Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 3: Phép nhân, phép chia phân thức đại số Toán 8 Cánh diều

Trắc nghiệm Bài 3: Phép nhân, phép chia phân thức đại số Toán 8 Cánh diều

Trắc nghiệm Bài 3: Phép nhân, phép chia phân thức đại số Toán 8 Cánh diều

Chào mừng các em học sinh đến với bài trắc nghiệm trực tuyến về Bài 3: Phép nhân, phép chia phân thức đại số thuộc chương trình Toán 8 Cánh diều. Bài trắc nghiệm này được thiết kế để giúp các em củng cố kiến thức và rèn luyện kỹ năng giải toán.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm các dạng bài tập khác nhau, từ cơ bản đến nâng cao, giúp các em tự đánh giá năng lực của mình.

Đề bài

    Câu 1 :

    Kết quả của phép nhân \(\frac{A}{B} \cdot \frac{C}{D}\) là:

    • A.
      \(\frac{{A.C}}{{B.D}}\)
    • B.
      \(\frac{{A.D}}{{B.C}}\)
    • C.
      \(\frac{{A + C}}{{B + D}}\)
    • D.
      \(\frac{{BD}}{{AC}}\)
    Câu 2 :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\):

    • A.
      ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{D}{C}\)
    • B.
      ta nhân \(\frac{A}{B}\) với phân thức \(\frac{C}{D}\)
    • C.
      ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\)
    • D.
      ta cộng \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\)
    Câu 3 :

    Phân thức nghịch đảo của phân thức \(\frac{{2x + 1}}{{x + 2}}\) với \(x \ne - \frac{1}{2};\,x \ne - 2\) là:

    • A.
      \(\frac{{2x + 1}}{{x + 2}}\)
    • B.
      \(\frac{{x + 2}}{{2x + 1}}\)
    • C.
      \( - \frac{{x + 2}}{{2x + 1}}\)
    • D.
      \( - \frac{{2x + 1}}{{x + 2}}\)
    Câu 4 :

    Thực hiện phép tính \(\frac{{3x + 12}}{{4x - 16}} \cdot \frac{{8 - 2x}}{{x + 4}}\)

    • A.
      \(\frac{3}{2}\)
    • B.
      \(\frac{3}{{2\left( {x - 4} \right)}}\)
    • C.
      \(\frac{{ - 3}}{{2\left( {x - 4} \right)}}\)
    • D.
      \(\frac{{ - 3}}{2}\)
    Câu 5 :

    Kết quả của phép chia \(\frac{{4x + 12}}{{{{\left( {x + 4} \right)}^2}}}:\frac{{3\left( {x + 3} \right)}}{{x + 4}}\) là:

    • A.
      \(\frac{4}{{x + 4}}\)
    • B.
      \( - \frac{4}{{x + 4}}\)
    • C.
      \(\frac{4}{{3\left( {x + 4} \right)}}\)
    • D.
      \( - \frac{4}{{3\left( {x + 4} \right)}}\)
    Câu 6 :

    Chọn câu sai:

    • A.
      \(\frac{A}{B} \cdot \frac{B}{A} = 1\)
    • B.
      \(\frac{A}{B} \cdot \frac{C}{D} = \frac{C}{D} \cdot \frac{A}{B}\)
    • C.
      \(\frac{A}{B}\left( {\frac{C}{D} \cdot \frac{E}{F}} \right) = \frac{E}{F}\left( {\frac{C}{D} \cdot \frac{A}{B}} \right)\)
    • D.
      \(\frac{A}{B}\left( {\frac{C}{D} + \frac{E}{F}} \right) = \frac{A}{B} \cdot \frac{C}{D} + \frac{E}{F}\)
    Câu 7 :

    Kết quả của phép chia \(\frac{{{x^3} + 1}}{{{x^2} + 2x + 1}}:\frac{{3{x^2} - 3x + 3}}{{{x^2} - 1}}\) có tử thức gọn nhất là:

    • A.
      \(x - 1\)
    • B.
      3
    • C.
      -3
    • D.
      \(x + 1\)
    Câu 8 :

    Tìm \(A\) biết \(A:\frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{{x^3} - 1}}{{{x^2} - 1}}\)

    • A.
      \({x^2} + x + 1\)
    • B.
      1
    • C.
      \(x + 1\)
    • D.
      \(x - 1\)
    Câu 9 :

    Tìm biểu thức \(A\) thỏa mãn biểu thức \(\frac{{x + 3y}}{{4x + 8y}} \cdot A = \frac{{{x^2} - 9{y^2}}}{{x + 2y}}\).

    • A.
      \(4\left( {x - 2y} \right)\)
    • B.
      \(4\left( {x + 2y} \right)\)
    • C.
      \(4\left( {x + 3y} \right)\)
    • D.
      \(4\left( {x - 3y} \right)\)
    Câu 10 :

    Cho biểu thức \(A = \frac{{5x + 10}}{{x - 6}}:\frac{{x - 2}}{{2x + 12}} \cdot \frac{{2x - 4}}{{{x^2} - 36}}\). Bạn An rút gọn được \(A = \frac{{10{{\left( {x - 2} \right)}^2}}}{{x - 6}}\), bạn Chi rút gọn được \(A = \frac{{10\left( {x + 2} \right)}}{{{{\left( {x - 6} \right)}^2}}}\). Chọn khẳng định đúng:

    • A.
      Bạn An đúng, bạn Chi sai.
    • B.
      Bạn An sai, bạn Chi đúng.
    • C.
      Hai bạn đều sai.
    • D.
      Hai bạn đều đúng.
    Câu 11 :

    Tìm mối liên hệ giữa \(x\) và \(y\) biết \(\frac{{x + y}}{{{x^3} + {x^2}y + x{y^2} + {y^3}}}:\frac{{{x^2} + xy - 2{y^2}}}{{{x^4} - {y^4}}} = 2\).

    • A.
      \(x = y\)
    • B.
      \(x = 3y\)
    • C.
      \(x = - y\)
    • D.
      \(x = - 3y\)
    Câu 12 :

    Tìm \(x\) thỏa mãn \(\frac{{3x + 15}}{{{x^2} - 4}}:\frac{{x + 5}}{{x - 2}} = 1\,\left( {x \ne \pm 2;\,x \ne - 5} \right)\).

    • A.
      \(x = 0\)
    • B.
      \(x = 1\)
    • C.
      \(x = - 1\)
    • D.
      \(x = 3\)
    Câu 13 :

    Tìm \(x\) nguyên để \(\frac{{{x^2} + 10x + 25}}{{x + 6}}:\left( {x + 5} \right)\) nguyên.

    • A.
      \(x = - 5\)
    • B.
      \(x = - 6\)
    • C.
      \(x = - 7\)
    • D.
      \(x = - 5;\,x = - 7\)
    Câu 14 :

    Cho \(x + y + z \ne 0\) và \(x = y + z\). Chọn đáp án đúng.

    • A.
      \(\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}} = xy\)
    • B.
      \(\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}} = yz\)
    • C.
      \(\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}} = xyz\)
    • D.
      \(\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}} = 1\)
    Câu 15 :

    Cho \(A = \frac{{{x^2} + {y^2} + xy}}{{{x^2} - {y^2}}}:\frac{{{x^3} - {y^3}}}{{{x^2} + {y^2} - 2xy}}\) và \(B = \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}:\frac{{{x^2} - 2xy + {y^2}}}{{{x^4} - {y^4}}}\). Khi \(x + y = 5\) hãy so sánh \(A\) và \(B\).

    • A.
      \(A = B\)
    • B.
      \(A \ge B\)
    • C.
      \(A > B\)
    • D.
      \(A < B\)
    Câu 16 :

    Rút gọn biểu thức \(A = \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3{x^2} - 3x + 3}}{{{x^2} - 36}} + \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3x}}{{{x^2} - 36}}\) sau đó tính giá trị biểu thức \(A\) khi \(x = 994\).

    • A.
      \(\frac{1}{{1000}}\)
    • B.
      \(\frac{1}{{988}}\)
    • C.
      \(\frac{3}{{1000}}\)
    • D.
      \(\frac{3}{{988}}\)
    Câu 17 :

    Giá trị biểu thức \(A = \frac{{{5^2} - 1}}{{{3^2} - 1}}:\frac{{{9^2} - 1}}{{{7^2} - 1}}:\frac{{{{13}^2} - 1}}{{{{11}^2} - 1}} :...:\frac{{{{55}^2} - 1}}{{{{53}^2} - 1}}\) là:

    • A.
      \(\frac{9}{{28}}\)
    • B.
      \(\frac{{28}}{9}\)
    • C.
      \(\frac{{18}}{{14}}\)
    • D.
      \(\frac{3}{{28}}\)
    Câu 18 :

    Với \(x = 4,\,y = 1,\,z = - 2\) hãy tính giá trị biểu thức \(A = \frac{{2{x^3}{y^2}}}{{{x^2}{y^5}{z^2}}}:\frac{{5{x^2}y}}{{4{x^2}{y^5}}}:\frac{{ - 8{x^3}{y^2}{z^3}}}{{15{x^5}{y^2}}}\).

    • A.
      -6
    • B.
      6
    • C.
      3
    • D.
      -3
    Câu 19 :

    Cho \(a + b + c = 0\). Tính \(A = \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} \cdot \frac{{4ca - {b^2}}}{{ca + 2{b^2}}} \cdot \frac{{4ab - {c^2}}}{{ab + 2{c^2}}}\).

    • A.
      1
    • B.
      0
    • C.
      -1
    • D.
      2
    Câu 20 :

    Rút gọn biểu thức sau: \(A = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)...\left( {1 - \frac{1}{{{n^2}}}} \right)\).

    • A.
      \(\frac{{n + 1}}{{2n}}\)
    • B.
      \(\frac{{n - 1}}{{2n}}\)
    • C.
      \(\frac{n}{{n - 1}}\)
    • D.
      \(\frac{n}{{n + 1}}\)
    Câu 21 :

    Có bao nhiêu giá trị của \(x\) thỏa mãn \(\frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{{x^2} + 6x}} - \frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{x - 4}} = 0\).

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      3
    Câu 22 :

    Tìm giá trị lớn nhất của biểu thức \(A = \frac{{27 - {x^3}}}{{5x + 5}}:\frac{{2x - 6}}{{3x + 3}}\).

    • A.
      \(\frac{{27}}{4}\)
    • B.
      \( - \frac{{27}}{4}\)
    • C.
      \( - \frac{{81}}{{40}}\)
    • D.
      \(\frac{{81}}{{40}}\)
    Câu 23 :

    Tìm giá trị nhỏ nhất của biểu thức \(A = \left( {4{x^2} - 16} \right) \cdot \frac{{7x - 2}}{{3x + 6}}\).

    • A.
      \( - \frac{{36}}{7}\)
    • B.
      \(\frac{{36}}{7}\)
    • C.
      \( - \frac{{48}}{7}\)
    • D.
      \(\frac{{48}}{7}\)
    Câu 24 :

    Tính giá trị của biểu thức \(A = \left[ {\frac{{{x^2} + \left( {a - b} \right)x - ab}}{{{x^2} - \left( {a - b} \right)x - ab}} \cdot \frac{{{x^2} - \left( {a + b} \right)x + ab}}{{{x^2} + \left( {a + b} \right)x + ab}}} \right]:\left[ {\frac{{{x^2} - \left( {b - 1} \right)x - b}}{{{x^2} + \left( {b + 1} \right)x + b}} \cdot \frac{{{x^2} - \left( {b + 1} \right)x + b}}{{{x^2} - \left( {1 - b} \right)x - b}}} \right]\)

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4
    Câu 25 :

    Tính \(A = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{1}{{{{2010}^2}}}} \right)\).

    • A.
      \(\frac{{2009}}{{2010}}\)
    • B.
      \(\frac{{2011}}{{2010}}\)
    • C.
      \(\frac{{2011}}{{4020}}\)
    • D.
      \(\frac{{2009}}{{4020}}\)
    Câu 26 :

    Với mọi số tự nhiên \(n \ge 2\) ta luôn có:

    • A.
      \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] > 3\)
    • B.
      \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] < 0\)
    • C.
      \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] > \frac{1}{3}\)
    • D.
      \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] < - \frac{1}{3}\)
    Câu 27 :

    Khẳng định nào sau đây là dúng?

    • A.
      \(\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right] = \frac{4}{3}\forall n > 1\)
    • B.
      \(\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right] < 2\forall n \ge 1\)
    • C.
      \(\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right] < 0\forall n \ge 1\)
    • D.
      \(\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right] > 4\forall n > 1\)

    Lời giải và đáp án

    Câu 1 :

    Kết quả của phép nhân \(\frac{A}{B} \cdot \frac{C}{D}\) là:

    • A.
      \(\frac{{A.C}}{{B.D}}\)
    • B.
      \(\frac{{A.D}}{{B.C}}\)
    • C.
      \(\frac{{A + C}}{{B + D}}\)
    • D.
      \(\frac{{BD}}{{AC}}\)

    Đáp án : A

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Lời giải chi tiết :

    \(\frac{A}{B} \cdot \frac{C}{D} = \frac{{A.C}}{{B.D}}\)

    Câu 2 :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\):

    • A.
      ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{D}{C}\)
    • B.
      ta nhân \(\frac{A}{B}\) với phân thức \(\frac{C}{D}\)
    • C.
      ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\)
    • D.
      ta cộng \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\)

    Đáp án : C

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\) khác 0, ta nhân \(\frac{A}{B}\) với phân thức \(\frac{D}{C}\):

    \(\frac{A}{B}:\frac{C}{D} = \frac{A}{B} \cdot \frac{D}{C}\) (với \(\frac{C}{D} \ne 0\)).

    Lời giải chi tiết :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Câu 3 :

    Phân thức nghịch đảo của phân thức \(\frac{{2x + 1}}{{x + 2}}\) với \(x \ne - \frac{1}{2};\,x \ne - 2\) là:

    • A.
      \(\frac{{2x + 1}}{{x + 2}}\)
    • B.
      \(\frac{{x + 2}}{{2x + 1}}\)
    • C.
      \( - \frac{{x + 2}}{{2x + 1}}\)
    • D.
      \( - \frac{{2x + 1}}{{x + 2}}\)

    Đáp án : B

    Phương pháp giải :

    \(\frac{C}{D} \cdot \frac{D}{C} = 1\). Ta nói \(\frac{D}{C}\) là phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    Phân thức nghịch đảo của phân thức \(\frac{{2x + 1}}{{x + 2}}\) là \(\frac{{x + 2}}{{2x + 1}}\).

    Câu 4 :

    Thực hiện phép tính \(\frac{{3x + 12}}{{4x - 16}} \cdot \frac{{8 - 2x}}{{x + 4}}\)

    • A.
      \(\frac{3}{2}\)
    • B.
      \(\frac{3}{{2\left( {x - 4} \right)}}\)
    • C.
      \(\frac{{ - 3}}{{2\left( {x - 4} \right)}}\)
    • D.
      \(\frac{{ - 3}}{2}\)

    Đáp án : D

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Lời giải chi tiết :

    \(\frac{{3x + 12}}{{4x - 16}} \cdot \frac{{8 - 2x}}{{x + 4}} = \frac{{3\left( {x + 4} \right)}}{{4\left( {x - 4} \right)}} \cdot \frac{{2\left( {4 - x} \right)}}{{x + 4}} = \frac{{3\left( {x + 4} \right)}}{{4\left( {x - 4} \right)}} \cdot \frac{{ - 2\left( {x - 4} \right)}}{{x + 4}} = \frac{{ - 3}}{2}\)

    Câu 5 :

    Kết quả của phép chia \(\frac{{4x + 12}}{{{{\left( {x + 4} \right)}^2}}}:\frac{{3\left( {x + 3} \right)}}{{x + 4}}\) là:

    • A.
      \(\frac{4}{{x + 4}}\)
    • B.
      \( - \frac{4}{{x + 4}}\)
    • C.
      \(\frac{4}{{3\left( {x + 4} \right)}}\)
    • D.
      \( - \frac{4}{{3\left( {x + 4} \right)}}\)

    Đáp án : C

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\frac{{4x + 12}}{{{{\left( {x + 4} \right)}^2}}}:\frac{{3\left( {x + 3} \right)}}{{x + 4}} = \frac{{4\left( {x + 3} \right)}}{{{{\left( {x + 4} \right)}^2}}}:\frac{{3\left( {x + 3} \right)}}{{x + 4}} = \frac{{4\left( {x + 3} \right)}}{{{{\left( {x + 4} \right)}^2}}} \cdot \frac{{x + 4}}{{3\left( {x + 3} \right)}} = \frac{4}{{3\left( {x + 4} \right)}}\)

    Câu 6 :

    Chọn câu sai:

    • A.
      \(\frac{A}{B} \cdot \frac{B}{A} = 1\)
    • B.
      \(\frac{A}{B} \cdot \frac{C}{D} = \frac{C}{D} \cdot \frac{A}{B}\)
    • C.
      \(\frac{A}{B}\left( {\frac{C}{D} \cdot \frac{E}{F}} \right) = \frac{E}{F}\left( {\frac{C}{D} \cdot \frac{A}{B}} \right)\)
    • D.
      \(\frac{A}{B}\left( {\frac{C}{D} + \frac{E}{F}} \right) = \frac{A}{B} \cdot \frac{C}{D} + \frac{E}{F}\)

    Đáp án : D

    Phương pháp giải :

    Sử dụng tính chất của phép nhân phân thức:

    - Giao hoán: \(\frac{A}{B} \cdot \frac{C}{D} = \frac{C}{D} \cdot \frac{A}{B}\);

    - Kết hợp: \(\left( {\frac{A}{B} \cdot \frac{C}{D}} \right)\frac{E}{F} = \frac{A}{B}\left( {\frac{C}{D} \cdot \frac{E}{F}} \right)\)

    - Phân phối với phép cộng: \(\frac{A}{B}\left( {\frac{C}{D} + \frac{E}{F}} \right) = \frac{A}{B} \cdot \frac{C}{D} + \frac{A}{B} \cdot \frac{E}{F}\)

    Lời giải chi tiết :

    \(\frac{A}{B} \cdot \frac{B}{A} = \frac{{A.B}}{{B.A}} = 1\) nên A đúng.

    \(\frac{A}{B} \cdot \frac{C}{D} = \frac{C}{D} \cdot \frac{A}{B}\) nên B đúng.

    \(\frac{A}{B}\left( {\frac{C}{D} \cdot \frac{E}{F}} \right) = \left( {\frac{A}{B} \cdot \frac{C}{D}} \right)\frac{E}{F} = \left( {\frac{C}{D} \cdot \frac{A}{B}} \right)\frac{E}{F} = \frac{E}{F}\left( {\frac{C}{D} \cdot \frac{A}{B}} \right)\) nên C đúng.

    \(\frac{A}{B}\left( {\frac{C}{D} + \frac{E}{F}} \right) = \frac{A}{B} \cdot \frac{C}{D} + \frac{A}{B} \cdot \frac{E}{F} \ne \frac{A}{B} \cdot \frac{C}{D} + \frac{E}{F}\) nên D sai.

    Câu 7 :

    Kết quả của phép chia \(\frac{{{x^3} + 1}}{{{x^2} + 2x + 1}}:\frac{{3{x^2} - 3x + 3}}{{{x^2} - 1}}\) có tử thức gọn nhất là:

    • A.
      \(x - 1\)
    • B.
      3
    • C.
      -3
    • D.
      \(x + 1\)

    Đáp án : A

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{{x^3} + 1}}{{{x^2} + 2x + 1}}:\frac{{3{x^2} - 3x + 3}}{{{x^2} - 1}} = \frac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}}:\frac{{3\left( {{x^2} - x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}} \cdot \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{3\left( {{x^2} - x + 1} \right)}} = \frac{{{{\left( {x + 1} \right)}^2}\left( {{x^2} - x + 1} \right)\left( {x - 1} \right)}}{{3{{\left( {x + 1} \right)}^2}\left( {{x^2} - x + 1} \right)}} = \frac{{x - 1}}{3}\end{array}\)

    Vậy kết quả của phép chia \(\frac{{{x^3} + 1}}{{{x^2} + 2x + 1}}:\frac{{3{x^2} - 3x + 3}}{{{x^2} - 1}}\) có tử thức là \(x - 1\).

    Câu 8 :

    Tìm \(A\) biết \(A:\frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{{x^3} - 1}}{{{x^2} - 1}}\)

    • A.
      \({x^2} + x + 1\)
    • B.
      1
    • C.
      \(x + 1\)
    • D.
      \(x - 1\)

    Đáp án : B

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Lời giải chi tiết :

    \(A:\frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{{x^3} - 1}}{{{x^2} - 1}}\)

    \(A = \frac{{{x^3} - 1}}{{{x^2} - 1}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}} = 1\)

    Câu 9 :

    Tìm biểu thức \(A\) thỏa mãn biểu thức \(\frac{{x + 3y}}{{4x + 8y}} \cdot A = \frac{{{x^2} - 9{y^2}}}{{x + 2y}}\).

    • A.
      \(4\left( {x - 2y} \right)\)
    • B.
      \(4\left( {x + 2y} \right)\)
    • C.
      \(4\left( {x + 3y} \right)\)
    • D.
      \(4\left( {x - 3y} \right)\)

    Đáp án : D

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{x + 3y}}{{4x + 8y}} \cdot A = \frac{{{x^2} - 9{y^2}}}{{x + 2y}}\\A = \frac{{{x^2} - 9{y^2}}}{{x + 2y}}:\frac{{x + 3y}}{{4x + 8y}} = \frac{{\left( {x - 3y} \right)\left( {x + 3y} \right)}}{{x + 2y}}:\frac{{x + 3y}}{{4\left( {x + 2y} \right)}}\\ = \frac{{\left( {x - 3y} \right)\left( {x + 3y} \right)}}{{x + 2y}} \cdot \frac{{4\left( {x + 2y} \right)}}{{x + 3y}} = 4\left( {x - 3y} \right)\end{array}\)

    Câu 10 :

    Cho biểu thức \(A = \frac{{5x + 10}}{{x - 6}}:\frac{{x - 2}}{{2x + 12}} \cdot \frac{{2x - 4}}{{{x^2} - 36}}\). Bạn An rút gọn được \(A = \frac{{10{{\left( {x - 2} \right)}^2}}}{{x - 6}}\), bạn Chi rút gọn được \(A = \frac{{10\left( {x + 2} \right)}}{{{{\left( {x - 6} \right)}^2}}}\). Chọn khẳng định đúng:

    • A.
      Bạn An đúng, bạn Chi sai.
    • B.
      Bạn An sai, bạn Chi đúng.
    • C.
      Hai bạn đều sai.
    • D.
      Hai bạn đều đúng.

    Đáp án : B

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{{5x + 10}}{{x - 6}}:\frac{{x - 2}}{{x + 6}} \cdot \frac{{2x - 4}}{{{x^2} - 36}} = \frac{{5\left( {x + 2} \right)}}{{x - 6}}:\frac{{x - 2}}{{x + 6}} \cdot \frac{{2\left( {x - 2} \right)}}{{\left( {x - 6} \right)\left( {x + 6} \right)}}\\ = \frac{{5\left( {x + 2} \right)}}{{x - 6}} \cdot \frac{{x + 6}}{{x - 2}} \cdot \frac{{2\left( {x - 2} \right)}}{{\left( {x - 6} \right)\left( {x + 6} \right)}} = \frac{{10\left( {x + 2} \right)}}{{{{\left( {x - 6} \right)}^2}}}\end{array}\)

    Vậy bạn An sai, bạn Chi đúng.

    Câu 11 :

    Tìm mối liên hệ giữa \(x\) và \(y\) biết \(\frac{{x + y}}{{{x^3} + {x^2}y + x{y^2} + {y^3}}}:\frac{{{x^2} + xy - 2{y^2}}}{{{x^4} - {y^4}}} = 2\).

    • A.
      \(x = y\)
    • B.
      \(x = 3y\)
    • C.
      \(x = - y\)
    • D.
      \(x = - 3y\)

    Đáp án : D

    Phương pháp giải :

    Rút gọn vế trái sau đó tìm mối liên hệ giữa \(x\) và \(y\).

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{x + y}}{{{x^3} + {x^2}y + x{y^2} + {y^3}}}:\frac{{{x^2} + xy - 2{y^2}}}{{{x^4} - {y^4}}} = \frac{{x + y}}{{{x^2}\left( {x + y} \right) + {y^2}\left( {x + y} \right)}}:\frac{{{x^2} + 2xy - xy - 2{y^2}}}{{\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)}}\\ = \frac{{x + y}}{{\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}}:\frac{{x\left( {x + 2y} \right) - y\left( {x + 2y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)}} = \frac{1}{{{x^2} + {y^2}}}:\frac{{\left( {x - y} \right)\left( {x + 2y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)}}\\ = \frac{1}{{{x^2} + {y^2}}}:\frac{{x + 2y}}{{\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)}} = \frac{1}{{{x^2} + {y^2}}} \cdot \frac{{\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)}}{{x + 2y}} = \frac{{x + y}}{{x + 2y}}\end{array}\)

    Vì \(\frac{{x + y}}{{{x^3} + {x^2}y + x{y^2} + {y^3}}}:\frac{{{x^2} + xy - 2{y^2}}}{{{x^4} - {y^4}}} = 2\) nên \(\frac{{x + y}}{{x + 2y}} = 2\)

    Suy ra \(x + y = 2x + 4y\) hay \(x = - 3y\)

    Câu 12 :

    Tìm \(x\) thỏa mãn \(\frac{{3x + 15}}{{{x^2} - 4}}:\frac{{x + 5}}{{x - 2}} = 1\,\left( {x \ne \pm 2;\,x \ne - 5} \right)\).

    • A.
      \(x = 0\)
    • B.
      \(x = 1\)
    • C.
      \(x = - 1\)
    • D.
      \(x = 3\)

    Đáp án : B

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\frac{{3x + 15}}{{{x^2} - 4}}:\frac{{x + 5}}{{x - 2}} = \frac{{3\left( {x + 5} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}:\frac{{x + 5}}{{x - 2}} = \frac{{3\left( {x + 5} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} \cdot \frac{{x - 2}}{{x + 5}} = \frac{3}{{x + 2}}\)

    \(\frac{{3x + 15}}{{{x^2} - 4}}:\frac{{x + 5}}{{x - 2}} = 1 \Leftrightarrow \frac{3}{{x + 2}} = 1 \Leftrightarrow x + 2 = 3 \Leftrightarrow x = 3 - 2 \Leftrightarrow x = 1\) (t/m)

    Câu 13 :

    Tìm \(x\) nguyên để \(\frac{{{x^2} + 10x + 25}}{{x + 6}}:\left( {x + 5} \right)\) nguyên.

    • A.
      \(x = - 5\)
    • B.
      \(x = - 6\)
    • C.
      \(x = - 7\)
    • D.
      \(x = - 5;\,x = - 7\)

    Đáp án : C

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    Điều kiện: \(x \ne - 6;\,x \ne - 5\,\)

    \(\frac{{{x^2} + 10x + 25}}{{x + 6}}:\left( {x + 5} \right) = \frac{{{{\left( {x + 5} \right)}^2}}}{{x + 6}}:\frac{{x + 5}}{1} = \frac{{{{\left( {x + 5} \right)}^2}}}{{x + 6}} \cdot \frac{1}{{x + 5}} = \frac{{x + 5}}{{x + 6}} = 1 - \frac{1}{{x + 6}}\)

    Để \(\frac{{{x^2} + 10x + 25}}{{x + 6}}:\left( {x + 5} \right)\) nguyên thì \(\left( {x + 6} \right) \in U\left( 1 \right) = \left\{ { \pm 1} \right\}\)

    \(\begin{array}{l}\left[ \begin{array}{l}x + 6 = - 1\\x + 6 = 1\end{array} \right.\\\left[ \begin{array}{l}x = - 7\,\left( {{\rm{t/m}}} \right)\\x = - 5\,\left( {{\rm{ko}}\,{\rm{t/m}}} \right)\end{array} \right.\end{array}\)

    Vậy để \(\frac{{{x^2} + 10x + 25}}{{x + 6}}:\left( {x + 5} \right)\) thì \(x = - 7\).

    Câu 14 :

    Cho \(x + y + z \ne 0\) và \(x = y + z\). Chọn đáp án đúng.

    • A.
      \(\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}} = xy\)
    • B.
      \(\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}} = yz\)
    • C.
      \(\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}} = xyz\)
    • D.
      \(\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}} = 1\)

    Đáp án : B

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{{{\left( {xy + yz + x{\rm{z}}} \right)}^2} - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}}:\frac{{{{\left( {x + y + z} \right)}^2}}}{{{x^2} + {y^2} + {z^2}}}\\ = \frac{{\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2} + 2x{y^2}z + 2xy{z^2} + 2{x^2}yz} \right) - \left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right)}}{{{x^2} + {y^2} + {z^2}}} \cdot \frac{{{x^2} + {y^2} + {z^2}}}{{{{\left( {x + y + z} \right)}^2}}}\\ = \frac{{2x{y^2}z + 2xy{z^2} + 2{x^2}yz}}{{{{\left( {x + y + z} \right)}^2}}} = \frac{{2xyz\left( {x + y + z} \right)}}{{{{\left( {x + y + z} \right)}^2}}} = \frac{{2xyz}}{{x + y + z}} = \frac{{2xyz}}{{2x}} = yz\end{array}\)

    Câu 15 :

    Cho \(A = \frac{{{x^2} + {y^2} + xy}}{{{x^2} - {y^2}}}:\frac{{{x^3} - {y^3}}}{{{x^2} + {y^2} - 2xy}}\) và \(B = \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}:\frac{{{x^2} - 2xy + {y^2}}}{{{x^4} - {y^4}}}\). Khi \(x + y = 5\) hãy so sánh \(A\) và \(B\).

    • A.
      \(A = B\)
    • B.
      \(A \ge B\)
    • C.
      \(A > B\)
    • D.
      \(A < B\)

    Đáp án : D

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{{{x^2} + {y^2} + xy}}{{{x^2} - {y^2}}}:\frac{{{x^3} - {y^3}}}{{{x^2} + {y^2} - 2xy}} = \frac{{{x^2} + {y^2} + xy}}{{\left( {x + y} \right)\left( {x - y} \right)}}:\frac{{\left( {x - y} \right)\left( {{x^2} + {y^2} + xy} \right)}}{{{{\left( {x - y} \right)}^2}}}\\ = \frac{{{x^2} + {y^2} + xy}}{{\left( {x + y} \right)\left( {x - y} \right)}} \cdot \frac{{{{\left( {x - y} \right)}^2}}}{{\left( {x - y} \right)\left( {{x^2} + {y^2} + xy} \right)}} = \frac{1}{{x + y}}\end{array}\)

    Với \(x + y = 5\) ta có \(A = \frac{1}{5}\).

    \(\begin{array}{l}B = \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}:\frac{{{x^2} - 2xy + {y^2}}}{{{x^4} - {y^4}}} = \frac{{\left( {x - y} \right)\left( {x + y} \right)}}{{{x^2} + {y^2}}}:\frac{{{{\left( {x - y} \right)}^2}}}{{\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)\left( {x + y} \right)}}\\ = \frac{{\left( {x - y} \right)\left( {x + y} \right)}}{{{x^2} + {y^2}}} \cdot \frac{{\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)\left( {x + y} \right)}}{{{{\left( {x - y} \right)}^2}}} = {\left( {x + y} \right)^2}\end{array}\)

    Với \(x + y = 5\) ta có \(B = {5^2} = 25\).

    Câu 16 :

    Rút gọn biểu thức \(A = \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3{x^2} - 3x + 3}}{{{x^2} - 36}} + \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3x}}{{{x^2} - 36}}\) sau đó tính giá trị biểu thức \(A\) khi \(x = 994\).

    • A.
      \(\frac{1}{{1000}}\)
    • B.
      \(\frac{1}{{988}}\)
    • C.
      \(\frac{3}{{1000}}\)
    • D.
      \(\frac{3}{{988}}\)

    Đáp án : C

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3{x^2} - 3x + 3}}{{{x^2} - 36}} + \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3x}}{{{x^2} - 36}}\\ = \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3\left( {{x^2} - x + 1} \right)}}{{\left( {x - 6} \right)\left( {x + 6} \right)}} + \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3x}}{{\left( {x - 6} \right)\left( {x + 6} \right)}}\\ = \frac{{3\left( {{x^2} - x + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {x + 6} \right)}} + \frac{{3x}}{{\left( {{x^2} + 1} \right)\left( {x + 6} \right)}} = \frac{{3\left( {{x^2} - x + 1 + x} \right)}}{{\left( {{x^2} + 1} \right)\left( {x + 6} \right)}}\\ = \frac{{3\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {x + 6} \right)}} = \frac{3}{{x + 6}}\end{array}\)

    Khi \(x = 994\), ta có \(A = \frac{3}{{994 + 6}} = \frac{3}{{1000}}\).

    Câu 17 :

    Giá trị biểu thức \(A = \frac{{{5^2} - 1}}{{{3^2} - 1}}:\frac{{{9^2} - 1}}{{{7^2} - 1}}:\frac{{{{13}^2} - 1}}{{{{11}^2} - 1}} :...:\frac{{{{55}^2} - 1}}{{{{53}^2} - 1}}\) là:

    • A.
      \(\frac{9}{{28}}\)
    • B.
      \(\frac{{28}}{9}\)
    • C.
      \(\frac{{18}}{{14}}\)
    • D.
      \(\frac{3}{{28}}\)

    Đáp án : A

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\begin{array}{*{20}{c}}{A = \frac{{{5^2} - 1}}{{{3^2} - 1}}:\frac{{{9^2} - 1}}{{{7^2} - 1}} :\frac{{{{13}^2} - 1}}{{{{11}^2} - 1}}:...:\frac{{{{55}^2} - 1}}{{{{53}^2} - 1}}}\\\begin{array}{l} = \frac{{{5^2} - 1}}{{{3^2} - 1}} \cdot \frac{{{7^2} - 1}}{{{9^2} - 1}} \cdot \frac{{{{11}^2} - 1}}{{{{13}^2} - 1}}...\frac{{{{53}^2} - 1}}{{{{55}^2} - 1}}\\ = \frac{{4.6}}{{2.4}} \cdot \frac{{6.8}}{{8.10}} \cdot \frac{{10.12}}{{12.14}}...\frac{{52.54}}{{54.56}}\\ = \frac{6}{2} \cdot \frac{6}{{10}} \cdot \frac{{10}}{{14}}...\frac{{52}}{{56}}\\ = 3 \cdot \frac{6}{{56}} = \frac{9}{{28}}\end{array}\end{array}\)

    Câu 18 :

    Với \(x = 4,\,y = 1,\,z = - 2\) hãy tính giá trị biểu thức \(A = \frac{{2{x^3}{y^2}}}{{{x^2}{y^5}{z^2}}}:\frac{{5{x^2}y}}{{4{x^2}{y^5}}}:\frac{{ - 8{x^3}{y^2}{z^3}}}{{15{x^5}{y^2}}}\).

    • A.
      -6
    • B.
      6
    • C.
      3
    • D.
      -3

    Đáp án : B

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(A = \frac{{2{x^3}{y^2}}}{{{x^2}{y^5}{z^2}}}:\frac{{5{x^2}y}}{{4{x^2}{y^5}}}:\frac{{ - 8{x^3}{y^2}{z^3}}}{{15{x^5}{y^2}}} = \frac{{2{x^3}{y^2}}}{{{x^2}{y^5}{z^2}}} \cdot \frac{{4{x^2}{y^5}}}{{5{x^2}y}} \cdot \frac{{15{x^5}{y^2}}}{{ - 8{x^3}{y^2}{z^3}}} = \frac{{120{x^{10}}{y^9}}}{{ - 40{x^7}{y^8}{z^5}}} = - \frac{{3{x^3}y}}{{{z^5}}}\)

    Với \(x = 4,\,y = 1,\,z = - 2\) ta có: \(A = \frac{{ - {{3.4}^3}.1}}{{{{\left( { - 2} \right)}^5}}} = 6\)

    Câu 19 :

    Cho \(a + b + c = 0\). Tính \(A = \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} \cdot \frac{{4ca - {b^2}}}{{ca + 2{b^2}}} \cdot \frac{{4ab - {c^2}}}{{ab + 2{c^2}}}\).

    • A.
      1
    • B.
      0
    • C.
      -1
    • D.
      2

    Đáp án : A

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Lời giải chi tiết :

    Do \(a + b + c = 0 \Rightarrow a = - \left( {b + c} \right)\)

    \(\begin{array}{l}4bc - {a^2} = 4bc - {\left[ { - \left( {b + c} \right)} \right]^2} = 4bc - \left( {{b^2} + 2bc + {c^2}} \right) = 2bc - {b^2} - {c^2} = - {\left( {b - c} \right)^2}\\bc + 2{a^2} = {a^2} + bc + {a^2} = {a^2} + bc + a\left[ { - \left( {b + c} \right)} \right] = {a^2} + bc - ab - ac\\ = \left( {{a^2} - ab} \right) - \left( {ac - bc} \right) = a\left( {a - b} \right) - c\left( {a - b} \right) = \left( {a - c} \right)\left( {a - b} \right)\\ \Rightarrow \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} = \frac{{ - {{\left( {b - c} \right)}^2}}}{{\left( {a - c} \right)\left( {a - b} \right)}}\end{array}\)

    Tương tự, ta có: \(\frac{{4ca - {b^2}}}{{ca + 2{b^2}}} = \frac{{ - {{\left( {c - a} \right)}^2}}}{{\left( {b - a} \right)\left( {b - c} \right)}};\,\frac{{4ab - {c^2}}}{{ab + 2{c^2}}} = \frac{{ - {{\left( {a - b} \right)}^2}}}{{\left( {c - a} \right)\left( {c - b} \right)}}\)

    \(A = \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} \cdot \frac{{4ca - {b^2}}}{{ca + 2{b^2}}} \cdot \frac{{4ab - {c^2}}}{{ab + 2{c^2}}} = \frac{{ - {{\left( {b - c} \right)}^2}}}{{\left( {a - c} \right)\left( {a - b} \right)}} \cdot \frac{{ - {{\left( {c - a} \right)}^2}}}{{\left( {b - a} \right)\left( {b - c} \right)}} \cdot \frac{{ - {{\left( {a - b} \right)}^2}}}{{\left( {c - a} \right)\left( {c - b} \right)}} = 1\)

    Câu 20 :

    Rút gọn biểu thức sau: \(A = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)...\left( {1 - \frac{1}{{{n^2}}}} \right)\).

    • A.
      \(\frac{{n + 1}}{{2n}}\)
    • B.
      \(\frac{{n - 1}}{{2n}}\)
    • C.
      \(\frac{n}{{n - 1}}\)
    • D.
      \(\frac{n}{{n + 1}}\)

    Đáp án : A

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)\left( {1 - \frac{1}{{{4^2}}}} \right)\left( {1 - \frac{1}{{{5^2}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{1}{{{n^2}}}} \right)\\ = \frac{{{2^2} - 1}}{{{2^2}}} \cdot \frac{{{3^2} - 1}}{{{3^2}}} \cdot \frac{{{4^2} - 1}}{{{4^2}}} \cdot \frac{{{5^2} - 1}}{{{5^2}}} \cdot \cdot \cdot \frac{{{n^2} - 1}}{{{n^2}}}\\ = \frac{{1.3}}{{{2^2}}} \cdot \frac{{2.4}}{{{3^2}}} \cdot \frac{{3.5}}{{{4^2}}} \cdot \frac{{4.6}}{{{5^2}}} \cdot \cdot \cdot \frac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{{n^2}}}\\ = \frac{{1.2.3.4...\left( {n - 1} \right)}}{{2.3.4.5...n}} \cdot \frac{{3.4.5.6...\left( {n + 1} \right)}}{{2.3.4.5...n}}\\ = \frac{1}{n} \cdot \frac{{n + 1}}{2} = \frac{{n + 1}}{{2n}}\end{array}\)

    Câu 21 :

    Có bao nhiêu giá trị của \(x\) thỏa mãn \(\frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{{x^2} + 6x}} - \frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{x - 4}} = 0\).

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      3

    Đáp án : B

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Muốn trừ hai phân thức có cùng mẫu thức, ta trừ các tử thức và giữ nguyên mẫu thức.

    Lời giải chi tiết :

    Điều kiện: \(\left\{ \begin{array}{l}{x^2} - 1 \ne 0\\x + 4 \ne 0\\{x^2} + 6x \ne 0\\x - 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 1} \right)\left( {x + 1} \right) \ne 0\\x + 4 \ne 0\\x\left( {x + 6} \right) \ne 0\\x - 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \pm 1\\x \ne \pm 4\\x \ne 0\\x \ne - 6\end{array} \right.\)

    \(\begin{array}{l}\frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{{x^2} + 6x}} - \frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{x - 4}} = 0\\\frac{{x + 3}}{{{x^2} - 1}} \cdot \frac{{{x^2} + 6x}}{{x + 4}} - \frac{{x + 3}}{{{x^2} - 1}} \cdot \frac{{x - 4}}{{x + 4}} = 0\\\frac{{x + 3}}{{{x^2} - 1}}\left( {\frac{{{x^2} + 6x}}{{x + 4}} - \frac{{x - 4}}{{x + 4}}} \right) = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{\left( {{x^2} + 6x} \right) - \left( {x - 4} \right)}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{{x^2} + 6x - x + 4}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{{x^2} + 5x + 4}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{{x^2} + 4x + x + 4}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x\left( {x + 4} \right) + \left( {x + 4} \right)}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{\left( {x + 1} \right)\left( {x + 4} \right)}}{{\left( {x + 4} \right)}} = 0\\\frac{{x + 3}}{{x - 1}} = 0\\x + 3 = 0\\x = - 3\,\left( {{\rm{t/m}}} \right)\end{array}\)

    Vậy có 1 giá trị của \(x\) thỏa mãn \(\frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{{x^2} + 6x}} - \frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{x - 4}} = 0\).

    Câu 22 :

    Tìm giá trị lớn nhất của biểu thức \(A = \frac{{27 - {x^3}}}{{5x + 5}}:\frac{{2x - 6}}{{3x + 3}}\).

    • A.
      \(\frac{{27}}{4}\)
    • B.
      \( - \frac{{27}}{4}\)
    • C.
      \( - \frac{{81}}{{40}}\)
    • D.
      \(\frac{{81}}{{40}}\)

    Đáp án : C

    Phương pháp giải :

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(A = \frac{{27 - {x^3}}}{{5x + 5}}:\frac{{2x - 6}}{{3x + 3}} = \frac{{\left( {3 - x} \right)\left( {{x^2} + 3x + 9} \right)}}{{5\left( {x + 1} \right)}} :\frac{{2\left( {x - 3} \right)}}{{3\left( {x + 1} \right)}}\)

    \( = \frac{{\left( {3 - x} \right)\left( {{x^2} + 3x + 9} \right)}}{{5\left( {x + 1} \right)}} \cdot \frac{{3\left( {x + 1} \right)}}{{2\left( {x - 3} \right)}} = - \frac{{3\left( {{x^2} + 3x + 9} \right)}}{{10}}\)

    \( = - \frac{3}{{10}}\left[ {\left( {{x^2} + 3x + \frac{9}{4}} \right) + \frac{{27}}{4}} \right] = - \frac{3}{{10}}\left[ {{{\left( {x + \frac{3}{2}} \right)}^2} + \frac{{27}}{4}} \right]\)

    Ta có \({\left( {x + \frac{3}{2}} \right)^2} \ge 0\forall x \Rightarrow {\left( {x + \frac{3}{2}} \right)^2} + \frac{{27}}{4} \ge \frac{{27}}{4}\forall x\)

    \( \Rightarrow \left( { - \frac{3}{{10}}} \right)\left[ {{{\left( {x + \frac{3}{2}} \right)}^2} + \frac{{27}}{4}} \right] \le \left( { - \frac{3}{{10}}} \right)\frac{{27}}{4} = - \frac{{81}}{{40}}\) hay \(A \le - \frac{{81}}{{40}}\)

    Dấu “=” xảy ra \( \Leftrightarrow {\left( {x + \frac{3}{2}} \right)^2} = 0 \Leftrightarrow x + \frac{3}{2} = 0 \Leftrightarrow x = - \frac{3}{2}\)

    Vậy giá trị lớn nhất của biểu thức \(A = \frac{{27 - {x^3}}}{{5x + 5}}:\frac{{2x - 6}}{{3x + 3}}\) là \( - \frac{{81}}{{40}}\) khi \(x = - \frac{3}{2}\).

    Câu 23 :

    Tìm giá trị nhỏ nhất của biểu thức \(A = \left( {4{x^2} - 16} \right) \cdot \frac{{7x - 2}}{{3x + 6}}\).

    • A.
      \( - \frac{{36}}{7}\)
    • B.
      \(\frac{{36}}{7}\)
    • C.
      \( - \frac{{48}}{7}\)
    • D.
      \(\frac{{48}}{7}\)

    Đáp án : C

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Lời giải chi tiết :

    \(\begin{array}{l}A = \left( {4{x^2} - 16} \right) \cdot \frac{{7x - 2}}{{3x + 6}} = \frac{{\left( {4{x^2} - 16} \right)\left( {7x - 2} \right)}}{{3x + 6}} = \frac{{4\left( {x - 2} \right)\left( {x + 2} \right)\left( {7x - 2} \right)}}{{3\left( {x + 2} \right)}}\\ = \frac{{4\left( {x - 2} \right)\left( {7x - 2} \right)}}{3} = \frac{4}{3}\left( {7{x^2} - 2x - 14x + 4} \right) = \frac{4}{3}\left( {7{x^2} - 16x + 4} \right)\\ = \frac{4}{3}\left[ {{{\left( {\sqrt 7 x} \right)}^2} - 2 \cdot \sqrt 7 x \cdot \frac{8}{{\sqrt 7 }} + {{\left( {\frac{8}{{\sqrt 7 }}} \right)}^2} + 4 - {{\left( {\frac{8}{{\sqrt 7 }}} \right)}^2}} \right]\\ = \frac{4}{3}\left[ {{{\left( {\sqrt 7 x - \frac{8}{{\sqrt 7 }}} \right)}^2} - \frac{{36}}{7}} \right]\end{array}\)

    Ta có: \({\left( {\sqrt 7 x - \frac{8}{{\sqrt 7 }}} \right)^2} \ge 0\forall x \Rightarrow {\left( {\sqrt 7 x - \frac{8}{{\sqrt 7 }}} \right)^2} - \frac{{36}}{7} \ge - \frac{{36}}{7}\forall x\)

    \(\frac{4}{3}\left[ {{{\left( {\sqrt 7 x - \frac{8}{{\sqrt 7 }}} \right)}^2} - \frac{{36}}{7}} \right] \ge \frac{4}{3} \cdot \left( { - \frac{{36}}{7}} \right) = - \frac{{48}}{7}\) hay \(A \ge - \frac{{48}}{7}\)

    Dấu “=” xảy ra \( \Leftrightarrow {\left( {\sqrt 7 x - \frac{8}{{\sqrt 7 }}} \right)^2} = 0 \Leftrightarrow x = \frac{8}{7}\).

    Vậy giá trị nhỏ nhất của biểu thức \(A = \left( {4{x^2} - 16} \right) \cdot \frac{{7x - 2}}{{3x + 6}}\) là \( - \frac{{48}}{7}\) khi \(x = \frac{8}{7}\).

    Câu 24 :

    Tính giá trị của biểu thức \(A = \left[ {\frac{{{x^2} + \left( {a - b} \right)x - ab}}{{{x^2} - \left( {a - b} \right)x - ab}} \cdot \frac{{{x^2} - \left( {a + b} \right)x + ab}}{{{x^2} + \left( {a + b} \right)x + ab}}} \right]:\left[ {\frac{{{x^2} - \left( {b - 1} \right)x - b}}{{{x^2} + \left( {b + 1} \right)x + b}} \cdot \frac{{{x^2} - \left( {b + 1} \right)x + b}}{{{x^2} - \left( {1 - b} \right)x - b}}} \right]\)

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4

    Đáp án : A

    Phương pháp giải :

    Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

    Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

    Lời giải chi tiết :

    \(\begin{array}{l}{x^2} + \left( {a - b} \right)x - ab = {x^2} + ax - bx - ab = x\left( {x + a} \right) - b\left( {x + a} \right) = \left( {x - b} \right)\left( {x + a} \right)\\{x^2} - \left( {a - b} \right)x - ab = {x^2} - ax + bx - ab = x\left( {x - a} \right) + b\left( {x - a} \right) = \left( {x + b} \right)\left( {x - a} \right)\\{x^2} - \left( {a + b} \right)x + ab = {x^2} - ax - bx + ab = x\left( {x - a} \right) - b\left( {x - a} \right) = \left( {x - b} \right)\left( {x - a} \right)\\{x^2} + \left( {a + b} \right)x + ab = {x^2} + ax + bx + ab = x\left( {x + a} \right) + b\left( {x + a} \right) = \left( {x + b} \right)\left( {x + a} \right)\\{x^2} - \left( {b - 1} \right)x - b = {x^2} - bx + x - b = x\left( {x - b} \right) + \left( {x - b} \right) = \left( {x + 1} \right)\left( {x - b} \right)\\{x^2} + \left( {b + 1} \right)x + b = {x^2} + bx + x + b = x\left( {x + b} \right) + \left( {x + b} \right) = \left( {x + 1} \right)\left( {x + b} \right)\\{x^2} - \left( {b + 1} \right)x + b = {x^2} - bx - x + b = x\left( {x - b} \right) - \left( {x - b} \right) = \left( {x - 1} \right)\left( {x - b} \right)\\{x^2} - \left( {1 - b} \right)x - b = {x^2} - x + bx - b = x\left( {x - 1} \right) + b\left( {x - 1} \right) = \left( {x + b} \right)\left( {x - 1} \right)\end{array}\)

    \(\begin{array}{l}A = \left[ {\frac{{{x^2} + \left( {a - b} \right)x - ab}}{{{x^2} - \left( {a - b} \right)x - ab}} \cdot \frac{{{x^2} - \left( {a + b} \right)x + ab}}{{{x^2} + \left( {a + b} \right)x + ab}}} \right]:\left[ {\frac{{{x^2} - \left( {b - 1} \right)x - b}}{{{x^2} + \left( {b + 1} \right)x + b}} \cdot \frac{{{x^2} - \left( {b + 1} \right)x + b}}{{{x^2} - \left( {1 - b} \right)x - b}}} \right]\\ = \left[ {\frac{{\left( {x - b} \right)\left( {x + a} \right)}}{{\left( {x + b} \right)\left( {x - a} \right)}} \cdot \frac{{\left( {x - b} \right)\left( {x - a} \right)}}{{\left( {x + b} \right)\left( {x + a} \right)}}} \right]:\left[ {\frac{{\left( {x + 1} \right)\left( {x - b} \right)}}{{\left( {x + 1} \right)\left( {x + b} \right)}} \cdot \frac{{\left( {x - 1} \right)\left( {x - b} \right)}}{{\left( {x + b} \right)\left( {x - 1} \right)}}} \right]\\ = \frac{{{{\left( {x - b} \right)}^2}}}{{{{\left( {x + b} \right)}^2}}}:\frac{{{{\left( {x - b} \right)}^2}}}{{{{\left( {x + b} \right)}^2}}} = \frac{{{{\left( {x - b} \right)}^2}}}{{{{\left( {x + b} \right)}^2}}} \cdot \frac{{{{\left( {x + b} \right)}^2}}}{{{{\left( {x - b} \right)}^2}}} = 1\end{array}\)

    Câu 25 :

    Tính \(A = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{1}{{{{2010}^2}}}} \right)\).

    • A.
      \(\frac{{2009}}{{2010}}\)
    • B.
      \(\frac{{2011}}{{2010}}\)
    • C.
      \(\frac{{2011}}{{4020}}\)
    • D.
      \(\frac{{2009}}{{4020}}\)

    Đáp án : C

    Phương pháp giải :

    Sử dụng công thức \(\left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)...\left( {1 - \frac{1}{{{n^2}}}} \right) = \frac{{n + 1}}{{2n}}\).

    Lời giải chi tiết :

    \(\begin{array}{l}\left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)\left( {1 - \frac{1}{{{4^2}}}} \right)\left( {1 - \frac{1}{{{5^2}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{1}{{{n^2}}}} \right) = \frac{{{2^2} - 1}}{{{2^2}}} \cdot \frac{{{3^2} - 1}}{{{3^2}}} \cdot \frac{{{4^2} - 1}}{{{4^2}}} \cdot \frac{{{5^2} - 1}}{{{5^2}}} \cdot \cdot \cdot \frac{{{n^2} - 1}}{{{n^2}}}\\ = \frac{{1.3}}{{{2^2}}} \cdot \frac{{2.4}}{{{3^2}}} \cdot \frac{{3.5}}{{{4^2}}} \cdot \frac{{4.6}}{{{5^2}}} \cdot \cdot \cdot \frac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{{n^2}}} = \frac{{1.2.3.4...\left( {n - 1} \right)}}{{2.3.4.5...n}} \cdot \frac{{3.4.5.6...\left( {n + 1} \right)}}{{2.3.4.5...n}} = \frac{1}{n} \cdot \frac{{n + 1}}{2} = \frac{{n + 1}}{{2n}}\end{array}\)Áp dụng với \(n = 2010\) ta có:

    \(A = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{1}{{{{2010}^2}}}} \right) = \frac{{2010 + 1}}{{2.2010}} = \frac{{2011}}{{4020}}\)

    Câu 26 :

    Với mọi số tự nhiên \(n \ge 2\) ta luôn có:

    • A.
      \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] > 3\)
    • B.
      \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] < 0\)
    • C.
      \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] > \frac{1}{3}\)
    • D.
      \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] < - \frac{1}{3}\)

    Đáp án : C

    Phương pháp giải :

    Sử dụng công thức: \(1 - \frac{2}{{n\left( {n + 1} \right)}} = \frac{{\left( {n - 1} \right)\left( {n + 2} \right)}}{{n\left( {n + 1} \right)}}\)

    Lời giải chi tiết :

    Ta có: \(1 - \frac{2}{{n\left( {n + 1} \right)}} = \frac{{{n^2} + n - 2}}{{n\left( {n + 1} \right)}} = \frac{{{n^2} + 2n - n - 2}}{{n\left( {n + 1} \right)}} = \frac{{n\left( {n + 2} \right) - \left( {n + 2} \right)}}{{n\left( {n + 1} \right)}} = \frac{{\left( {n - 1} \right)\left( {n + 2} \right)}}{{n\left( {n + 1} \right)}}\)\(\begin{array}{l}\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot \cdot \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] = \frac{{1.4}}{{2.3}} \cdot \frac{{2.5}}{{3.4}} \cdot \frac{{3.6}}{{4.5}} \cdot \cdot \cdot \frac{{\left( {n - 1} \right)\left( {n + 2} \right)}}{{n\left( {n + 1} \right)}}\\ = \frac{{1.2.3...\left( {n - 1} \right)}}{{2.3.4...n}} \cdot \frac{{4.5.6...\left( {n + 2} \right)}}{{3.4.5...\left( {n + 1} \right)}} = \frac{1}{n} \cdot \frac{{n + 2}}{3} = \frac{{n + 2}}{{3n}}\\ = \frac{1}{3}\left( {\frac{{n + 2}}{n}} \right) = \frac{1}{3}\left( {1 + \frac{2}{n}} \right) > \frac{1}{3}\left( {1 + 0} \right) = \frac{1}{3}\left( {0 < \frac{2}{n} \le 1\forall n \ge 2} \right)\end{array}\)

    Câu 27 :

    Khẳng định nào sau đây là dúng?

    • A.
      \(\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right] = \frac{4}{3}\forall n > 1\)
    • B.
      \(\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right] < 2\forall n \ge 1\)
    • C.
      \(\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right] < 0\forall n \ge 1\)
    • D.
      \(\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right] > 4\forall n > 1\)

    Đáp án : B

    Phương pháp giải :

    Sử dụng công thức \(1 + \frac{1}{{n\left( {n + 2} \right)}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n\left( {n + 2} \right)}}\).

    Lời giải chi tiết :

    \(1 + \frac{1}{{n\left( {n + 2} \right)}} = \frac{{{n^2} + 2n + 1}}{{n\left( {n + 2} \right)}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n\left( {n + 2} \right)}}\)

    \(\begin{array}{l}\left( {1 + \frac{1}{{1.3}}} \right)\left( {1 + \frac{1}{{2.4}}} \right)\left( {1 + \frac{1}{{3.5}}} \right) \cdot \cdot \cdot \left[ {1 + \frac{1}{{n\left( {n + 2} \right)}}} \right]\\ = \frac{{{2^2}}}{{1.3}} \cdot \frac{{{3^2}}}{{2.4}} \cdot \frac{{{4^2}}}{{3.5}} \cdot \cdot \cdot \frac{{{{\left( {n + 1} \right)}^2}}}{{n\left( {n + 2} \right)}} = \frac{{2.3.4...\left( {n + 1} \right)}}{{1.2.3...n}} \cdot \frac{{2.3.4...\left( {n + 1} \right)}}{{3.4.5...\left( {n + 2} \right)}}\\ = \frac{{n + 1}}{1} \cdot \frac{2}{{n + 2}} = 2 \cdot \frac{{n + 1}}{{n + 2}} = 2\left( {1 - \frac{1}{{n + 2}}} \right) < 2\left( {1 - 0} \right) = 2\left( {\frac{1}{{n + 2}} > 0\forall n \ge 1} \right)\end{array}\)

    Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Trắc nghiệm Bài 3: Phép nhân, phép chia phân thức đại số Toán 8 Cánh diều đặc sắc thuộc chuyên mục toán lớp 8 trên toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

    Trắc nghiệm Bài 3: Phép nhân, phép chia phân thức đại số Toán 8 Cánh diều - Tổng hợp kiến thức và bài tập

    Bài 3 trong chương trình Toán 8 Cánh diều tập trung vào các phép toán với phân thức đại số, cụ thể là phép nhân và phép chia. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán ở các lớp trên. Việc nắm vững các quy tắc, tính chất và kỹ năng giải bài tập liên quan đến phân thức đại số là điều cần thiết để đạt kết quả tốt trong môn Toán.

    I. Lý thuyết trọng tâm

    Trước khi bắt đầu với phần trắc nghiệm, chúng ta cùng ôn lại một số kiến thức lý thuyết quan trọng:

    • Phân thức đại số: Là biểu thức có dạng A/B, trong đó A và B là các đa thức, và B khác 0.
    • Điều kiện xác định của phân thức: Là các giá trị của biến sao cho mẫu thức khác 0.
    • Phép nhân phân thức:(A/B) * (C/D) = (A*C) / (B*D)
    • Phép chia phân thức:(A/B) : (C/D) = (A/B) * (D/C) = (A*D) / (B*C)
    • Rút gọn phân thức: Chia cả tử và mẫu của phân thức cho một nhân tử chung.

    II. Các dạng bài tập trắc nghiệm thường gặp

    Các bài tập trắc nghiệm về phép nhân, phép chia phân thức đại số thường xoay quanh các dạng sau:

    1. Tính giá trị của phân thức: Cho một phân thức và giá trị của biến, tính giá trị của phân thức tại giá trị đó.
    2. Thực hiện phép nhân phân thức: Tính tích của hai hoặc nhiều phân thức.
    3. Thực hiện phép chia phân thức: Tính thương của hai phân thức.
    4. Rút gọn phân thức: Rút gọn phân thức về dạng đơn giản nhất.
    5. Tìm điều kiện xác định của phân thức: Xác định các giá trị của biến sao cho phân thức có nghĩa.
    6. Bài tập kết hợp: Kết hợp các phép toán và kỹ năng để giải quyết bài toán.

    III. Hướng dẫn giải một số dạng bài tập

    Dạng 1: Tính giá trị của phân thức

    Để tính giá trị của phân thức tại một giá trị của biến, ta thay giá trị đó vào phân thức và thực hiện các phép tính. Lưu ý kiểm tra điều kiện xác định của phân thức trước khi thay giá trị.

    Dạng 2: Thực hiện phép nhân phân thức

    Áp dụng quy tắc (A/B) * (C/D) = (A*C) / (B*D). Sau khi nhân, ta có thể rút gọn phân thức nếu có thể.

    Dạng 3: Thực hiện phép chia phân thức

    Áp dụng quy tắc (A/B) : (C/D) = (A/B) * (D/C) = (A*D) / (B*C). Sau khi chia, ta có thể rút gọn phân thức nếu có thể.

    IV. Luyện tập với bộ đề trắc nghiệm

    Dưới đây là một số câu hỏi trắc nghiệm mẫu để các em luyện tập:

    1. Câu 1: Rút gọn phân thức (x^2 - 1) / (x + 1)
    2. Câu 2: Tính (2x/3) * (y/4)
    3. Câu 3: Tính (x^2 + 1) : (x - 1)
    4. Câu 4: Tìm điều kiện xác định của phân thức 1 / (x - 2)
    5. Câu 5: ... (và nhiều câu hỏi khác)

    V. Kết luận

    Việc luyện tập thường xuyên với các bài tập trắc nghiệm là cách tốt nhất để nắm vững kiến thức và kỹ năng về phép nhân, phép chia phân thức đại số. Chúc các em học tốt và đạt kết quả cao trong môn Toán!

    Hãy truy cập giaitoan.edu.vn để luyện tập thêm nhiều bài tập trắc nghiệm và học toán online hiệu quả.

    Tài liệu, đề thi và đáp án Toán 8