Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 2: Phép cộng, phép trừ phân thức đại số Toán 8 Cánh diều

Trắc nghiệm Bài 2: Phép cộng, phép trừ phân thức đại số Toán 8 Cánh diều

Trắc nghiệm Bài 2: Phép cộng, phép trừ phân thức đại số Toán 8 Cánh diều

Bài tập trắc nghiệm này được thiết kế để giúp học sinh lớp 8 rèn luyện kỹ năng giải các bài toán liên quan đến phép cộng và phép trừ phân thức đại số trong chương trình Toán 8 Cánh diều. Bài trắc nghiệm bao gồm nhiều dạng câu hỏi khác nhau, từ cơ bản đến nâng cao, giúp học sinh củng cố kiến thức và chuẩn bị tốt cho các bài kiểm tra.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm phong phú, kèm theo đáp án chi tiết và lời giải thích dễ hiểu, giúp học sinh tự học hiệu quả và đạt kết quả tốt nhất.

Đề bài

    Câu 1 :

    Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:

    • A.
      \(\frac{{A.C}}{B}\)
    • B.
      \(\frac{{A + C}}{B}\)
    • C.
      \(\frac{{A + C}}{{2B}}\)
    • D.
      \(\frac{{A + C}}{{{B^2}}}\)
    Câu 2 :

    Chọn khẳng định đúng?

    • A.
      \(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{B - D}}\)
    • B.
      \(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BC}}\)
    • C.
      \(\frac{A}{B} - \frac{C}{D} = \frac{{AD - BC}}{{BD}}\)
    • D.
      \(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{BD}}\)
    Câu 3 :

    Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:

    • A.
      \(\frac{{2x + 1}}{{x + 1}}\)
    • B.
      \(\frac{{1 - 2x}}{{x + 1}}\)
    • C.
      \(\frac{{x + 1}}{{2x - 1}}\)
    • D.
      \(\frac{{x + 1}}{{1 - 2x}}\)
    Câu 4 :

    Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne - 2} \right)\)

    • A.
      \(x + 2\)
    • B.
      \(2x\)
    • C.
      \(x\)
    • D.
      \(x - 2\)
    Câu 5 :

    Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)

    • A.
      \(\frac{{ - 3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
    • B.
      \(\frac{{3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
    • C.
      \(\frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
    • D.
      \(\frac{{3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
    Câu 6 :

    Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?

    • A.
      \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}}\)
    • B.
      \(\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}}\)
    • C.
      \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
    • D.
      \(\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}}\)
    Câu 7 :

    Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:

    • A.
      \(\frac{{ - 2}}{{x - 3}}\)
    • B.
      \(\frac{{2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
    • C.
      \(\frac{2}{{x + 3}}\)
    • D.
      \(\frac{2}{{x - 3}}\)
    Câu 8 :

    Chọn câu đúng?

    • A.
      \(\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{{x - y}}{{x + y}}\)
    • B.
      \(\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\)
    • C.
      \(\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3x + 4}}{{18}}\)
    • D.
      \(\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{{3x + 5}}{{{x^2} - 1}}\)
    Câu 9 :

    Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)

    • A.
      \(A = \frac{{ - 6{x^2} + 2x - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
    • B.
      \(A = \frac{{6{x^2}}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
    • C.
      \(A = \frac{{6{x^2} + 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
    • D.
      \(A = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
    Câu 10 :

    Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:

    • A.
      \(A = \frac{{11}}{2}\)
    • B.
      \(A = \frac{{13}}{2}\)
    • C.
      \(A = \frac{{15}}{2}\)
    • D.
      \(A = \frac{{17}}{2}\)
    Câu 11 :

    Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)

    • A.
      \(B = \frac{1}{{2020}}\)
    • B.
      \(B = \frac{1}{{202000}}\)
    • C.
      \(B = \frac{1}{{200200}}\)
    • D.
      \(B = \frac{1}{{20200}}\)
    Câu 12 :

    Tìm \(x\), biết \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0\,\left( {x \ne \pm 3} \right)\)

    • A.
      \(x = 0\)
    • B.
      \(x = \frac{1}{2}\)
    • C.
      \(x = 1\)
    • D.
      \(x = \frac{3}{2}\)
    Câu 13 :

    Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)

    • A.
      \(A = 1\)
    • B.
      \(A = 0\)
    • C.
      \(A = \frac{1}{2}\)
    • D.
      \(A = \frac{{99}}{{100}}\)
    Câu 14 :

    Cho \(x;\,y;\,z\, \ne \pm 1\) và \(xy + yz + x{\rm{z}} = 1\). Chọn câu đúng?

    • A.
      \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
    • B.
      \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{3xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
    • C.
      \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
    • D.
      \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz\left( {x + y + z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
    Câu 15 :

    Tìm các số \(A;\,B;\,C\) để \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}}\)

    • A.
      \(A = 30;\,B = 15;\,C = - 2\)
    • B.
      \(A = 39;\,B = - 15;\,C = 2\)
    • C.
      \(A = 49;\,B = - 14;\,C = 2\)
    • D.
      \(A = 39;\,B = - 14;\,C = - 2\)
    Câu 16 :

    Cho \(3y - x = 6\). Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\).

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4
    Câu 17 :

    Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \(A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\) tại \(x = - \frac{3}{4}\)?

    • A.
      \(0 < A < 1\)
    • B.
      \(A = 0\)
    • C.
      \(A = 1\)
    • D.
      \(A = \frac{7}{4}\)
    Câu 18 :

    Rút gọn biểu thức \(A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\) ta được:

    • A.
      \(A = - 1\)
    • B.
      \(A = 0\)
    • C.
      \(A = 1\)
    • D.
      \(A = 2\)
    Câu 19 :

    Tìm giá trị nguyên của \(x\) để biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) có giá trị là một số nguyên.

    • A.
      \(x = 0\)
    • B.
      \(x = 1\)
    • C.
      \(x = \pm 1\)
    • D.
      \(x \in \left\{ {0;2} \right\}\)
    Câu 20 :

    Có bao nhiêu giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên?

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4
    Câu 21 :

    Rút gọn biểu thức \(A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x}\) biết \(x > \frac{1}{2};\,x \ne 1\):

    • A.
      \(\frac{1}{{2x\left( {x - 1} \right)}}\)
    • B.
      \(\frac{1}{{2x\left( {x + 1} \right)}}\)
    • C.
      \(\frac{2}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
    • D.
      \(\frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
    Câu 22 :

    Hãy tìm giá trị nhỏ nhất của biểu thức sau: \(A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}}\)

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      -1
    Câu 23 :

    Cho \(\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{...}}{{1 - {x^{16}}}}\). Số thích hợp điền vào chỗ trống là?

    • A.
      16
    • B.
      8
    • C.
      4
    • D.
      20
    Câu 24 :

    Cho \(a,\,b,\,c\)thỏa mãn \(abc = 2023\). Tính giá trị biểu thức sau: \(A = \frac{{2023{\rm{a}}}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\).

    • A.
      \(A = - 1\)
    • B.
      \(A = 0\)
    • C.
      \(A = 1\)
    • D.
      \(A = 2\)
    Câu 25 :

    Cho \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) và \(x + y + z \ne 0\). Tính giá trị của biểu thức \(A = \frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}\).

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      3
    Câu 26 :

    Cho ba số thực \(a,\,b,\,c\) đôi một phân biệt. Khẳng định nào sau đây là đúng?

    • A.
      \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \le 0\)
    • B.
      \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = 1\)
    • C.
      \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \ge 2\)
    • D.
      \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} > 4\)

    Lời giải và đáp án

    Câu 1 :

    Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:

    • A.
      \(\frac{{A.C}}{B}\)
    • B.
      \(\frac{{A + C}}{B}\)
    • C.
      \(\frac{{A + C}}{{2B}}\)
    • D.
      \(\frac{{A + C}}{{{B^2}}}\)

    Đáp án : B

    Phương pháp giải :

    Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.

    Lời giải chi tiết :

    \(\frac{A}{B} + \frac{C}{B} = \frac{{A + C}}{B}\)

    Câu 2 :

    Chọn khẳng định đúng?

    • A.
      \(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{B - D}}\)
    • B.
      \(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BC}}\)
    • C.
      \(\frac{A}{B} - \frac{C}{D} = \frac{{AD - BC}}{{BD}}\)
    • D.
      \(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{BD}}\)

    Đáp án : C

    Phương pháp giải :

    Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    Quy đồng mẫu thức \(\frac{A}{B}\) và \(\frac{C}{D}\):

    \(\frac{A}{B} = \frac{{AD}}{{BD}};\,\frac{C}{D} = \frac{{BC}}{{BD}}\)

    Do đó \(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BD}} - \frac{{BC}}{{BD}} = \frac{{AD - BC}}{{BD}}\)

    Câu 3 :

    Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:

    • A.
      \(\frac{{2x + 1}}{{x + 1}}\)
    • B.
      \(\frac{{1 - 2x}}{{x + 1}}\)
    • C.
      \(\frac{{x + 1}}{{2x - 1}}\)
    • D.
      \(\frac{{x + 1}}{{1 - 2x}}\)

    Đáp án : B

    Phương pháp giải :

    Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng 0.

    Lời giải chi tiết :

    Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là \( - \frac{{2x - 1}}{{x + 1}} = \frac{{1 - 2x}}{{x + 1}}\).

    Câu 4 :

    Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne - 2} \right)\)

    • A.
      \(x + 2\)
    • B.
      \(2x\)
    • C.
      \(x\)
    • D.
      \(x - 2\)

    Đáp án : D

    Phương pháp giải :

    Muốn trừ hai phân thức có cùng mẫu thức ta trừ các tử thức và giữ nguyên mẫu thức.

    Lời giải chi tiết :

    \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}} = \frac{{{x^2} - 4}}{{x + 2}} = \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} = \frac{{\left( {x - 2} \right)\left( {x + 2} \right):\left( {x + 2} \right)}}{{\left( {x + 2} \right):\left( {x + 2} \right)}} = \frac{{x - 2}}{1} = x - 2\)

    Câu 5 :

    Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)

    • A.
      \(\frac{{ - 3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
    • B.
      \(\frac{{3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
    • C.
      \(\frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
    • D.
      \(\frac{{3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)

    Đáp án : C

    Phương pháp giải :

    Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\\ \Rightarrow A = \frac{{x + 2}}{{3x + 5}} - \frac{{x - 1}}{2} = \frac{{\left( {x + 2} \right)2}}{{2\left( {3x + 5} \right)}} - \frac{{\left( {x - 1} \right)\left( {3x + 5} \right)}}{{2\left( {3x + 5} \right)}}\\ = \frac{{2x + 4}}{{2\left( {3x + 5} \right)}} - \frac{{3{x^2} - 3x + 5x - 5}}{{2\left( {3x + 5} \right)}} = \frac{{\left( {2x + 4} \right) - \left( {3{x^2} - 3x + 5x - 5} \right)}}{{2\left( {3x + 5} \right)}}\\ = \frac{{\left( {2x + 4} \right) - \left( {3{x^2} + 2x - 5} \right)}}{{2\left( {3x + 5} \right)}} = \frac{{2x + 4 - 3{x^2} - 2x + 5}}{{2\left( {3x + 5} \right)}} = \frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\end{array}\)

    Câu 6 :

    Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?

    • A.
      \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}}\)
    • B.
      \(\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}}\)
    • C.
      \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
    • D.
      \(\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}}\)

    Đáp án : C

    Phương pháp giải :

    Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    A.

    \(\begin{array}{l}\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} - 2x + 1 - {x^2} - 2x - 1}}{{{x^2} - 1}} = \frac{{ - 4x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)

    B.

    \(\begin{array}{l}\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}} = \frac{{\left( {2x - 1} \right)\left( {x - 1} \right) - \left( {2x + 1} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} - x - 2x + 1} \right) - \left( {2{x^2} + x + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} - 3x + 1} \right) - \left( {2{x^2} + 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} - 3x + 1 - 2{x^2} - 3x - 1}}{{{x^2} - 1}} = \frac{{ - 6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)

    C.

    \(\begin{array}{l}\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1}}{{{x^2} - 1}} = \frac{{4x}}{{{x^2} - 1}}\end{array}\)

    D.

    \(\begin{array}{l}\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}} = \frac{{\left( {2x + 1} \right)\left( {x + 1} \right) - \left( {2x - 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} + x + 2x + 1} \right) - \left( {2{x^2} - x - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} + 3x + 1} \right) - \left( {2{x^2} - 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} + 3x + 1 - 2{x^2} + 3x - 1}}{{{x^2} - 1}} = \frac{{6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)

    Vậy phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)

    Câu 7 :

    Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:

    • A.
      \(\frac{{ - 2}}{{x - 3}}\)
    • B.
      \(\frac{{2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
    • C.
      \(\frac{2}{{x + 3}}\)
    • D.
      \(\frac{2}{{x - 3}}\)

    Đáp án : D

    Phương pháp giải :

    Thay phép trừ bằng phép cộng với phân thức đối.

    Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}} = \frac{{3x + 21}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{2}{{x + 3}} + \frac{{ - 3}}{{x - 3}}\\ = \frac{{3x + 21}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{2\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} + \frac{{ - 3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{3x + 21 + 2\left( {x - 3} \right) - 3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{3x + 21 + 2x - 6 - 3x - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{2x + 6}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{2}{{x - 3}}\end{array}\)

    Câu 8 :

    Chọn câu đúng?

    • A.
      \(\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{{x - y}}{{x + y}}\)
    • B.
      \(\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\)
    • C.
      \(\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3x + 4}}{{18}}\)
    • D.
      \(\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{{3x + 5}}{{{x^2} - 1}}\)

    Đáp án : B

    Phương pháp giải :

    Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    A.

    \(\begin{array}{l}\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\\ = \frac{{x\left( {x + y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\\ = \frac{{{x^2} + xy + xy - {y^2} + 2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + 2xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{{\left( {x + y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{x + y}}{{x - y}} \ne \frac{{x - y}}{{x + y}}\end{array}\)

    B.

    \(\begin{array}{l}\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{3x + 2}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} - \frac{{2x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\\ = \frac{{\left( {3x + 2} \right) - \left( {2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} = \frac{{3x + 2 - 2x - 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\end{array}\)

    C.

    \(\begin{array}{l}\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3\left( {2x + 3} \right)}}{{18}} + \frac{{2\left( {x + 1} \right)}}{{18}} = \frac{{6x + 9}}{{18}} + \frac{{2x + 2}}{{18}}\\ = \frac{{6x + 9 + 2x + 2}}{{18}} = \frac{{8x + 11}}{{18}} \ne \frac{{3x + 4}}{{18}}\end{array}\)

    D.

    \(\begin{array}{l}\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{3}{{x - 1}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{3\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{3x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{3x + 3 + 2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{5x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \ne \frac{{3x + 5}}{{{x^2} - 1}}\end{array}\)

    Câu 9 :

    Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)

    • A.
      \(A = \frac{{ - 6{x^2} + 2x - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
    • B.
      \(A = \frac{{6{x^2}}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
    • C.
      \(A = \frac{{6{x^2} + 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
    • D.
      \(A = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

    Đáp án : D

    Phương pháp giải :

    Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}} = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \left( {\frac{{x - 5}}{{{x^2} + x + 1}} + \frac{7}{{x - 1}}} \right)\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{\left( {x - 5} \right)\left( {x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7\left( {{x^2} + x + 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{{x^2} - 5x - x + 5}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7{x^2} + 7x + 7}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} - 5x - x + 5 + 7{x^2} + 7x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{8{x^2} + x + 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{\left( {2{x^2} + x - 3} \right) - \left( {8{x^2} + x + 12} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{2{x^2} + x - 3 - 8{x^2} - x - 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\end{array}\)

    Câu 10 :

    Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:

    • A.
      \(A = \frac{{11}}{2}\)
    • B.
      \(A = \frac{{13}}{2}\)
    • C.
      \(A = \frac{{15}}{2}\)
    • D.
      \(A = \frac{{17}}{2}\)

    Đáp án : D

    Phương pháp giải :

    Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}} = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{5.2\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4x\left( {2x - 3} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{20x - 10}}{{4x\left( {2x - 1} \right)}} + \frac{{8{x^2} - 12x}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{20x - 10 + 8{x^2} - 12x + 4{x^2} + 3}}{{4x\left( {2x - 1} \right)}} = \frac{{12{x^2} + 8x - 7}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{12{x^2} - 6x + 14x - 7}}{{4x\left( {2x - 1} \right)}} = \frac{{6x\left( {2x - 1} \right) + 7\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{\left( {6x + 7} \right)\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} = \frac{{6x + 7}}{{4x}}\end{array}\)

    Với \(x = \frac{1}{4}\) ta có: \(A = \frac{{6 \cdot \frac{1}{4} + 7}}{{4 \cdot \frac{1}{4}}} = \frac{{\frac{3}{2} + 7}}{1} = \frac{3}{2} + 7 = \frac{3}{2} + \frac{{14}}{2} = \frac{{17}}{2}\)

    Câu 11 :

    Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)

    • A.
      \(B = \frac{1}{{2020}}\)
    • B.
      \(B = \frac{1}{{202000}}\)
    • C.
      \(B = \frac{1}{{200200}}\)
    • D.
      \(B = \frac{1}{{20200}}\)

    Đáp án : B

    Phương pháp giải :

    Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}} = \frac{{x - 3}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} - \frac{{x - 23}}{{\left( {x - 23} \right)\left( {x - 3} \right)}}\\ = \frac{{\left( {x - 3} \right) - \left( {x - 23} \right)}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} = \frac{{x - 3 - x + 23}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} = \frac{{20}}{{\left( {x - 23} \right)\left( {x - 3} \right)}}\end{array}\)

    Với \(x = 2023\), ta có: \(B = \frac{{20}}{{\left( {2023 - 23} \right)\left( {2023 - 3} \right)}} = \frac{{20}}{{2000.2020}} = \frac{{20}}{{20.100.2020}} = \frac{1}{{100.2020}} = \frac{1}{{202000}}\)

    Câu 12 :

    Tìm \(x\), biết \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0\,\left( {x \ne \pm 3} \right)\)

    • A.
      \(x = 0\)
    • B.
      \(x = \frac{1}{2}\)
    • C.
      \(x = 1\)
    • D.
      \(x = \frac{3}{2}\)

    Đáp án : D

    Phương pháp giải :

    Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = \frac{2}{{x + 3}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{2\left( {x - 3} \right) + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 6 + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\end{array}\)

    \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0 \Leftrightarrow \frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = 0 \Leftrightarrow 2x - 3 = 0 \Leftrightarrow 2x = 3 \Leftrightarrow x = \frac{3}{2}\)

    Câu 13 :

    Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)

    • A.
      \(A = 1\)
    • B.
      \(A = 0\)
    • C.
      \(A = \frac{1}{2}\)
    • D.
      \(A = \frac{{99}}{{100}}\)

    Đáp án : D

    Phương pháp giải :

    Sử dụng công thức \(\frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{n} - \frac{1}{{n + 1}}\)

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\\ = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{2} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + ... + \left( {\frac{1}{{99}} - \frac{1}{{100}}} \right)\\ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{99}} - \frac{1}{{100}}\\ = 1 - \frac{1}{{100}} = \frac{{99}}{{100}}\end{array}\)

    Câu 14 :

    Cho \(x;\,y;\,z\, \ne \pm 1\) và \(xy + yz + x{\rm{z}} = 1\). Chọn câu đúng?

    • A.
      \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
    • B.
      \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{3xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
    • C.
      \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
    • D.
      \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz\left( {x + y + z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)

    Đáp án : C

    Phương pháp giải :

    Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}}\\ = \frac{{x\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right) + y\left( {1 - {x^2}} \right)\left( {1 - {z^2}} \right) + z\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x\left( {1 - {y^2} - {z^2} + {y^2}{z^2}} \right) + y\left( {1 - {x^2} - {z^2} + {x^2}{z^2}} \right) + z\left( {1 - {x^2} - {y^2} + {x^2}{y^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x - x{y^2} - x{z^2} + x{y^2}{z^2} + y - {x^2}y - y{z^2} + {x^2}y{z^2} + z - {x^2}z - {y^2}z + {x^2}{y^2}z}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{\left( {x - {x^2}y - {x^2}z} \right) + \left( {y - x{y^2} - {y^2}z} \right) + \left( {z - x{{\rm{z}}^2} - y{z^2}} \right) + \left( {x{y^2}{z^2} + {x^2}y{z^2} + {x^2}{y^2}z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x\left( {1 - xy - x{\rm{z}}} \right) + y\left( {1 - xy - yz} \right) + z\left( {1 - x{\rm{z}} - yz} \right) + xyz\left( {yz + x{\rm{z}} + xy} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x.yz + y.x{\rm{z}} + z.xy + xyz.1}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\end{array}\)

    Câu 15 :

    Tìm các số \(A;\,B;\,C\) để \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}}\)

    • A.
      \(A = 30;\,B = 15;\,C = - 2\)
    • B.
      \(A = 39;\,B = - 15;\,C = 2\)
    • C.
      \(A = 49;\,B = - 14;\,C = 2\)
    • D.
      \(A = 39;\,B = - 14;\,C = - 2\)

    Đáp án : B

    Phương pháp giải :

    Tính tổng \(\frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{{{\left( {x + 3} \right)}^3}}}\) sau đó đồng nhất hệ số.

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{{{\left( {x + 3} \right)}^3}}} = \frac{{A + B\left( {x + 3} \right) + C{{\left( {x + 3} \right)}^2}}}{{{{\left( {x + 3} \right)}^3}}}\\ = \frac{{A + B\left( {x + 3} \right) + C\left( {{x^2} + 6x + 9} \right)}}{{{{\left( {x + 3} \right)}^3}}} = \frac{{A + Bx + 3B + C{x^2} + 6Cx + 9C}}{{{{\left( {x + 3} \right)}^3}}}\\ = \frac{{C{x^2} + \left( {B + 6C} \right)x + \left( {A + 3B + 9C} \right)}}{{{{\left( {x + 3} \right)}^3}}}\end{array}\)

    \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}} \Leftrightarrow \left\{ \begin{array}{l}C = 2\\B + 6C = - 3\\A + 3B + 9C = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}A = 39\\B = - 15\\C = 2\end{array} \right.\)

    Câu 16 :

    Cho \(3y - x = 6\). Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\).

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4

    Đáp án : D

    Phương pháp giải :

    Từ điều kiện \(3y - x = 6\) thay \(x = 3y - 6\) vào biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\) sau đó rút gọn biểu thức \(A\).

    Lời giải chi tiết :

    Ta có: \(3y - x = 6\) suy ra \(x = 3y - 6\)

    Thay \(x = 3y - 6\) vào \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\) ta được:

    \(A = \frac{{3y - 6}}{{y - 2}} + \frac{{2\left( {3y - 6} \right) - 3y}}{{3y - 6 - 6}} \\= \frac{{3\left( {y - 2} \right)}}{{y - 2}} + \frac{{6y - 12 - 3y}}{{3y - 12}} \\= 3 + \frac{{3y - 12}}{{3y - 12}} = 3 + 1 = 4\)

    Câu 17 :

    Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \(A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\) tại \(x = - \frac{3}{4}\)?

    • A.
      \(0 < A < 1\)
    • B.
      \(A = 0\)
    • C.
      \(A = 1\)
    • D.
      \(A = \frac{7}{4}\)

    Đáp án : A

    Phương pháp giải :

    Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Thay phép trừ bằng phép cộng với phân thức đối.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} + \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12\left( {x + 2} \right) + \left( {3 - x} \right)}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12x + 24 + 3 - x}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}\\ = \frac{{10\left( {x + 3} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\\ = \frac{{10\left( {x + 3} \right) - \left( {11x + 27} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{{10x + 30 - 11x - 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\\ = \frac{{ - x + 3}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\end{array}\)

    Tại \(x = - \frac{3}{4}\) ta có \(A = \frac{1}{{\left( {\frac{{ - 3}}{4} + 2} \right)\left( {\frac{{ - 3}}{4} + 3} \right)}} = \frac{1}{{\frac{5}{4} \cdot \frac{9}{4}}} = \frac{1}{{\frac{{45}}{{16}}}} = \frac{{16}}{{45}}\)

    Vậy \(0 < A < 1\).

    Câu 18 :

    Rút gọn biểu thức \(A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\) ta được:

    • A.
      \(A = - 1\)
    • B.
      \(A = 0\)
    • C.
      \(A = 1\)
    • D.
      \(A = 2\)

    Đáp án : A

    Phương pháp giải :

    Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - b + b - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {ab - ac} \right)\left( {a - b} \right) + \left( {bc - ac} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{a\left( {b - c} \right)\left( {a - b} \right) - c\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = - 1\end{array}\)

    Câu 19 :

    Tìm giá trị nguyên của \(x\) để biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) có giá trị là một số nguyên.

    • A.
      \(x = 0\)
    • B.
      \(x = 1\)
    • C.
      \(x = \pm 1\)
    • D.
      \(x \in \left\{ {0;2} \right\}\)

    Đáp án : D

    Phương pháp giải :

    Rút gọn biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) sau đó tìm giá trị nguyên của \(x\) mẫu thức là ước của tử thức.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\\ = \frac{{6{x^2} + 8x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\\ = \frac{{6{x^2} + 8x + 7 + x\left( {x - 1} \right) - 6\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{6{x^2} + 8x + 7 + {x^2} - x - 6{x^2} - 6x - 6}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{{x^2} + x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{1}{{x - 1}}\end{array}\)

    Để \(A \in \mathbb{Z} \Leftrightarrow \frac{1}{{x - 1}} \in \mathbb{Z} \Rightarrow \left( {x - 1} \right) \in U\left( 1 \right) = \left\{ { \pm 1} \right\}\)

    \( \Leftrightarrow \left[ \begin{array}{l}x - 1 = - 1\\x - 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\,\left( {{\rm{t/m}}\,x \ne 1} \right)\)

    Câu 20 :

    Có bao nhiêu giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên?

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4

    Đáp án : C

    Phương pháp giải :

    Thay phép trừ bằng phép cộng với phân thức đối.

    Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    Điều kiện: \(\left\{ \begin{array}{l}x - 3 \ne 0\\4 - {x^2} \ne 0\\{x^3} - 3{x^2} - 4x + 12 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x \ne \pm 2\end{array} \right.\)

    \(\begin{array}{l}A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\\ = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^2}\left( {x - 3} \right) - 4\left( {x - 3} \right)}}\\ = \frac{3}{{x - 3}} + \frac{{{x^2}}}{{{x^2} - 4}} - \frac{{4x - 12}}{{\left( {{x^2} - 4} \right)\left( {x - 3} \right)}}\\ = \frac{{3\left( {{x^2} - 4} \right) + {x^2}\left( {x - 3} \right) - \left( {4x - 12} \right)}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}}\\ = \frac{{3{x^2} - 12 + {x^3} - 3{x^2} - 4x + 12}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}}\\ = \frac{{{x^3} - 4x}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}} = \frac{{x\left( {{x^2} - 4} \right)}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}} = \frac{x}{{x - 3}} = 1 + \frac{3}{{x - 3}}\end{array}\)

    Để \(A \in \mathbb{Z} \Rightarrow \frac{3}{{x - 3}} \in \mathbb{Z} \Rightarrow \left( {x - 3} \right) \in U\left( 3 \right) = \left\{ { \pm 1; \pm 3} \right\}\)

    \( \Leftrightarrow \left[ \begin{array}{l}x - 3 = - 3\\x - 3 = - 1\\x - 3 = 1\\x - 3 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\,\left( {{\rm{t/m}}} \right)\\x = 2\,\left( {{\rm{ko}}\,\,{\rm{t/m}}} \right)\\x = 4\,\left( {{\rm{t/m}}} \right)\\x = 6\,\left( {{\rm{t/m}}} \right)\end{array} \right.\)

    Vậy có 3 giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên.

    Câu 21 :

    Rút gọn biểu thức \(A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x}\) biết \(x > \frac{1}{2};\,x \ne 1\):

    • A.
      \(\frac{1}{{2x\left( {x - 1} \right)}}\)
    • B.
      \(\frac{1}{{2x\left( {x + 1} \right)}}\)
    • C.
      \(\frac{2}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
    • D.
      \(\frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)

    Đáp án : A

    Phương pháp giải :

    Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x} = \frac{3}{{2x\left( {x + 1} \right)}} + \frac{{2x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{2}{x}\\ = \frac{{3\left( {x - 1} \right) + 2x\left( {2x - 1} \right) - 4\left( {x - 1} \right)\left( {x + 1} \right)}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{3x - 3 + 4{x^2} - 2x - 4{x^2} + 4}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{x + 1}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{1}{{2x\left( {x - 1} \right)}}\end{array}\)

    Câu 22 :

    Hãy tìm giá trị nhỏ nhất của biểu thức sau: \(A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}}\)

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      -1

    Đáp án : A

    Phương pháp giải :

    Muốn trừ hai phân thức có cùng mẫu thức ta trừ các tử thức và giữ nguyên mẫu thức.

    Lời giải chi tiết :

    Điều kiện: \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right.\)

    \(\begin{array}{l}A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}} = \left( {\frac{{{x^3}}}{{x - 1}} - \frac{1}{{x - 1}}} \right) - \left( {\frac{{{x^2}}}{{x + 1}} - \frac{1}{{x + 1}}} \right)\\ = \frac{{{x^3} - 1}}{{x - 1}} - \frac{{{x^2} - 1}}{{x + 1}} = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}}\\ = \left( {{x^2} + x + 1} \right) - \left( {x - 1} \right) = {x^2} + x + 1 - x + 1 = {x^2} + 2\end{array}\)

    Ta có \({x^2} \ge 0\forall x \Rightarrow {x^2} + 2 \ge 2\forall x\) hay \(A \ge 2\)

    Dấu “=” xảy ra \( \Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\)

    Vậy \(MinA = 0\) khi \(x = 0\).

    Câu 23 :

    Cho \(\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{...}}{{1 - {x^{16}}}}\). Số thích hợp điền vào chỗ trống là?

    • A.
      16
    • B.
      8
    • C.
      4
    • D.
      20

    Đáp án : A

    Phương pháp giải :

    Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{1 + x + 1 - x}}{{\left( {1 - x} \right)\left( {1 + x} \right)}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}}\\ = \frac{2}{{1 - {x^2}}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{2\left( {1 + {x^2}} \right) + 2\left( {1 - {x^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 + {x^2}} \right)}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}}\\ = \frac{4}{{1 - {x^4}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{4\left( {1 + {x^4}} \right) + 4\left( {1 - {x^4}} \right)}}{{\left( {1 - {x^4}} \right)\left( {1 + {x^4}} \right)}} + \frac{8}{{1 + {x^8}}}\\ = \frac{8}{{1 - {x^8}}} + \frac{8}{{1 + {x^8}}} = \frac{{8\left( {1 + {x^8}} \right) + 8\left( {1 - {x^8}} \right)}}{{\left( {1 - {x^8}} \right)\left( {1 + {x^8}} \right)}} = \frac{{16}}{{1 - {x^{16}}}}\end{array}\)

    Câu 24 :

    Cho \(a,\,b,\,c\)thỏa mãn \(abc = 2023\). Tính giá trị biểu thức sau: \(A = \frac{{2023{\rm{a}}}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\).

    • A.
      \(A = - 1\)
    • B.
      \(A = 0\)
    • C.
      \(A = 1\)
    • D.
      \(A = 2\)

    Đáp án : C

    Phương pháp giải :

    Thay \(2023 = abc\) vào biểu thức \(A\) sau đó rút gọn biểu thức \(A\).

    Lời giải chi tiết :

    Thay \(2023 = abc\) vào biểu thức \(A\) ta được:

    \(\begin{array}{l}\frac{{2023a}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \frac{b}{{bc + b + abc}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \frac{b}{{b\left( {c + 1 + ac} \right)}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{ac}}{{1 + ac + c}} + \frac{1}{{c + 1 + ac}} + \frac{c}{{ac + 1 + c}} = 1\end{array}\)

    Câu 25 :

    Cho \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) và \(x + y + z \ne 0\). Tính giá trị của biểu thức \(A = \frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}\).

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      3

    Đáp án : B

    Phương pháp giải :

    Từ điều kiện \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) dễ dàng có được \(x + y + z = x + y + z + 0 = x + y + z + \frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}}\).

    Lời giải chi tiết :

    \(\begin{array}{l}x + y + z = x + y + z + 0 = x + y + z + \frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}}\\ = \left( {x + \frac{{{x^2}}}{{y + z}}} \right) + \left( {y + \frac{{{y^2}}}{{x + z}}} \right) + \left( {z + \frac{{{z^2}}}{{x + y}}} \right)\\ = x\left( {1 + \frac{x}{{y + z}}} \right) + y\left( {1 + \frac{y}{{x + z}}} \right) + z\left( {1 + \frac{z}{{x + y}}} \right)\\ = x\left( {\frac{{x + y + z}}{{y + z}}} \right) + y\left( {\frac{{x + y + z}}{{x + z}}} \right) + z\left( {\frac{{x + y + z}}{{x + y}}} \right)\\ = \left( {x + y + z} \right)\left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right)\\ \Rightarrow x + y + z = \left( {x + y + z} \right)\left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right)\\ \Rightarrow \left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right) = 1\end{array}\)

    Câu 26 :

    Cho ba số thực \(a,\,b,\,c\) đôi một phân biệt. Khẳng định nào sau đây là đúng?

    • A.
      \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \le 0\)
    • B.
      \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = 1\)
    • C.
      \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \ge 2\)
    • D.
      \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} > 4\)

    Đáp án : C

    Phương pháp giải :

    Sử dụng công thức \(\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}} = - 1\).

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = {\left( {\frac{a}{{b - c}}} \right)^2} + {\left( {\frac{b}{{c - a}}} \right)^2} + {\left( {\frac{c}{{a - b}}} \right)^2}\\ = {\left( {\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}}} \right)^2} - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\\ \ge - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\end{array}\)

    (Vì \({\left( {\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}}} \right)^2} \ge 0\forall a,\,b,\,c\) đôi một khác nhau)

    Mà \(\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\)

    \(\begin{array}{l} = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - b + b - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {ab - ac} \right)\left( {a - b} \right) + \left( {bc - ac} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{a\left( {b - c} \right)\left( {a - b} \right) - c\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = - 1\end{array}\)

    \(\begin{array}{l} \Rightarrow \frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}}\\ \ge - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\\ = \left( { - 2} \right)\left( { - 1} \right) = 2\end{array}\)

    Lời giải và đáp án

      Câu 1 :

      Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:

      • A.
        \(\frac{{A.C}}{B}\)
      • B.
        \(\frac{{A + C}}{B}\)
      • C.
        \(\frac{{A + C}}{{2B}}\)
      • D.
        \(\frac{{A + C}}{{{B^2}}}\)
      Câu 2 :

      Chọn khẳng định đúng?

      • A.
        \(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{B - D}}\)
      • B.
        \(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BC}}\)
      • C.
        \(\frac{A}{B} - \frac{C}{D} = \frac{{AD - BC}}{{BD}}\)
      • D.
        \(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{BD}}\)
      Câu 3 :

      Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:

      • A.
        \(\frac{{2x + 1}}{{x + 1}}\)
      • B.
        \(\frac{{1 - 2x}}{{x + 1}}\)
      • C.
        \(\frac{{x + 1}}{{2x - 1}}\)
      • D.
        \(\frac{{x + 1}}{{1 - 2x}}\)
      Câu 4 :

      Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne - 2} \right)\)

      • A.
        \(x + 2\)
      • B.
        \(2x\)
      • C.
        \(x\)
      • D.
        \(x - 2\)
      Câu 5 :

      Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)

      • A.
        \(\frac{{ - 3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
      • B.
        \(\frac{{3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
      • C.
        \(\frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
      • D.
        \(\frac{{3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
      Câu 6 :

      Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?

      • A.
        \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}}\)
      • B.
        \(\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}}\)
      • C.
        \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
      • D.
        \(\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}}\)
      Câu 7 :

      Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:

      • A.
        \(\frac{{ - 2}}{{x - 3}}\)
      • B.
        \(\frac{{2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
      • C.
        \(\frac{2}{{x + 3}}\)
      • D.
        \(\frac{2}{{x - 3}}\)
      Câu 8 :

      Chọn câu đúng?

      • A.
        \(\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{{x - y}}{{x + y}}\)
      • B.
        \(\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\)
      • C.
        \(\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3x + 4}}{{18}}\)
      • D.
        \(\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{{3x + 5}}{{{x^2} - 1}}\)
      Câu 9 :

      Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)

      • A.
        \(A = \frac{{ - 6{x^2} + 2x - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
      • B.
        \(A = \frac{{6{x^2}}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
      • C.
        \(A = \frac{{6{x^2} + 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
      • D.
        \(A = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
      Câu 10 :

      Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:

      • A.
        \(A = \frac{{11}}{2}\)
      • B.
        \(A = \frac{{13}}{2}\)
      • C.
        \(A = \frac{{15}}{2}\)
      • D.
        \(A = \frac{{17}}{2}\)
      Câu 11 :

      Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)

      • A.
        \(B = \frac{1}{{2020}}\)
      • B.
        \(B = \frac{1}{{202000}}\)
      • C.
        \(B = \frac{1}{{200200}}\)
      • D.
        \(B = \frac{1}{{20200}}\)
      Câu 12 :

      Tìm \(x\), biết \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0\,\left( {x \ne \pm 3} \right)\)

      • A.
        \(x = 0\)
      • B.
        \(x = \frac{1}{2}\)
      • C.
        \(x = 1\)
      • D.
        \(x = \frac{3}{2}\)
      Câu 13 :

      Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)

      • A.
        \(A = 1\)
      • B.
        \(A = 0\)
      • C.
        \(A = \frac{1}{2}\)
      • D.
        \(A = \frac{{99}}{{100}}\)
      Câu 14 :

      Cho \(x;\,y;\,z\, \ne \pm 1\) và \(xy + yz + x{\rm{z}} = 1\). Chọn câu đúng?

      • A.
        \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
      • B.
        \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{3xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
      • C.
        \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
      • D.
        \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz\left( {x + y + z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
      Câu 15 :

      Tìm các số \(A;\,B;\,C\) để \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}}\)

      • A.
        \(A = 30;\,B = 15;\,C = - 2\)
      • B.
        \(A = 39;\,B = - 15;\,C = 2\)
      • C.
        \(A = 49;\,B = - 14;\,C = 2\)
      • D.
        \(A = 39;\,B = - 14;\,C = - 2\)
      Câu 16 :

      Cho \(3y - x = 6\). Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\).

      • A.
        1
      • B.
        2
      • C.
        3
      • D.
        4
      Câu 17 :

      Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \(A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\) tại \(x = - \frac{3}{4}\)?

      • A.
        \(0 < A < 1\)
      • B.
        \(A = 0\)
      • C.
        \(A = 1\)
      • D.
        \(A = \frac{7}{4}\)
      Câu 18 :

      Rút gọn biểu thức \(A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\) ta được:

      • A.
        \(A = - 1\)
      • B.
        \(A = 0\)
      • C.
        \(A = 1\)
      • D.
        \(A = 2\)
      Câu 19 :

      Tìm giá trị nguyên của \(x\) để biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) có giá trị là một số nguyên.

      • A.
        \(x = 0\)
      • B.
        \(x = 1\)
      • C.
        \(x = \pm 1\)
      • D.
        \(x \in \left\{ {0;2} \right\}\)
      Câu 20 :

      Có bao nhiêu giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên?

      • A.
        1
      • B.
        2
      • C.
        3
      • D.
        4
      Câu 21 :

      Rút gọn biểu thức \(A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x}\) biết \(x > \frac{1}{2};\,x \ne 1\):

      • A.
        \(\frac{1}{{2x\left( {x - 1} \right)}}\)
      • B.
        \(\frac{1}{{2x\left( {x + 1} \right)}}\)
      • C.
        \(\frac{2}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
      • D.
        \(\frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
      Câu 22 :

      Hãy tìm giá trị nhỏ nhất của biểu thức sau: \(A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}}\)

      • A.
        0
      • B.
        1
      • C.
        2
      • D.
        -1
      Câu 23 :

      Cho \(\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{...}}{{1 - {x^{16}}}}\). Số thích hợp điền vào chỗ trống là?

      • A.
        16
      • B.
        8
      • C.
        4
      • D.
        20
      Câu 24 :

      Cho \(a,\,b,\,c\)thỏa mãn \(abc = 2023\). Tính giá trị biểu thức sau: \(A = \frac{{2023{\rm{a}}}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\).

      • A.
        \(A = - 1\)
      • B.
        \(A = 0\)
      • C.
        \(A = 1\)
      • D.
        \(A = 2\)
      Câu 25 :

      Cho \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) và \(x + y + z \ne 0\). Tính giá trị của biểu thức \(A = \frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}\).

      • A.
        0
      • B.
        1
      • C.
        2
      • D.
        3
      Câu 26 :

      Cho ba số thực \(a,\,b,\,c\) đôi một phân biệt. Khẳng định nào sau đây là đúng?

      • A.
        \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \le 0\)
      • B.
        \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = 1\)
      • C.
        \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \ge 2\)
      • D.
        \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} > 4\)
      Câu 1 :

      Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:

      • A.
        \(\frac{{A.C}}{B}\)
      • B.
        \(\frac{{A + C}}{B}\)
      • C.
        \(\frac{{A + C}}{{2B}}\)
      • D.
        \(\frac{{A + C}}{{{B^2}}}\)

      Đáp án : B

      Phương pháp giải :

      Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.

      Lời giải chi tiết :

      \(\frac{A}{B} + \frac{C}{B} = \frac{{A + C}}{B}\)

      Câu 2 :

      Chọn khẳng định đúng?

      • A.
        \(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{B - D}}\)
      • B.
        \(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BC}}\)
      • C.
        \(\frac{A}{B} - \frac{C}{D} = \frac{{AD - BC}}{{BD}}\)
      • D.
        \(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{BD}}\)

      Đáp án : C

      Phương pháp giải :

      Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      Quy đồng mẫu thức \(\frac{A}{B}\) và \(\frac{C}{D}\):

      \(\frac{A}{B} = \frac{{AD}}{{BD}};\,\frac{C}{D} = \frac{{BC}}{{BD}}\)

      Do đó \(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BD}} - \frac{{BC}}{{BD}} = \frac{{AD - BC}}{{BD}}\)

      Câu 3 :

      Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:

      • A.
        \(\frac{{2x + 1}}{{x + 1}}\)
      • B.
        \(\frac{{1 - 2x}}{{x + 1}}\)
      • C.
        \(\frac{{x + 1}}{{2x - 1}}\)
      • D.
        \(\frac{{x + 1}}{{1 - 2x}}\)

      Đáp án : B

      Phương pháp giải :

      Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng 0.

      Lời giải chi tiết :

      Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là \( - \frac{{2x - 1}}{{x + 1}} = \frac{{1 - 2x}}{{x + 1}}\).

      Câu 4 :

      Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne - 2} \right)\)

      • A.
        \(x + 2\)
      • B.
        \(2x\)
      • C.
        \(x\)
      • D.
        \(x - 2\)

      Đáp án : D

      Phương pháp giải :

      Muốn trừ hai phân thức có cùng mẫu thức ta trừ các tử thức và giữ nguyên mẫu thức.

      Lời giải chi tiết :

      \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}} = \frac{{{x^2} - 4}}{{x + 2}} = \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} = \frac{{\left( {x - 2} \right)\left( {x + 2} \right):\left( {x + 2} \right)}}{{\left( {x + 2} \right):\left( {x + 2} \right)}} = \frac{{x - 2}}{1} = x - 2\)

      Câu 5 :

      Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)

      • A.
        \(\frac{{ - 3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
      • B.
        \(\frac{{3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
      • C.
        \(\frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
      • D.
        \(\frac{{3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)

      Đáp án : C

      Phương pháp giải :

      Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\\ \Rightarrow A = \frac{{x + 2}}{{3x + 5}} - \frac{{x - 1}}{2} = \frac{{\left( {x + 2} \right)2}}{{2\left( {3x + 5} \right)}} - \frac{{\left( {x - 1} \right)\left( {3x + 5} \right)}}{{2\left( {3x + 5} \right)}}\\ = \frac{{2x + 4}}{{2\left( {3x + 5} \right)}} - \frac{{3{x^2} - 3x + 5x - 5}}{{2\left( {3x + 5} \right)}} = \frac{{\left( {2x + 4} \right) - \left( {3{x^2} - 3x + 5x - 5} \right)}}{{2\left( {3x + 5} \right)}}\\ = \frac{{\left( {2x + 4} \right) - \left( {3{x^2} + 2x - 5} \right)}}{{2\left( {3x + 5} \right)}} = \frac{{2x + 4 - 3{x^2} - 2x + 5}}{{2\left( {3x + 5} \right)}} = \frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\end{array}\)

      Câu 6 :

      Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?

      • A.
        \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}}\)
      • B.
        \(\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}}\)
      • C.
        \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
      • D.
        \(\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}}\)

      Đáp án : C

      Phương pháp giải :

      Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      A.

      \(\begin{array}{l}\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} - 2x + 1 - {x^2} - 2x - 1}}{{{x^2} - 1}} = \frac{{ - 4x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)

      B.

      \(\begin{array}{l}\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}} = \frac{{\left( {2x - 1} \right)\left( {x - 1} \right) - \left( {2x + 1} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} - x - 2x + 1} \right) - \left( {2{x^2} + x + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} - 3x + 1} \right) - \left( {2{x^2} + 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} - 3x + 1 - 2{x^2} - 3x - 1}}{{{x^2} - 1}} = \frac{{ - 6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)

      C.

      \(\begin{array}{l}\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1}}{{{x^2} - 1}} = \frac{{4x}}{{{x^2} - 1}}\end{array}\)

      D.

      \(\begin{array}{l}\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}} = \frac{{\left( {2x + 1} \right)\left( {x + 1} \right) - \left( {2x - 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} + x + 2x + 1} \right) - \left( {2{x^2} - x - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} + 3x + 1} \right) - \left( {2{x^2} - 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} + 3x + 1 - 2{x^2} + 3x - 1}}{{{x^2} - 1}} = \frac{{6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)

      Vậy phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)

      Câu 7 :

      Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:

      • A.
        \(\frac{{ - 2}}{{x - 3}}\)
      • B.
        \(\frac{{2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
      • C.
        \(\frac{2}{{x + 3}}\)
      • D.
        \(\frac{2}{{x - 3}}\)

      Đáp án : D

      Phương pháp giải :

      Thay phép trừ bằng phép cộng với phân thức đối.

      Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}} = \frac{{3x + 21}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{2}{{x + 3}} + \frac{{ - 3}}{{x - 3}}\\ = \frac{{3x + 21}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{2\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} + \frac{{ - 3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{3x + 21 + 2\left( {x - 3} \right) - 3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{3x + 21 + 2x - 6 - 3x - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{2x + 6}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{2}{{x - 3}}\end{array}\)

      Câu 8 :

      Chọn câu đúng?

      • A.
        \(\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{{x - y}}{{x + y}}\)
      • B.
        \(\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\)
      • C.
        \(\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3x + 4}}{{18}}\)
      • D.
        \(\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{{3x + 5}}{{{x^2} - 1}}\)

      Đáp án : B

      Phương pháp giải :

      Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      A.

      \(\begin{array}{l}\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\\ = \frac{{x\left( {x + y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\\ = \frac{{{x^2} + xy + xy - {y^2} + 2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + 2xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{{\left( {x + y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{x + y}}{{x - y}} \ne \frac{{x - y}}{{x + y}}\end{array}\)

      B.

      \(\begin{array}{l}\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{3x + 2}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} - \frac{{2x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\\ = \frac{{\left( {3x + 2} \right) - \left( {2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} = \frac{{3x + 2 - 2x - 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\end{array}\)

      C.

      \(\begin{array}{l}\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3\left( {2x + 3} \right)}}{{18}} + \frac{{2\left( {x + 1} \right)}}{{18}} = \frac{{6x + 9}}{{18}} + \frac{{2x + 2}}{{18}}\\ = \frac{{6x + 9 + 2x + 2}}{{18}} = \frac{{8x + 11}}{{18}} \ne \frac{{3x + 4}}{{18}}\end{array}\)

      D.

      \(\begin{array}{l}\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{3}{{x - 1}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{3\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{3x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{3x + 3 + 2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{5x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \ne \frac{{3x + 5}}{{{x^2} - 1}}\end{array}\)

      Câu 9 :

      Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)

      • A.
        \(A = \frac{{ - 6{x^2} + 2x - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
      • B.
        \(A = \frac{{6{x^2}}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
      • C.
        \(A = \frac{{6{x^2} + 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
      • D.
        \(A = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

      Đáp án : D

      Phương pháp giải :

      Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}} = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \left( {\frac{{x - 5}}{{{x^2} + x + 1}} + \frac{7}{{x - 1}}} \right)\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{\left( {x - 5} \right)\left( {x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7\left( {{x^2} + x + 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{{x^2} - 5x - x + 5}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7{x^2} + 7x + 7}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} - 5x - x + 5 + 7{x^2} + 7x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{8{x^2} + x + 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{\left( {2{x^2} + x - 3} \right) - \left( {8{x^2} + x + 12} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{2{x^2} + x - 3 - 8{x^2} - x - 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\end{array}\)

      Câu 10 :

      Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:

      • A.
        \(A = \frac{{11}}{2}\)
      • B.
        \(A = \frac{{13}}{2}\)
      • C.
        \(A = \frac{{15}}{2}\)
      • D.
        \(A = \frac{{17}}{2}\)

      Đáp án : D

      Phương pháp giải :

      Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}} = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{5.2\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4x\left( {2x - 3} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{20x - 10}}{{4x\left( {2x - 1} \right)}} + \frac{{8{x^2} - 12x}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{20x - 10 + 8{x^2} - 12x + 4{x^2} + 3}}{{4x\left( {2x - 1} \right)}} = \frac{{12{x^2} + 8x - 7}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{12{x^2} - 6x + 14x - 7}}{{4x\left( {2x - 1} \right)}} = \frac{{6x\left( {2x - 1} \right) + 7\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{\left( {6x + 7} \right)\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} = \frac{{6x + 7}}{{4x}}\end{array}\)

      Với \(x = \frac{1}{4}\) ta có: \(A = \frac{{6 \cdot \frac{1}{4} + 7}}{{4 \cdot \frac{1}{4}}} = \frac{{\frac{3}{2} + 7}}{1} = \frac{3}{2} + 7 = \frac{3}{2} + \frac{{14}}{2} = \frac{{17}}{2}\)

      Câu 11 :

      Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)

      • A.
        \(B = \frac{1}{{2020}}\)
      • B.
        \(B = \frac{1}{{202000}}\)
      • C.
        \(B = \frac{1}{{200200}}\)
      • D.
        \(B = \frac{1}{{20200}}\)

      Đáp án : B

      Phương pháp giải :

      Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}} = \frac{{x - 3}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} - \frac{{x - 23}}{{\left( {x - 23} \right)\left( {x - 3} \right)}}\\ = \frac{{\left( {x - 3} \right) - \left( {x - 23} \right)}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} = \frac{{x - 3 - x + 23}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} = \frac{{20}}{{\left( {x - 23} \right)\left( {x - 3} \right)}}\end{array}\)

      Với \(x = 2023\), ta có: \(B = \frac{{20}}{{\left( {2023 - 23} \right)\left( {2023 - 3} \right)}} = \frac{{20}}{{2000.2020}} = \frac{{20}}{{20.100.2020}} = \frac{1}{{100.2020}} = \frac{1}{{202000}}\)

      Câu 12 :

      Tìm \(x\), biết \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0\,\left( {x \ne \pm 3} \right)\)

      • A.
        \(x = 0\)
      • B.
        \(x = \frac{1}{2}\)
      • C.
        \(x = 1\)
      • D.
        \(x = \frac{3}{2}\)

      Đáp án : D

      Phương pháp giải :

      Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = \frac{2}{{x + 3}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{2\left( {x - 3} \right) + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 6 + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\end{array}\)

      \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0 \Leftrightarrow \frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = 0 \Leftrightarrow 2x - 3 = 0 \Leftrightarrow 2x = 3 \Leftrightarrow x = \frac{3}{2}\)

      Câu 13 :

      Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)

      • A.
        \(A = 1\)
      • B.
        \(A = 0\)
      • C.
        \(A = \frac{1}{2}\)
      • D.
        \(A = \frac{{99}}{{100}}\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng công thức \(\frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{n} - \frac{1}{{n + 1}}\)

      Lời giải chi tiết :

      \(\begin{array}{l}A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\\ = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{2} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + ... + \left( {\frac{1}{{99}} - \frac{1}{{100}}} \right)\\ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{99}} - \frac{1}{{100}}\\ = 1 - \frac{1}{{100}} = \frac{{99}}{{100}}\end{array}\)

      Câu 14 :

      Cho \(x;\,y;\,z\, \ne \pm 1\) và \(xy + yz + x{\rm{z}} = 1\). Chọn câu đúng?

      • A.
        \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
      • B.
        \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{3xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
      • C.
        \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
      • D.
        \(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz\left( {x + y + z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)

      Đáp án : C

      Phương pháp giải :

      Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}}\\ = \frac{{x\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right) + y\left( {1 - {x^2}} \right)\left( {1 - {z^2}} \right) + z\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x\left( {1 - {y^2} - {z^2} + {y^2}{z^2}} \right) + y\left( {1 - {x^2} - {z^2} + {x^2}{z^2}} \right) + z\left( {1 - {x^2} - {y^2} + {x^2}{y^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x - x{y^2} - x{z^2} + x{y^2}{z^2} + y - {x^2}y - y{z^2} + {x^2}y{z^2} + z - {x^2}z - {y^2}z + {x^2}{y^2}z}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{\left( {x - {x^2}y - {x^2}z} \right) + \left( {y - x{y^2} - {y^2}z} \right) + \left( {z - x{{\rm{z}}^2} - y{z^2}} \right) + \left( {x{y^2}{z^2} + {x^2}y{z^2} + {x^2}{y^2}z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x\left( {1 - xy - x{\rm{z}}} \right) + y\left( {1 - xy - yz} \right) + z\left( {1 - x{\rm{z}} - yz} \right) + xyz\left( {yz + x{\rm{z}} + xy} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x.yz + y.x{\rm{z}} + z.xy + xyz.1}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\end{array}\)

      Câu 15 :

      Tìm các số \(A;\,B;\,C\) để \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}}\)

      • A.
        \(A = 30;\,B = 15;\,C = - 2\)
      • B.
        \(A = 39;\,B = - 15;\,C = 2\)
      • C.
        \(A = 49;\,B = - 14;\,C = 2\)
      • D.
        \(A = 39;\,B = - 14;\,C = - 2\)

      Đáp án : B

      Phương pháp giải :

      Tính tổng \(\frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{{{\left( {x + 3} \right)}^3}}}\) sau đó đồng nhất hệ số.

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{{{\left( {x + 3} \right)}^3}}} = \frac{{A + B\left( {x + 3} \right) + C{{\left( {x + 3} \right)}^2}}}{{{{\left( {x + 3} \right)}^3}}}\\ = \frac{{A + B\left( {x + 3} \right) + C\left( {{x^2} + 6x + 9} \right)}}{{{{\left( {x + 3} \right)}^3}}} = \frac{{A + Bx + 3B + C{x^2} + 6Cx + 9C}}{{{{\left( {x + 3} \right)}^3}}}\\ = \frac{{C{x^2} + \left( {B + 6C} \right)x + \left( {A + 3B + 9C} \right)}}{{{{\left( {x + 3} \right)}^3}}}\end{array}\)

      \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}} \Leftrightarrow \left\{ \begin{array}{l}C = 2\\B + 6C = - 3\\A + 3B + 9C = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}A = 39\\B = - 15\\C = 2\end{array} \right.\)

      Câu 16 :

      Cho \(3y - x = 6\). Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\).

      • A.
        1
      • B.
        2
      • C.
        3
      • D.
        4

      Đáp án : D

      Phương pháp giải :

      Từ điều kiện \(3y - x = 6\) thay \(x = 3y - 6\) vào biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\) sau đó rút gọn biểu thức \(A\).

      Lời giải chi tiết :

      Ta có: \(3y - x = 6\) suy ra \(x = 3y - 6\)

      Thay \(x = 3y - 6\) vào \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\) ta được:

      \(A = \frac{{3y - 6}}{{y - 2}} + \frac{{2\left( {3y - 6} \right) - 3y}}{{3y - 6 - 6}} \\= \frac{{3\left( {y - 2} \right)}}{{y - 2}} + \frac{{6y - 12 - 3y}}{{3y - 12}} \\= 3 + \frac{{3y - 12}}{{3y - 12}} = 3 + 1 = 4\)

      Câu 17 :

      Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \(A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\) tại \(x = - \frac{3}{4}\)?

      • A.
        \(0 < A < 1\)
      • B.
        \(A = 0\)
      • C.
        \(A = 1\)
      • D.
        \(A = \frac{7}{4}\)

      Đáp án : A

      Phương pháp giải :

      Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Thay phép trừ bằng phép cộng với phân thức đối.

      Lời giải chi tiết :

      \(\begin{array}{l}A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} + \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12\left( {x + 2} \right) + \left( {3 - x} \right)}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12x + 24 + 3 - x}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}\\ = \frac{{10\left( {x + 3} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\\ = \frac{{10\left( {x + 3} \right) - \left( {11x + 27} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{{10x + 30 - 11x - 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\\ = \frac{{ - x + 3}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\end{array}\)

      Tại \(x = - \frac{3}{4}\) ta có \(A = \frac{1}{{\left( {\frac{{ - 3}}{4} + 2} \right)\left( {\frac{{ - 3}}{4} + 3} \right)}} = \frac{1}{{\frac{5}{4} \cdot \frac{9}{4}}} = \frac{1}{{\frac{{45}}{{16}}}} = \frac{{16}}{{45}}\)

      Vậy \(0 < A < 1\).

      Câu 18 :

      Rút gọn biểu thức \(A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\) ta được:

      • A.
        \(A = - 1\)
      • B.
        \(A = 0\)
      • C.
        \(A = 1\)
      • D.
        \(A = 2\)

      Đáp án : A

      Phương pháp giải :

      Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - b + b - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {ab - ac} \right)\left( {a - b} \right) + \left( {bc - ac} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{a\left( {b - c} \right)\left( {a - b} \right) - c\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = - 1\end{array}\)

      Câu 19 :

      Tìm giá trị nguyên của \(x\) để biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) có giá trị là một số nguyên.

      • A.
        \(x = 0\)
      • B.
        \(x = 1\)
      • C.
        \(x = \pm 1\)
      • D.
        \(x \in \left\{ {0;2} \right\}\)

      Đáp án : D

      Phương pháp giải :

      Rút gọn biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) sau đó tìm giá trị nguyên của \(x\) mẫu thức là ước của tử thức.

      Lời giải chi tiết :

      \(\begin{array}{l}A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\\ = \frac{{6{x^2} + 8x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\\ = \frac{{6{x^2} + 8x + 7 + x\left( {x - 1} \right) - 6\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{6{x^2} + 8x + 7 + {x^2} - x - 6{x^2} - 6x - 6}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{{x^2} + x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{1}{{x - 1}}\end{array}\)

      Để \(A \in \mathbb{Z} \Leftrightarrow \frac{1}{{x - 1}} \in \mathbb{Z} \Rightarrow \left( {x - 1} \right) \in U\left( 1 \right) = \left\{ { \pm 1} \right\}\)

      \( \Leftrightarrow \left[ \begin{array}{l}x - 1 = - 1\\x - 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\,\left( {{\rm{t/m}}\,x \ne 1} \right)\)

      Câu 20 :

      Có bao nhiêu giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên?

      • A.
        1
      • B.
        2
      • C.
        3
      • D.
        4

      Đáp án : C

      Phương pháp giải :

      Thay phép trừ bằng phép cộng với phân thức đối.

      Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      Điều kiện: \(\left\{ \begin{array}{l}x - 3 \ne 0\\4 - {x^2} \ne 0\\{x^3} - 3{x^2} - 4x + 12 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x \ne \pm 2\end{array} \right.\)

      \(\begin{array}{l}A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\\ = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^2}\left( {x - 3} \right) - 4\left( {x - 3} \right)}}\\ = \frac{3}{{x - 3}} + \frac{{{x^2}}}{{{x^2} - 4}} - \frac{{4x - 12}}{{\left( {{x^2} - 4} \right)\left( {x - 3} \right)}}\\ = \frac{{3\left( {{x^2} - 4} \right) + {x^2}\left( {x - 3} \right) - \left( {4x - 12} \right)}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}}\\ = \frac{{3{x^2} - 12 + {x^3} - 3{x^2} - 4x + 12}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}}\\ = \frac{{{x^3} - 4x}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}} = \frac{{x\left( {{x^2} - 4} \right)}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}} = \frac{x}{{x - 3}} = 1 + \frac{3}{{x - 3}}\end{array}\)

      Để \(A \in \mathbb{Z} \Rightarrow \frac{3}{{x - 3}} \in \mathbb{Z} \Rightarrow \left( {x - 3} \right) \in U\left( 3 \right) = \left\{ { \pm 1; \pm 3} \right\}\)

      \( \Leftrightarrow \left[ \begin{array}{l}x - 3 = - 3\\x - 3 = - 1\\x - 3 = 1\\x - 3 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\,\left( {{\rm{t/m}}} \right)\\x = 2\,\left( {{\rm{ko}}\,\,{\rm{t/m}}} \right)\\x = 4\,\left( {{\rm{t/m}}} \right)\\x = 6\,\left( {{\rm{t/m}}} \right)\end{array} \right.\)

      Vậy có 3 giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên.

      Câu 21 :

      Rút gọn biểu thức \(A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x}\) biết \(x > \frac{1}{2};\,x \ne 1\):

      • A.
        \(\frac{1}{{2x\left( {x - 1} \right)}}\)
      • B.
        \(\frac{1}{{2x\left( {x + 1} \right)}}\)
      • C.
        \(\frac{2}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
      • D.
        \(\frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)

      Đáp án : A

      Phương pháp giải :

      Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x} = \frac{3}{{2x\left( {x + 1} \right)}} + \frac{{2x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{2}{x}\\ = \frac{{3\left( {x - 1} \right) + 2x\left( {2x - 1} \right) - 4\left( {x - 1} \right)\left( {x + 1} \right)}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{3x - 3 + 4{x^2} - 2x - 4{x^2} + 4}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{x + 1}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{1}{{2x\left( {x - 1} \right)}}\end{array}\)

      Câu 22 :

      Hãy tìm giá trị nhỏ nhất của biểu thức sau: \(A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}}\)

      • A.
        0
      • B.
        1
      • C.
        2
      • D.
        -1

      Đáp án : A

      Phương pháp giải :

      Muốn trừ hai phân thức có cùng mẫu thức ta trừ các tử thức và giữ nguyên mẫu thức.

      Lời giải chi tiết :

      Điều kiện: \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right.\)

      \(\begin{array}{l}A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}} = \left( {\frac{{{x^3}}}{{x - 1}} - \frac{1}{{x - 1}}} \right) - \left( {\frac{{{x^2}}}{{x + 1}} - \frac{1}{{x + 1}}} \right)\\ = \frac{{{x^3} - 1}}{{x - 1}} - \frac{{{x^2} - 1}}{{x + 1}} = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}}\\ = \left( {{x^2} + x + 1} \right) - \left( {x - 1} \right) = {x^2} + x + 1 - x + 1 = {x^2} + 2\end{array}\)

      Ta có \({x^2} \ge 0\forall x \Rightarrow {x^2} + 2 \ge 2\forall x\) hay \(A \ge 2\)

      Dấu “=” xảy ra \( \Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\)

      Vậy \(MinA = 0\) khi \(x = 0\).

      Câu 23 :

      Cho \(\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{...}}{{1 - {x^{16}}}}\). Số thích hợp điền vào chỗ trống là?

      • A.
        16
      • B.
        8
      • C.
        4
      • D.
        20

      Đáp án : A

      Phương pháp giải :

      Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{1 + x + 1 - x}}{{\left( {1 - x} \right)\left( {1 + x} \right)}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}}\\ = \frac{2}{{1 - {x^2}}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{2\left( {1 + {x^2}} \right) + 2\left( {1 - {x^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 + {x^2}} \right)}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}}\\ = \frac{4}{{1 - {x^4}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{4\left( {1 + {x^4}} \right) + 4\left( {1 - {x^4}} \right)}}{{\left( {1 - {x^4}} \right)\left( {1 + {x^4}} \right)}} + \frac{8}{{1 + {x^8}}}\\ = \frac{8}{{1 - {x^8}}} + \frac{8}{{1 + {x^8}}} = \frac{{8\left( {1 + {x^8}} \right) + 8\left( {1 - {x^8}} \right)}}{{\left( {1 - {x^8}} \right)\left( {1 + {x^8}} \right)}} = \frac{{16}}{{1 - {x^{16}}}}\end{array}\)

      Câu 24 :

      Cho \(a,\,b,\,c\)thỏa mãn \(abc = 2023\). Tính giá trị biểu thức sau: \(A = \frac{{2023{\rm{a}}}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\).

      • A.
        \(A = - 1\)
      • B.
        \(A = 0\)
      • C.
        \(A = 1\)
      • D.
        \(A = 2\)

      Đáp án : C

      Phương pháp giải :

      Thay \(2023 = abc\) vào biểu thức \(A\) sau đó rút gọn biểu thức \(A\).

      Lời giải chi tiết :

      Thay \(2023 = abc\) vào biểu thức \(A\) ta được:

      \(\begin{array}{l}\frac{{2023a}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \frac{b}{{bc + b + abc}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \frac{b}{{b\left( {c + 1 + ac} \right)}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{ac}}{{1 + ac + c}} + \frac{1}{{c + 1 + ac}} + \frac{c}{{ac + 1 + c}} = 1\end{array}\)

      Câu 25 :

      Cho \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) và \(x + y + z \ne 0\). Tính giá trị của biểu thức \(A = \frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}\).

      • A.
        0
      • B.
        1
      • C.
        2
      • D.
        3

      Đáp án : B

      Phương pháp giải :

      Từ điều kiện \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) dễ dàng có được \(x + y + z = x + y + z + 0 = x + y + z + \frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}}\).

      Lời giải chi tiết :

      \(\begin{array}{l}x + y + z = x + y + z + 0 = x + y + z + \frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}}\\ = \left( {x + \frac{{{x^2}}}{{y + z}}} \right) + \left( {y + \frac{{{y^2}}}{{x + z}}} \right) + \left( {z + \frac{{{z^2}}}{{x + y}}} \right)\\ = x\left( {1 + \frac{x}{{y + z}}} \right) + y\left( {1 + \frac{y}{{x + z}}} \right) + z\left( {1 + \frac{z}{{x + y}}} \right)\\ = x\left( {\frac{{x + y + z}}{{y + z}}} \right) + y\left( {\frac{{x + y + z}}{{x + z}}} \right) + z\left( {\frac{{x + y + z}}{{x + y}}} \right)\\ = \left( {x + y + z} \right)\left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right)\\ \Rightarrow x + y + z = \left( {x + y + z} \right)\left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right)\\ \Rightarrow \left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right) = 1\end{array}\)

      Câu 26 :

      Cho ba số thực \(a,\,b,\,c\) đôi một phân biệt. Khẳng định nào sau đây là đúng?

      • A.
        \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \le 0\)
      • B.
        \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = 1\)
      • C.
        \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \ge 2\)
      • D.
        \(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} > 4\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng công thức \(\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}} = - 1\).

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = {\left( {\frac{a}{{b - c}}} \right)^2} + {\left( {\frac{b}{{c - a}}} \right)^2} + {\left( {\frac{c}{{a - b}}} \right)^2}\\ = {\left( {\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}}} \right)^2} - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\\ \ge - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\end{array}\)

      (Vì \({\left( {\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}}} \right)^2} \ge 0\forall a,\,b,\,c\) đôi một khác nhau)

      Mà \(\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\)

      \(\begin{array}{l} = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - b + b - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {ab - ac} \right)\left( {a - b} \right) + \left( {bc - ac} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{a\left( {b - c} \right)\left( {a - b} \right) - c\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = - 1\end{array}\)

      \(\begin{array}{l} \Rightarrow \frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}}\\ \ge - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\\ = \left( { - 2} \right)\left( { - 1} \right) = 2\end{array}\)

      Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Trắc nghiệm Bài 2: Phép cộng, phép trừ phân thức đại số Toán 8 Cánh diều đặc sắc thuộc chuyên mục bài tập toán 8 trên toán math. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

      Trắc nghiệm Bài 2: Phép cộng, phép trừ phân thức đại số Toán 8 Cánh diều - Tổng quan

      Bài 2 trong chương trình Toán 8 Cánh diều tập trung vào các quy tắc và kỹ năng thực hiện phép cộng, phép trừ phân thức đại số. Đây là một phần quan trọng trong việc xây dựng nền tảng vững chắc cho các kiến thức toán học nâng cao hơn. Để giúp học sinh nắm vững kiến thức này, giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng và chất lượng.

      I. Kiến thức cơ bản về phân thức đại số

      Trước khi đi vào phần trắc nghiệm, chúng ta cần ôn lại một số kiến thức cơ bản về phân thức đại số:

      • Định nghĩa: Phân thức đại số là biểu thức có dạng A/B, trong đó A và B là các đa thức, và B khác 0.
      • Điều kiện xác định: Phân thức A/B xác định khi và chỉ khi mẫu thức B khác 0.
      • Phân thức bằng nhau: Hai phân thức A/BC/D bằng nhau khi và chỉ khi AD = BC.

      II. Quy tắc cộng, trừ phân thức đại số

      Để thực hiện phép cộng, trừ phân thức đại số, chúng ta cần tuân theo các quy tắc sau:

      1. Quy đồng mẫu thức: Tìm mẫu thức chung nhỏ nhất (MTC) của các phân thức.
      2. Đổi phân thức: Biến đổi các phân thức về cùng mẫu thức chung.
      3. Thực hiện phép cộng, trừ: Cộng hoặc trừ các tử thức, giữ nguyên mẫu thức chung.
      4. Rút gọn: Rút gọn kết quả nếu có thể.

      III. Các dạng bài tập trắc nghiệm thường gặp

      Bộ đề trắc nghiệm của giaitoan.edu.vn bao gồm các dạng bài tập sau:

      • Dạng 1: Tính giá trị của phân thức tại một giá trị cụ thể của biến.
      • Dạng 2: Cộng, trừ các phân thức có cùng mẫu thức.
      • Dạng 3: Cộng, trừ các phân thức khác mẫu thức (cần quy đồng mẫu thức).
      • Dạng 4: Rút gọn phân thức.
      • Dạng 5: Tìm điều kiện xác định của phân thức.

      IV. Ví dụ minh họa

      Ví dụ 1: Tính 2x/3y + x/3y

      Giải: Vì hai phân thức có cùng mẫu thức, ta có:

      2x/3y + x/3y = (2x + x)/3y = 3x/3y = x/y

      Ví dụ 2: Tính 1/x + 1/y

      Giải: Mẫu thức chung nhỏ nhất là xy. Ta có:

      1/x + 1/y = y/xy + x/xy = (x + y)/xy

      V. Lời khuyên khi làm bài trắc nghiệm

      • Đọc kỹ đề bài và xác định đúng dạng bài tập.
      • Quy đồng mẫu thức một cách cẩn thận.
      • Rút gọn phân thức trước khi tính toán để đơn giản hóa bài toán.
      • Kiểm tra lại kết quả sau khi làm xong.

      VI. Tại sao nên luyện tập trắc nghiệm tại giaitoan.edu.vn?

      Giaitoan.edu.vn cung cấp:

      • Bộ đề trắc nghiệm được biên soạn bởi các giáo viên giàu kinh nghiệm.
      • Đáp án chi tiết và lời giải thích dễ hiểu.
      • Giao diện thân thiện, dễ sử dụng.
      • Khả năng luyện tập mọi lúc, mọi nơi.

      Hãy luyện tập thường xuyên tại giaitoan.edu.vn để nắm vững kiến thức và đạt kết quả tốt nhất trong các bài kiểm tra Toán 8!

      Tài liệu, đề thi và đáp án Toán 8