Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều

Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều

Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều, một công cụ ôn tập hiệu quả dành cho học sinh lớp 6. Đề thi được biên soạn theo chương trình Cánh diều, bao gồm các dạng bài tập khác nhau, giúp học sinh rèn luyện kỹ năng giải toán và củng cố kiến thức đã học.

Đề thi này không chỉ là bài kiểm tra năng lực mà còn là cơ hội để học sinh tự đánh giá quá trình học tập của mình, từ đó có kế hoạch ôn tập phù hợp.

Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Lời giải

    Phần I: Trắc nghiệm

    1. D

    2. B

    3. C

    4. C

    Câu 1

    Phương pháp:

    Thực hiện phép nhân hai số thập phân.

    Cách giải:

    Ta có: \(\left( { - 76,4} \right).\left( { - 1,2} \right) = 76,4.1,2 = 91,68\)

    Chọn D.

    Câu 2

    Phương pháp:

    Xác suất thực nghiệm xuất hiện sự kiện một mặt sấp là, một mặt ngửa là: Số lần xuất hiện sự kiện : Tổng số lần tung.

    Cách giải:

    Xác suất thực nghiệm xuất hiện sự kiện một mặt sấp là, một mặt ngửa là: \(\dfrac{{12}}{{20}} = \dfrac{3}{5}\).

    Chọn B.

    Câu 3

    Phương pháp:

    Vẽ hình minh họa chỉ ra phát biểu c) sai.

    Cách giải:

    Phát biểu c) sai, chẳng hạn: Hai tia \(Ox\) và \(Oy\) có chung gốc \(O\) nhưng không đối nhau (do không tạo thành một đường thẳng)

    Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều 1 1

    Chọn C.

    Câu 4

    Phương pháp:

    Một cạnh đi qua vạch số 0 ở phía nào thì đo theo vạch ở phía ấy.

    Góc nhọn có số đo nhỏ hơn \({90^0}\)

    Góc tù có số đo lớn hơn \({90^0}\)

    Bước 1: Đặt thước đo góc sao cho tâm của thước trùng với tâm \(O\) của góc, một cạnh của góc đi qua vạch \({0^0}\)

    Bước 2: Xem cạnh thứ hai của góc đi qua vạch nào của thước, từ đó tìm được số đo của góc đó.

    Cách giải:

    Cạnh \(Ox\) đi qua vạch số \({0^0}\) của thước đo góc

    Cạnh \(Oz\) đi qua vạch số \({60^0}\) của thước đo góc

    Do đó, số đo góc \(xOz\) là \({60^0}\)

    Chọn C.

    Phần II: Tự luận

    Bài 1

    Phương pháp:

    a) Cộng hai phân số cùng mẫu.

    b) Nhóm thích hợp các phân số cùng mẫu.

    c) Sử dụng tính chất phân phối của phép nhân và phép cộng.

    Cách giải:

    a) \(\dfrac{{ - 7}}{{16}} + \dfrac{3}{{16}}\)

    \(\begin{array}{l} = \dfrac{{ - 7 + 3}}{{16}}\\ = \dfrac{{ - 4}}{{16}}\\ = \dfrac{{ - 1}}{4}\end{array}\)

    b) \(\dfrac{1}{7} + \dfrac{{ - 9}}{{27}} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}\)

    \(\begin{array}{l} = \left( {\dfrac{1}{7} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}} \right) + \dfrac{{ - 1}}{3}\\ = \dfrac{{1 + 10 - 4}}{7} + \dfrac{{ - 1}}{3}\\ = \dfrac{7}{7} + \dfrac{{ - 1}}{3}\\ = \dfrac{3}{3} + \dfrac{{ - 1}}{3}\\ = \dfrac{{3 - 1}}{3}\\ = \dfrac{2}{3}\end{array}\)

    c) \(\dfrac{4}{9}.\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}.\dfrac{4}{9} + \dfrac{1}{3}\)

    \(\begin{array}{l} = \dfrac{4}{9}.\left( {\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}} \right) + \dfrac{1}{3}\\ = \dfrac{4}{9}\left( {\dfrac{{ - 7}}{{26}} + \dfrac{{ - 45}}{{26}}} \right) + \dfrac{1}{3}\\ = \dfrac{4}{9}.\dfrac{{ - 7 - 45}}{{26}} + \dfrac{1}{3}\\ = \dfrac{4}{9}.\left( { - 2} \right) + \dfrac{1}{3}\\ = \dfrac{{ - 8}}{9} + \dfrac{3}{9}\\ = \dfrac{{ - 8 + 3}}{9}\\ = \dfrac{{ - 5}}{9}\end{array}\)

    Bài 2 (VD):

    Phương pháp:

    Thực hiện bài toán thứ tự thực hiện phép tính ngược để tìm x.

    Cách giải:

    a) \(x + \dfrac{3}{5} = \dfrac{1}{{10}}\)

    \(\begin{array}{l}x = \dfrac{1}{{10}} - \dfrac{3}{5}\\x = \dfrac{1}{{10}} - \dfrac{6}{{10}}\\x = - \dfrac{5}{{10}}\\x = - \dfrac{1}{2}\end{array}\)

    b) \(\dfrac{2}{3}:x = 2,4 - \dfrac{4}{5}\)

    \(\begin{array}{l}\dfrac{2}{3}:x = \dfrac{{12}}{5} - \dfrac{4}{5}\\\dfrac{2}{3}:x = \dfrac{8}{5}\\\,\,\,\,\,\,\,x = \dfrac{2}{3}:\dfrac{8}{5}\\\,\,\,\,\,\,\,x = \dfrac{5}{{12}}\end{array}\)

    c) \(\dfrac{5}{4}\left( {x - \dfrac{3}{5}} \right) = \dfrac{{ - 1}}{8}\)

    \(\begin{array}{l}x - \dfrac{3}{5} = \dfrac{{ - 1}}{8}:\dfrac{5}{4}\\x - \dfrac{3}{5} = \dfrac{{ - 1}}{{10}}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{10}} + \dfrac{3}{5}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{10}} + \dfrac{6}{{10}}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{{10}} = \dfrac{1}{2}\end{array}\)

    Bài 3 (VD):

    Phương pháp:

    Áp dụng quy tắc: Muốn tìm \(\dfrac{m}{n}{\kern 1pt} \) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {m,n \in \mathbb{N},{\kern 1pt} {\kern 1pt} n \ne 0} \right).\)

    Cách giải:

    a) Phân số chỉ khối lượng khoai còn lại sau khi bán lần đầu là:

    \(1 - \dfrac{1}{5} = \dfrac{4}{5}\) (số khoai thu hoạch được)

    Phân số chỉ số khoai bán lần thứ hai là:

    \(\dfrac{3}{8}.\dfrac{4}{5} = \dfrac{3}{{10}}\) (số khoai thu hoạch được)

    Cả 2 lần bán được số khoai là:

    \(\dfrac{1}{5} + \dfrac{3}{{10}} = \dfrac{1}{2}\) (số khoai thu hoạch được)

    Phân số chỉ số khoai còn lại sau hai lần bán là:

    \(1 - \dfrac{1}{2} = \dfrac{1}{2}\) (số khoai thu hoạch được)

    Khối lượng khoai lang ông A thu hoạch được là:

    \(2,5:\dfrac{1}{2} = 5\) (tấn)

    b) Hai lần đầu ông A bán được số ki-lô-gam khoai là:

    \(\dfrac{1}{2}.5 = \dfrac{5}{2}\) (tấn)

    \(\dfrac{5}{2}\) tấn \( = 2,5\) tấn \( = 2500kg\)

    Tổng số tiền bán khoai lang hai lần đầu là:

    \(10000.2500 = 25000000\) (đồng)

    Số tiền bán khoai lang lần thứ ba là:

    \(2000.2500 = 5000000\) (đồng)

    Tỉ số phần trăm số tiền bán khoai lang lần thứ ba so với tổng số tiền bán khoai lang hai lần đầu là:

    \(5000000:25000000.100\% {\rm{\;}} = 20\% \)

    Bài 4 (VD):

    Phương pháp:

    - Vẽ đoạn thẳng khi biết độ dài

    - Tính độ dài đoạn thẳng, chứng minh trung điểm.

    Cách giải:

    Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều 1 2

    a) Do \(C\) thuộc đoạn thẳng \(AB\) nên: \(AC + CB = AB\)

    \(6 + CB = 9\)

    \(CB = 9 - 6 = 3cm\)

    Do \(C\) là trung điểm của đoạn thẳng \(NB\) nên: \(CN = CB = 3cm\)

    Do \(C\) là trung điểm của đoạn thẳng \(NB\) nên: \(BN = 2CB = 2.3 = 6cm\)

    b) Do \(N\) nằm giữa \(A\) và \(C\) nên: \(AN + NC = AC\)

    \(AN + 3 = 6\)

    \(AN = 6 - 3 = 3cm\)

    Ta có: \(AN = NC = 3cm\), \(N\) nằm giữa \(A\) và \(C\) nên \(N\) là trung điểm của đoạn thẳng \(AC\)

    Bài 5 (VDC):

    Phương pháp:

    Vận dụng rút gọn phân số.

    Cách giải:

    Gọi \(d = \)ƯCLN\(\left( {14n + 3,21n + 4} \right)\).

    Có \(14n + 3\) chia hết cho \(d\)và \(21n + 4\) chia hết cho \(d\).

    Từ đó suy ra: \(3.\left( {14n + 3} \right) - 2.\left( {21n + 4} \right) = 1\) chia hết cho \(d\).

    Vậy \(d = 1\) hay \(\dfrac{{14n + 3}}{{21 + 4}}\) là phân số tối giản.

    Đề bài

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Kết quả của phép tính \(\left( { - 76,4} \right).\left( { - 1,2} \right)\) là:

      A. \( - 91,68\)

      B. 9,168

      C. \( - 9,168\)

      D. 91,68

      Câu 2:Tung hai đồng xu cân đối và đồng chất 20 lần ta được kết quả như bảng dưới đây:

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều 0 1

      Xác suất thực nghiệm xuất hiện sự kiện một mặt sấp, một mặt ngửa là:

      A. \(\dfrac{1}{4}\)

      B. \(\dfrac{3}{5}\)

      C. \(\dfrac{3}{{20}}\)

      D. \(\dfrac{2}{5}\)

      Câu 3: Trong các phát biểu sau, phát biểu nào sai?

      a) Hai tia chung gốc \(Kp,\,Kg\) tạo thành đường thẳng \(pg\) gọi là hai tia đối nhau.

      b) Hai tia trùng nhau thì phải có chung điểm gốc.

      c) Hai tia có chung điểm gốc thì đối nhau.

      d) Điểm \(O\) nằm giữa đường thẳng \(xy\) tạo thành hai tia \(Ox\) và \(Oy\).

      A. Phát biểu a)

      B. Phát biểu b)

      C. Phát biểu c)

      D. Phát biểu d)

      Câu 4:Góc \(xOz\) có số đo là:

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều 0 2

      A. \({120^0}\)

      B. \({30^0}\)

      C. \({40^0}\)

      D. \({60^0}\)

      Phần II. Tự luận (8 điểm):

      Bài 1 (2 điểm)  Thực hiện phép tính (tính hợp lý nếu có thể):

      a) \(\dfrac{{ - 7}}{{16}} + \dfrac{3}{{16}}\)

      b) \(\dfrac{1}{7} + \dfrac{{ - 9}}{{27}} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}\)

      c) \(\dfrac{4}{9}.\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}.\dfrac{4}{9} + \dfrac{1}{3}\)

      Bài 2 (2 điểm)  Tìm x biết:

      a) \(x + \dfrac{3}{5} = \dfrac{1}{{10}}\)

      b) \(\dfrac{2}{3}:x = 2,4 - \dfrac{4}{5}\)

      c) \(\dfrac{5}{4}\left( {x - \dfrac{3}{5}} \right) = \dfrac{{ - 1}}{8}\)

      Bài 3 (1,5 điểm) Ông \(A\) ở Gia Lai thu hoạch khoai lang để bán cho thương lái xuất khẩu sang Trung Quốc. Lần đầu ông \(A\) bán được \(\dfrac{1}{5}\) khối lượng khoai lang thu hoạch được, lần thứ hai ông bán được \(\dfrac{3}{8}\) khối lượng khoai lang còn lại. Sau hai lần bán, do Trung Quốc không mua khoai lang nữa nên ông \(A\) còn 2,5 tấn khoai lang không bán được. Nhờ chương trình Giải cứu khoai lang cho đồng bào Gia Lai nên ông \(A\) mới bán được nốt khối lượng khoai lang còn lại.

      a) Hỏi khối lượng khoai lang ông \(A\) thu hoạch được là bao nhiêu?

      b) Tính tỉ số phần trăm số tiền bán khoai lang lần thứ ba so với tổng số tiền bán khoai lang hai lần đầu. Biết rằng giá khoai lang hai lần đầu đều là 10.000 đồng/kg và giá bán khoai lang trong chương trình “Giải cứu” là

      2.000 đồng/kg.

      Bài 4 (2 điểm)

      Vẽ đoạn thẳng\(AB = 9cm\). Lấy điểm \(C\)thuộc đoạn thẳng \(AB\) sao cho \(AC = 6cm\). Lấy điểm \(N\) nằm giữa \(A\) và \(C\) sao cho \(C\) là trung điểm của đoạn thẳng \(BN\).

      a) Tính \(NC\) và \(NB\).

      b) Chứng tỏ \(N\) là trung điểm của đoạn thẳng \(AC\).

      Bài 5 (0,5 điểm)

      Chứng tỏ \(\dfrac{{14n + 3}}{{21n + 4}}\) là phân số tối giản (\(n\) là số tự nhiên).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Kết quả của phép tính \(\left( { - 76,4} \right).\left( { - 1,2} \right)\) là:

      A. \( - 91,68\)

      B. 9,168

      C. \( - 9,168\)

      D. 91,68

      Câu 2:Tung hai đồng xu cân đối và đồng chất 20 lần ta được kết quả như bảng dưới đây:

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều 1

      Xác suất thực nghiệm xuất hiện sự kiện một mặt sấp, một mặt ngửa là:

      A. \(\dfrac{1}{4}\)

      B. \(\dfrac{3}{5}\)

      C. \(\dfrac{3}{{20}}\)

      D. \(\dfrac{2}{5}\)

      Câu 3: Trong các phát biểu sau, phát biểu nào sai?

      a) Hai tia chung gốc \(Kp,\,Kg\) tạo thành đường thẳng \(pg\) gọi là hai tia đối nhau.

      b) Hai tia trùng nhau thì phải có chung điểm gốc.

      c) Hai tia có chung điểm gốc thì đối nhau.

      d) Điểm \(O\) nằm giữa đường thẳng \(xy\) tạo thành hai tia \(Ox\) và \(Oy\).

      A. Phát biểu a)

      B. Phát biểu b)

      C. Phát biểu c)

      D. Phát biểu d)

      Câu 4:Góc \(xOz\) có số đo là:

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều 2

      A. \({120^0}\)

      B. \({30^0}\)

      C. \({40^0}\)

      D. \({60^0}\)

      Phần II. Tự luận (8 điểm):

      Bài 1 (2 điểm)  Thực hiện phép tính (tính hợp lý nếu có thể):

      a) \(\dfrac{{ - 7}}{{16}} + \dfrac{3}{{16}}\)

      b) \(\dfrac{1}{7} + \dfrac{{ - 9}}{{27}} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}\)

      c) \(\dfrac{4}{9}.\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}.\dfrac{4}{9} + \dfrac{1}{3}\)

      Bài 2 (2 điểm)  Tìm x biết:

      a) \(x + \dfrac{3}{5} = \dfrac{1}{{10}}\)

      b) \(\dfrac{2}{3}:x = 2,4 - \dfrac{4}{5}\)

      c) \(\dfrac{5}{4}\left( {x - \dfrac{3}{5}} \right) = \dfrac{{ - 1}}{8}\)

      Bài 3 (1,5 điểm) Ông \(A\) ở Gia Lai thu hoạch khoai lang để bán cho thương lái xuất khẩu sang Trung Quốc. Lần đầu ông \(A\) bán được \(\dfrac{1}{5}\) khối lượng khoai lang thu hoạch được, lần thứ hai ông bán được \(\dfrac{3}{8}\) khối lượng khoai lang còn lại. Sau hai lần bán, do Trung Quốc không mua khoai lang nữa nên ông \(A\) còn 2,5 tấn khoai lang không bán được. Nhờ chương trình Giải cứu khoai lang cho đồng bào Gia Lai nên ông \(A\) mới bán được nốt khối lượng khoai lang còn lại.

      a) Hỏi khối lượng khoai lang ông \(A\) thu hoạch được là bao nhiêu?

      b) Tính tỉ số phần trăm số tiền bán khoai lang lần thứ ba so với tổng số tiền bán khoai lang hai lần đầu. Biết rằng giá khoai lang hai lần đầu đều là 10.000 đồng/kg và giá bán khoai lang trong chương trình “Giải cứu” là

      2.000 đồng/kg.

      Bài 4 (2 điểm)

      Vẽ đoạn thẳng\(AB = 9cm\). Lấy điểm \(C\)thuộc đoạn thẳng \(AB\) sao cho \(AC = 6cm\). Lấy điểm \(N\) nằm giữa \(A\) và \(C\) sao cho \(C\) là trung điểm của đoạn thẳng \(BN\).

      a) Tính \(NC\) và \(NB\).

      b) Chứng tỏ \(N\) là trung điểm của đoạn thẳng \(AC\).

      Bài 5 (0,5 điểm)

      Chứng tỏ \(\dfrac{{14n + 3}}{{21n + 4}}\) là phân số tối giản (\(n\) là số tự nhiên).

      Phần I: Trắc nghiệm

      1. D

      2. B

      3. C

      4. C

      Câu 1

      Phương pháp:

      Thực hiện phép nhân hai số thập phân.

      Cách giải:

      Ta có: \(\left( { - 76,4} \right).\left( { - 1,2} \right) = 76,4.1,2 = 91,68\)

      Chọn D.

      Câu 2

      Phương pháp:

      Xác suất thực nghiệm xuất hiện sự kiện một mặt sấp là, một mặt ngửa là: Số lần xuất hiện sự kiện : Tổng số lần tung.

      Cách giải:

      Xác suất thực nghiệm xuất hiện sự kiện một mặt sấp là, một mặt ngửa là: \(\dfrac{{12}}{{20}} = \dfrac{3}{5}\).

      Chọn B.

      Câu 3

      Phương pháp:

      Vẽ hình minh họa chỉ ra phát biểu c) sai.

      Cách giải:

      Phát biểu c) sai, chẳng hạn: Hai tia \(Ox\) và \(Oy\) có chung gốc \(O\) nhưng không đối nhau (do không tạo thành một đường thẳng)

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều 3

      Chọn C.

      Câu 4

      Phương pháp:

      Một cạnh đi qua vạch số 0 ở phía nào thì đo theo vạch ở phía ấy.

      Góc nhọn có số đo nhỏ hơn \({90^0}\)

      Góc tù có số đo lớn hơn \({90^0}\)

      Bước 1: Đặt thước đo góc sao cho tâm của thước trùng với tâm \(O\) của góc, một cạnh của góc đi qua vạch \({0^0}\)

      Bước 2: Xem cạnh thứ hai của góc đi qua vạch nào của thước, từ đó tìm được số đo của góc đó.

      Cách giải:

      Cạnh \(Ox\) đi qua vạch số \({0^0}\) của thước đo góc

      Cạnh \(Oz\) đi qua vạch số \({60^0}\) của thước đo góc

      Do đó, số đo góc \(xOz\) là \({60^0}\)

      Chọn C.

      Phần II: Tự luận

      Bài 1

      Phương pháp:

      a) Cộng hai phân số cùng mẫu.

      b) Nhóm thích hợp các phân số cùng mẫu.

      c) Sử dụng tính chất phân phối của phép nhân và phép cộng.

      Cách giải:

      a) \(\dfrac{{ - 7}}{{16}} + \dfrac{3}{{16}}\)

      \(\begin{array}{l} = \dfrac{{ - 7 + 3}}{{16}}\\ = \dfrac{{ - 4}}{{16}}\\ = \dfrac{{ - 1}}{4}\end{array}\)

      b) \(\dfrac{1}{7} + \dfrac{{ - 9}}{{27}} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}\)

      \(\begin{array}{l} = \left( {\dfrac{1}{7} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}} \right) + \dfrac{{ - 1}}{3}\\ = \dfrac{{1 + 10 - 4}}{7} + \dfrac{{ - 1}}{3}\\ = \dfrac{7}{7} + \dfrac{{ - 1}}{3}\\ = \dfrac{3}{3} + \dfrac{{ - 1}}{3}\\ = \dfrac{{3 - 1}}{3}\\ = \dfrac{2}{3}\end{array}\)

      c) \(\dfrac{4}{9}.\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}.\dfrac{4}{9} + \dfrac{1}{3}\)

      \(\begin{array}{l} = \dfrac{4}{9}.\left( {\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}} \right) + \dfrac{1}{3}\\ = \dfrac{4}{9}\left( {\dfrac{{ - 7}}{{26}} + \dfrac{{ - 45}}{{26}}} \right) + \dfrac{1}{3}\\ = \dfrac{4}{9}.\dfrac{{ - 7 - 45}}{{26}} + \dfrac{1}{3}\\ = \dfrac{4}{9}.\left( { - 2} \right) + \dfrac{1}{3}\\ = \dfrac{{ - 8}}{9} + \dfrac{3}{9}\\ = \dfrac{{ - 8 + 3}}{9}\\ = \dfrac{{ - 5}}{9}\end{array}\)

      Bài 2 (VD):

      Phương pháp:

      Thực hiện bài toán thứ tự thực hiện phép tính ngược để tìm x.

      Cách giải:

      a) \(x + \dfrac{3}{5} = \dfrac{1}{{10}}\)

      \(\begin{array}{l}x = \dfrac{1}{{10}} - \dfrac{3}{5}\\x = \dfrac{1}{{10}} - \dfrac{6}{{10}}\\x = - \dfrac{5}{{10}}\\x = - \dfrac{1}{2}\end{array}\)

      b) \(\dfrac{2}{3}:x = 2,4 - \dfrac{4}{5}\)

      \(\begin{array}{l}\dfrac{2}{3}:x = \dfrac{{12}}{5} - \dfrac{4}{5}\\\dfrac{2}{3}:x = \dfrac{8}{5}\\\,\,\,\,\,\,\,x = \dfrac{2}{3}:\dfrac{8}{5}\\\,\,\,\,\,\,\,x = \dfrac{5}{{12}}\end{array}\)

      c) \(\dfrac{5}{4}\left( {x - \dfrac{3}{5}} \right) = \dfrac{{ - 1}}{8}\)

      \(\begin{array}{l}x - \dfrac{3}{5} = \dfrac{{ - 1}}{8}:\dfrac{5}{4}\\x - \dfrac{3}{5} = \dfrac{{ - 1}}{{10}}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{10}} + \dfrac{3}{5}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{10}} + \dfrac{6}{{10}}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{{10}} = \dfrac{1}{2}\end{array}\)

      Bài 3 (VD):

      Phương pháp:

      Áp dụng quy tắc: Muốn tìm \(\dfrac{m}{n}{\kern 1pt} \) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {m,n \in \mathbb{N},{\kern 1pt} {\kern 1pt} n \ne 0} \right).\)

      Cách giải:

      a) Phân số chỉ khối lượng khoai còn lại sau khi bán lần đầu là:

      \(1 - \dfrac{1}{5} = \dfrac{4}{5}\) (số khoai thu hoạch được)

      Phân số chỉ số khoai bán lần thứ hai là:

      \(\dfrac{3}{8}.\dfrac{4}{5} = \dfrac{3}{{10}}\) (số khoai thu hoạch được)

      Cả 2 lần bán được số khoai là:

      \(\dfrac{1}{5} + \dfrac{3}{{10}} = \dfrac{1}{2}\) (số khoai thu hoạch được)

      Phân số chỉ số khoai còn lại sau hai lần bán là:

      \(1 - \dfrac{1}{2} = \dfrac{1}{2}\) (số khoai thu hoạch được)

      Khối lượng khoai lang ông A thu hoạch được là:

      \(2,5:\dfrac{1}{2} = 5\) (tấn)

      b) Hai lần đầu ông A bán được số ki-lô-gam khoai là:

      \(\dfrac{1}{2}.5 = \dfrac{5}{2}\) (tấn)

      \(\dfrac{5}{2}\) tấn \( = 2,5\) tấn \( = 2500kg\)

      Tổng số tiền bán khoai lang hai lần đầu là:

      \(10000.2500 = 25000000\) (đồng)

      Số tiền bán khoai lang lần thứ ba là:

      \(2000.2500 = 5000000\) (đồng)

      Tỉ số phần trăm số tiền bán khoai lang lần thứ ba so với tổng số tiền bán khoai lang hai lần đầu là:

      \(5000000:25000000.100\% {\rm{\;}} = 20\% \)

      Bài 4 (VD):

      Phương pháp:

      - Vẽ đoạn thẳng khi biết độ dài

      - Tính độ dài đoạn thẳng, chứng minh trung điểm.

      Cách giải:

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều 4

      a) Do \(C\) thuộc đoạn thẳng \(AB\) nên: \(AC + CB = AB\)

      \(6 + CB = 9\)

      \(CB = 9 - 6 = 3cm\)

      Do \(C\) là trung điểm của đoạn thẳng \(NB\) nên: \(CN = CB = 3cm\)

      Do \(C\) là trung điểm của đoạn thẳng \(NB\) nên: \(BN = 2CB = 2.3 = 6cm\)

      b) Do \(N\) nằm giữa \(A\) và \(C\) nên: \(AN + NC = AC\)

      \(AN + 3 = 6\)

      \(AN = 6 - 3 = 3cm\)

      Ta có: \(AN = NC = 3cm\), \(N\) nằm giữa \(A\) và \(C\) nên \(N\) là trung điểm của đoạn thẳng \(AC\)

      Bài 5 (VDC):

      Phương pháp:

      Vận dụng rút gọn phân số.

      Cách giải:

      Gọi \(d = \)ƯCLN\(\left( {14n + 3,21n + 4} \right)\).

      Có \(14n + 3\) chia hết cho \(d\)và \(21n + 4\) chia hết cho \(d\).

      Từ đó suy ra: \(3.\left( {14n + 3} \right) - 2.\left( {21n + 4} \right) = 1\) chia hết cho \(d\).

      Vậy \(d = 1\) hay \(\dfrac{{14n + 3}}{{21 + 4}}\) là phân số tối giản.

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều – nội dung then chốt trong chuyên mục học toán lớp 6 trên nền tảng toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều: Phân tích chi tiết và hướng dẫn giải

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau một học kỳ học tập. Đề thi bao gồm các chủ đề chính như số tự nhiên, số nguyên, phân số, tỉ số, phần trăm và hình học cơ bản. Việc làm quen với cấu trúc đề thi và các dạng bài tập thường gặp là rất quan trọng để đạt kết quả tốt.

      Cấu trúc đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều

      Thông thường, đề thi học kì 2 Toán 6 - Cánh diều sẽ có cấu trúc gồm các phần sau:

      1. Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng nhận biết các khái niệm toán học.
      2. Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, thể hiện khả năng vận dụng kiến thức vào thực tế.
      3. Phần bài tập thực tế: Giao các bài toán liên quan đến tình huống thực tế, đòi hỏi học sinh phải phân tích và giải quyết vấn đề.

      Các dạng bài tập thường gặp trong đề thi

      • Bài tập về số tự nhiên: Tính toán, so sánh, tìm số lớn nhất, số nhỏ nhất, các phép toán với số tự nhiên.
      • Bài tập về số nguyên: Cộng, trừ, nhân, chia số nguyên, so sánh số nguyên, giá trị tuyệt đối của số nguyên.
      • Bài tập về phân số: Cộng, trừ, nhân, chia phân số, so sánh phân số, rút gọn phân số.
      • Bài tập về tỉ số và phần trăm: Tính tỉ số, tính phần trăm, giải bài toán về tỉ số và phần trăm.
      • Bài tập về hình học: Tính diện tích, chu vi của các hình cơ bản như hình vuông, hình chữ nhật, hình tam giác.

      Hướng dẫn giải một số bài tập tiêu biểu

      Bài 1: Tính giá trị của biểu thức: 12 + 3 x 4 - 5

      Hướng dẫn: Thực hiện các phép tính theo thứ tự ưu tiên: nhân, chia trước, cộng, trừ sau.

      12 + 3 x 4 - 5 = 12 + 12 - 5 = 24 - 5 = 19

      Bài 2: Tìm x biết: x + 5 = 10

      Hướng dẫn: Để tìm x, ta thực hiện phép trừ cả hai vế của phương trình cho 5.

      x + 5 - 5 = 10 - 5

      x = 5

      Lời khuyên để ôn thi hiệu quả

      • Nắm vững kiến thức cơ bản: Đọc kỹ sách giáo khoa, ghi chép đầy đủ các công thức và định nghĩa.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán.
      • Tìm hiểu cấu trúc đề thi: Làm quen với các dạng bài tập thường gặp trong đề thi.
      • Hỏi thầy cô giáo: Nếu gặp khó khăn, hãy hỏi thầy cô giáo để được hướng dẫn.
      • Giữ tâm lý thoải mái: Tự tin vào khả năng của mình và giữ tâm lý thoải mái khi làm bài thi.

      Tài liệu tham khảo hữu ích

      Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách bài tập Toán 6
      • Các trang web học toán online như giaitoan.edu.vn
      • Các video bài giảng Toán 6 trên YouTube

      Kết luận

      Đề thi học kì 2 Toán 6 - Đề số 4 - Cánh diều là một bài kiểm tra quan trọng, đòi hỏi học sinh phải chuẩn bị kỹ lưỡng. Hy vọng với những phân tích và hướng dẫn giải trên, các em học sinh sẽ tự tin hơn khi bước vào kỳ thi và đạt kết quả tốt nhất. Chúc các em thành công!

      Tài liệu, đề thi và đáp án Toán 6