

      AC = AK = 3cm.

      => A là trung điểm của CK.

      c) Vì B là trung điểm của AC nên BA = AC : 2 = 3 : 2 = 1,5 (cm).

      Vì B, K nằm trên hai tia đối nhau An và Am nên A nằm giữa B và K.

      => BK = BA + AK

      => BK = 1,5 + 3

      => BK = 4,5 (cm)

      Mà AQ = 4 (cm)

      => BK > AQ.

      Bài 5

      Phương pháp

      Phân tích \(A = a + \dfrac{b}{{2 - n}}\), với \(a,\,\,b \in \mathbb{Z}\).

      Để \(A \in \mathbb{Z}\) thì \(2 - n \in U\left( b \right)\).

      Cách giải:

      \(\begin{array}{l}A = \dfrac{{3n - 4}}{{2 - n}} = \dfrac{{3n - 6 + 2}}{{ - n + 2}}\\\,\,\,\,\, = \dfrac{{3n - 6}}{{ - n + 2}} + \dfrac{2}{{ - n + 2}}\\\,\,\,\,\, = \dfrac{{ - 3\left( { - n + 2} \right)}}{{ - n + 2}} + \dfrac{2}{{ - n + 2}}\\\,\,\,\,\, = - 3 + \dfrac{2}{{ - n + 2}}\end{array}\)

      Để A nhận giá trị nguyên thì \( - 3 + \dfrac{2}{{ - n + 2}} \in \mathbb{Z} \Rightarrow \dfrac{2}{{ - n + 2}} \in \mathbb{Z}\)\( \Rightarrow - n + 2 \in \left\{ { \pm 1; \pm 2} \right\}\)

      Ta có bảng giá trị sau:

      \( - n + 2\)

      1

      -1

      2

      -2

      \(n\)

      1 (TM)

      3 (TM)

      0 (TM)

      4 (TM)

      Vậy \(n \in \left\{ {1;3;0;4} \right\}\).

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều – nội dung then chốt trong chuyên mục toán lớp 6 trên nền tảng đề thi toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi học kì 2 Toán 6 là một bước quan trọng trong quá trình học tập của các em học sinh. Để đạt kết quả tốt nhất, việc ôn tập và làm quen với các dạng đề thi là vô cùng cần thiết. Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều mà giaitoan.edu.vn cung cấp là một tài liệu hữu ích, giúp các em tự tin hơn khi bước vào phòng thi.

      Cấu trúc đề thi và các dạng bài tập

      Đề thi này bao gồm các dạng bài tập thường gặp trong chương trình Toán 6, sách Cánh diều, như:

      • Bài tập trắc nghiệm: Kiểm tra kiến thức cơ bản về các khái niệm, định nghĩa, tính chất.
      • Bài tập tự luận: Yêu cầu học sinh trình bày lời giải chi tiết, vận dụng kiến thức đã học để giải quyết các vấn đề cụ thể.
      • Bài tập ứng dụng: Liên hệ kiến thức Toán học với thực tế cuộc sống, giúp học sinh hiểu rõ hơn về tính ứng dụng của môn học.

      Nội dung chi tiết đề thi

      Đề thi bao gồm các chủ đề chính sau:

      1. Số tự nhiên: Các phép toán cộng, trừ, nhân, chia, tính chất chia hết, ước và bội.
      2. Phân số: Khái niệm phân số, so sánh phân số, các phép toán với phân số.
      3. Số thập phân: Khái niệm số thập phân, so sánh số thập phân, các phép toán với số thập phân.
      4. Hình học: Các khái niệm cơ bản về điểm, đường thẳng, đoạn thẳng, góc, tam giác, hình vuông, hình chữ nhật.

      Hướng dẫn giải chi tiết

      Giaitoan.edu.vn cung cấp đáp án chi tiết cho từng câu hỏi trong đề thi, giúp học sinh tự kiểm tra và đánh giá kết quả của mình. Ngoài ra, chúng tôi còn cung cấp các lời giải mẫu, giúp học sinh hiểu rõ hơn về cách giải quyết các bài tập khó.

      Lợi ích khi luyện tập với đề thi này

      • Nâng cao kiến thức: Giúp học sinh củng cố và hệ thống hóa kiến thức đã học.
      • Rèn luyện kỹ năng: Giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và áp dụng kiến thức vào thực tế.
      • Làm quen với cấu trúc đề thi: Giúp học sinh làm quen với cấu trúc đề thi, từ đó giảm bớt áp lực và căng thẳng khi bước vào phòng thi.
      • Đánh giá năng lực: Giúp học sinh tự đánh giá năng lực của mình, từ đó có kế hoạch ôn tập phù hợp.

      Lời khuyên khi làm bài thi

      Để đạt kết quả tốt nhất trong kỳ thi học kì 2 Toán 6, các em học sinh cần:

      • Ôn tập kỹ lưỡng: Ôn tập lại toàn bộ kiến thức đã học trong học kì.
      • Làm nhiều đề thi: Luyện tập với nhiều đề thi khác nhau để làm quen với các dạng bài tập.
      • Đọc kỹ đề bài: Đọc kỹ đề bài trước khi làm bài để hiểu rõ yêu cầu của đề.
      • Trình bày lời giải rõ ràng: Trình bày lời giải rõ ràng, mạch lạc để người chấm có thể hiểu được suy nghĩ của mình.
      • Kiểm tra lại bài làm: Kiểm tra lại bài làm sau khi làm xong để phát hiện và sửa lỗi.

      Tài liệu tham khảo thêm

      Ngoài đề thi này, các em học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách giáo khoa Toán 6 - Cánh diều
      • Sách bài tập Toán 6 - Cánh diều
      • Các trang web học toán online uy tín

      Kết luận

      Đề thi học kì 2 Toán 6 - Đề số 2 - Cánh diều là một tài liệu hữu ích, giúp các em học sinh ôn tập và chuẩn bị tốt nhất cho kỳ thi. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

      Tài liệu, đề thi và đáp án Toán 6