Chào mừng các em học sinh đến với bài trắc nghiệm về Định lí Pythagore trong chương trình Toán 8 Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức đã học về định lý quan trọng này.
Giaitoan.edu.vn cung cấp bộ câu hỏi trắc nghiệm đa dạng, bao gồm các dạng bài tập khác nhau, từ cơ bản đến nâng cao, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra.
Chọn phát biểu đúng nhất về định lí Pythagore:
Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 2 dm
Cho hình vẽ. Tính x.
Một tam giác vuông có cạnh huyền bằng 26cm độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
Cho hình vẽ sau. Tính \(x\).
Lựa chọn phương án đúng nhất:
Cho tam giác ABC vuông tại B, khi đó:
Tam giác ABC có AB = 3 cm, AC = 4cm, BC = 5cm. Tam giác ABC là tam giác gì?
Cạnh huyền của một tam giác là bao nhiêu biết hai cạnh góc vuông là 3 và 4.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH = 2cm, AB = 4cm. Tính AH:
Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
Cho ABCD là hình vuông cạnh 4 cm (hình vẽ). Khi đó độ dài đường chéo AC là:
Tìm câu sai trong các câu sau đây. Cho tam giác PQR vuông tại P. Khi đó:
Cho tam giác ABC vuông ở A có AC = 20 cm. Kẻ \(AH \bot BC\). Biết BH = 9cm; HC = 16cm. Tính AB , AH
Cho tam giác ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AB = 5cm, AH = 4 cm, \(HC = \sqrt {184} cm\). (làm tròn đến chữ số thập phân thứ nhất).
Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3 : 4 và chu vi tam giác là 36 cm
Tìm x trong hình vẽ sau:
Tìm x trong hình vẽ sau:
Tìm câu trả lời sai. Cho hình vẽ biết DE // HK. Khi đó:
Cho tam giác ABC biết BC = 7,5cm; CA = 4,5cm, AB = 6cm. Độ dài đường cao AH của tam giác ABC là:
Cho tam giác ABC cân tại A biết AB = AC = 17cm. Kẻ \(B{\rm{D}} \bot AC\), biết BD = 15cm. Tính cạnh đáy BC.
Tính x trong hình sau:
Cho tam giác ABC có \(\widehat B,\widehat C\) là các góc nhọn. Gọi H là chân đường vuông góc hạ từ A xuống BC. Biết AH = 6cm ; BH = 4,5cm và HC = 8cm. Khi đó tam giác ABC là tam giác gì?
Một tam giác có độ dài ba đường cao là 4,8cm ; 6cm ; 8cm. Tam giác đó là tam giác gì?
Lời giải và đáp án
Chọn phát biểu đúng nhất về định lí Pythagore:
Đáp án : A
Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 2 dm
Đáp án : D
Tam giác ABC vuông cân ở A nên theo định lý Pythagore ta có \(A{B^2} + A{C^2} = B{C^2}\) mà
AB = AC = 2 dm
Nên \(B{C^2} = {2^2} + {2^2} = 8 \Rightarrow BC = \sqrt 8 dm\)
Cho hình vẽ. Tính x.
Đáp án : D
Áp dụng định lí Pythagore cho tam giác ABC vuông tại B ta được :
\(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2} \Rightarrow {x^2} = {13^2} - {12^2} = 25 \Rightarrow x = 5cm\)
Vậy x = 5 cm
Một tam giác vuông có cạnh huyền bằng 26cm độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
Đáp án : C
Gọi độ dài hai cạnh góc vuông là \(x,y\left( {x,y > 0} \right)\)
Theo định lý Pytago ta có: \({x^2} + {y^2} = 26{}^2 \Rightarrow {x^2} + {y^2} = 676\)
Theo đề bài ta có: \(\frac{x}{5} = \frac{y}{{12}} \Rightarrow \frac{{{x^2}}}{{25}} = \frac{{{y^2}}}{{144}} = \frac{{{x^2} + {y^2}}}{{25 + 144}} = \frac{{676}}{{169}} = 4\)
Suy ra \({x^2} = 25.4 \Rightarrow {x^2} = 100 \Rightarrow x = 10cm\)
\({y^2} = 144.4 \Rightarrow {y^2} = 576 \Rightarrow y = 24cm\)
Cho hình vẽ sau. Tính \(x\).
Đáp án : D
Kẻ \(AH \bot B{{D}}\) tại H.
Khi đó ACDH là hình chữ nhật, suy ra: HD = AC = 6; AH = CD = 8.
Do đó: BH = BD – HD = 10 – 6 = 4
Áp dụng định lí Pythagore cho tam giác AHB vuông tại H, ta có:
\(A{B^2} = B{H^2} + A{H^2} = {4^2} + {8^2} = 80 \Rightarrow AB = 4\sqrt 5 \)
Vậy \(x = 4\sqrt 5 \)
Lựa chọn phương án đúng nhất:
Đáp án : B
Cho tam giác ABC vuông tại B, khi đó:
Đáp án : A
Vì tam giác ABC vuông tại B nên theo định lý Pythagore ta có \(A{B^2} + B{C^2} = A{C^2}\).
Tam giác ABC có AB = 3 cm, AC = 4cm, BC = 5cm. Tam giác ABC là tam giác gì?
Đáp án : C
\(\begin{array}{l}A{B^2} + A{C^2} = {3^2} + {4^2} = 25\\B{C^2} = {5^2} = 25\\ \Rightarrow A{B^2} + A{C^2} = B{C^2}\end{array}\)
Vậy tam giác ABC là tam giác vuông
Cạnh huyền của một tam giác là bao nhiêu biết hai cạnh góc vuông là 3 và 4.
Đáp án : D
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH = 2cm, AB = 4cm. Tính AH:
Đáp án : C
Áp dụng định lí Pythagore cho \(\Delta ABH\) vuông tại H ta có:
\(\begin{array}{l}A{B^2} = B{H^2} + A{H^2} \Rightarrow A{H^2} = A{B^2} - B{H^2} = {4^2} - {2^2} = 12\\ \Rightarrow AH = \sqrt {12} cm\end{array}\)
Vậy \(AH = \sqrt {12} cm\)
Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
Đáp án : B
+) Với bộ số: 15cm; 8cm; 18cm ta thấy : \({18^2} = 324{,^{}}{15^2} + {8^2} = 289 < 324\) nên loại đáp án A.
+) Với bộ số: 21dm; 20dm; 29dm ta thấy : \({29^2} = 841{;^{}}{21^2} + {20^2} = 841 = {29^2}\) nên đây là ba cạnh của tam giác vuông.
+) Với bộ số: 5m; 6m; 8m ta thấy : \({8^2} = 64{;^{}}{5^2} + {6^2} = 61 < 64\) nên loại đáp án C.
+) Với bộ số: 2m; 3m; 4m ta thấy : \({4^2} = 16{;^{}}{3^2} + {2^2} = 13 < 16\) nên loại đáp án D.
Cho ABCD là hình vuông cạnh 4 cm (hình vẽ). Khi đó độ dài đường chéo AC là:
Đáp án : A
Vì ABCD là hình vuông nên AB = AC = 4cm
Áp dụng định lý Pythagore: Trong một tam giác vuông, bình phương hai cạnh huyền bằng tổng bình phương hai cạnh góc vuông. cho tam giác ABC vuông tại B ta có
\(A{C^2} = A{B^2} + B{C^2} = {4^2} + {4^2} = 32 \Rightarrow AC = \sqrt {32} = 4\sqrt 2 cm\)
Tìm câu sai trong các câu sau đây. Cho tam giác PQR vuông tại P. Khi đó:
Đáp án : D
Tam giác PQR vuông tại P nên theo định lí Pythagore ta có: \(Q{{{R}}^2} = P{Q^2} + P{{{R}}^2}\) nên câu C đúng.
Vì độ dài đoạn thẳng là một số dương nên QR > PQ; QR > PR
Suy ra các câu A, B đúng.
Câu trả lời sai là câu D.
Cho tam giác ABC vuông ở A có AC = 20 cm. Kẻ \(AH \bot BC\). Biết BH = 9cm; HC = 16cm. Tính AB , AH
Đáp án : A
+) Ta có: BC = BH + HC = 9 + 16 = 25 cm
+) Xét tam giác ABC vuông tại A, theo định lí Pythagore ta có:
\(A{B^2} + A{C^2} = B{C^2} \Rightarrow A{B^2} = B{C^2} - A{C^2} = {25^2} - {20^2} = 225 \Rightarrow AB = 15cm\)
+) Xét tam giác ABH vuông tại H, theo định lí Pythagore ta có:
\(H{B^2} + H{A^2} = A{B^2} \Rightarrow A{H^2} = A{B^2} - H{B^2} = {15^2} - {9^2} = 144 \Rightarrow AH = 12cm\)
+) Vậy AH = 12cm ; AB = 15cm
Cho tam giác ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AB = 5cm, AH = 4 cm, \(HC = \sqrt {184} cm\). (làm tròn đến chữ số thập phân thứ nhất).
Đáp án : B
Áp dụng định lí Pythagore cho tam giác ABH vuông tại H, ta có:
\(\begin{array}{l}A{B^2} = B{H^2} + A{H^2} \Rightarrow B{H^2} = A{B^2} - A{H^2} = {5^2} - {4^2} = 9\\ \Rightarrow BH = 3(cm)\end{array}\)
Suy ra: \(BC = HB + HC = 3 + \sqrt {184} \)
Áp dụng định lí Pythagore cho tam giác AHC vuông tại H ta có:
\(A{C^2} = C{H^2} + A{H^2} = {4^2} + {\left( {\sqrt {184} } \right)^2} = 200 \Rightarrow AC = \sqrt {200} \)
Vậy chu vi tam giác ABC là: \(AB + AC + BC = 5 + \sqrt {200} + 3 + \sqrt {184} \approx 35,7cm\)
Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3 : 4 và chu vi tam giác là 36 cm
Đáp án : C
Gọi độ dài hai cạnh góc vuông là \(x,y\left( {y > x > 0} \right)\) (cm) và độ dài cạnh huyền là \(z\left( {z > y} \right)\)(cm)
Theo đề bài ta có \(\frac{x}{3} = \frac{y}{4}\) và x + y + z = 36
Đặt \(\frac{x}{3} = \frac{y}{4} = k\left( {k > 0} \right) \Rightarrow x = 3k;y = 4k\)
Theo định lý Pythagore ta có: \({x^2} + {y^2} = {z^2} \Rightarrow {z^2} = {\left( {3k} \right)^2} + {\left( {4k} \right)^2} = 25{k^2} = {\left( {5k} \right)^2} \Rightarrow z = 5k\)
Suy ra \(x + y + z = 3k + 4k + 5k = 12k = 36 \Rightarrow k = 3\) (thỏa mãn)
Từ đó: \(x{{ }} = {{ }}9{{ }}cm;{{ }}y{{ }} = {{ }}12{{ }}cm;{{ }}z{{ }} = {{ }}15cm.\)
Vậy cạnh huyền dài 15 cm
Tìm x trong hình vẽ sau:
Đáp án : B
Áp dụng định lý Pythagore: Trong một tam giác vuông, bình phương hai cạnh huyền bằng tổng bình phương hai cạnh góc vuông. vào Tam giác ABH vuông tại H ta có:
\(\begin{array}{l}A{B^2} = A{H^2} + B{H^2}\\ \Rightarrow A{H^2} = A{B^2} - B{H^2} = {9^2} - {3^2} = 72\end{array}\)
Áp dụng định lý Pythagore: Trong một tam giác vuông, bình phương hai cạnh huyền bằng tổng bình phương hai cạnh góc vuông. vào tam giác ACH vuông tại H ta có:
\(\begin{array}{l}A{C^2} = A{H^2} + H{C^2}\\ \Rightarrow H{C^2} = A{C^2} - A{H^2} = {11^2} - 72 = 49\\ \Rightarrow x = HC = \sqrt {49} = 7\end{array}\)
Tìm x trong hình vẽ sau:
Đáp án : C
Tam giác ABC vuông tại A nên \(\widehat {ABC} + \widehat {ACB} = {90^o} \Rightarrow \widehat {ABC} = {90^o} - \widehat {ACB} = {90^o} - {30^o} = {60^o}\).
Lại có BD là tia phân giác của \(\widehat {ABC}\) (gỉa thiết) nên : \(\widehat {AB{{D}}} = \widehat {DBC} = \frac{{\widehat {ABC}}}{2} = \frac{{{{60}^o}}}{2} = {30^o}\).
Tam giác ABC vuông tại A có \(\widehat {ACB} = {30^o}\) nên \(AB = \frac{1}{2}BC\) hay BC = 2 AB.
Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:
\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2}\\ \Rightarrow {\left( {2{{A}}B} \right)^2} = A{B^2} + {3^2}\\ \Rightarrow 4{{A}}B = A{B^2} + 9\\ \Rightarrow 3{{A}}{B^2} = 9\\ \Rightarrow A{B^2} = 3\\ \Rightarrow AB = \sqrt 3 \end{array}\)
Tam giác ABC vuông tại A có: \(\widehat {AB{{D}}} = {30^o}\) nên \(A{{D}} = \frac{1}{2}B{{D}}\) hay BD = 2AD.
Áp dụng định lý Pythagore vào tam giác ABD vuông tại A ta có:
\(\begin{array}{l}B{{{D}}^2} = A{B^2} + A{{{D}}^2}\\ \Rightarrow {\left( {2{{AD}}} \right)^2} = A{B^2} + A{{{D}}^2}\\ \Rightarrow {\left( {2x} \right)^2} = {\left( {\sqrt 3 } \right)^2} + {x^2}\\ \Rightarrow 4{{{x}}^2} = 3 + {x^2}\\ \Rightarrow 3{{{x}}^2} = 3\\ \Rightarrow {x^2} = 1\\ \Rightarrow x = 1\end{array}\)
Tìm câu trả lời sai. Cho hình vẽ biết DE // HK. Khi đó:
Đáp án : C
Ta có DE // HK nên: \(\widehat {E{{D}}H} = \widehat {DHK} = {90^o}\) (so le trong)
Áp dụng định lí Pythagore trong tam giác vuông DHK ta được:
\(D{K^2} = D{H^2} + H{K^2}\)
\(D{K^2} = {8^2} + {\left( {\sqrt {17} } \right)^2}\)
\(D{K^2} = 64 + 17 = 81 = {9^2}\\DK = 9\)
Cho tam giác ABC biết BC = 7,5cm; CA = 4,5cm, AB = 6cm. Độ dài đường cao AH của tam giác ABC là:
Đáp án : C
+ Áp dụng định lí Pythagore trong tam giác vuông.
+ Trong tam giác vuông, tích của hai cạnh góc vuông bằng tích của đường cao nhân với cạnh huyền.
\(B{C^2} = {\left( {7,5} \right)^2} = 56,25\)
\(A{C^2} + A{B^2} = {\left( {4,5} \right)^2} + {6^2} = 56,25\)
Ta thấy: \(B{C^2} = A{B^2} + A{C^2}\)
Suy ra tam giác ABC vuông tại A.
Ta lại có: \(AB.AC = AH.BC \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{6.4,5}}{{7,5}} = 3,6(cm)\)
Cho tam giác ABC cân tại A biết AB = AC = 17cm. Kẻ \(B{\rm{D}} \bot AC\), biết BD = 15cm. Tính cạnh đáy BC.
Đáp án : D
Tam giác ABD vuông tại D nên theo định lí Pythagore ta có: \(A{{\rm{D}}^2} = A{B^2} - B{{\rm{D}}^2} = {17^2} - {15^2} = 64 = {8^2} \)
nên \(A{\rm{D}} = 8(cm)\)
Suy ra \( C{\rm{D}} = AC - A{\rm{D}} = 17 - 8 = 9(cm)\)
Tam giác BCD vuông tại D nên theo định lí Pythagore ta có:
\(\begin{array}{l}B{C^2} = C{{\rm{D}}^2} - B{{\rm{D}}^2} = {9^2} + {15^2} = 81 + 225 = 306\end{array}\)
nên \(BC = 3\sqrt {34} (cm)\)
Tính x trong hình sau:
Đáp án : B
Áp dụng định lý Pythagore vào tam giác AHB vuông tại H ta có:
\(A{H^2} + B{H^2} = A{B^2} \Rightarrow A{H^2} = A{B^2} - B{H^2}(1)\)
Áp dụng định lý Pythagore vào tam giác AHC vuông tại H ta có:
\(A{H^2} + C{H^2} = A{C^2} \Rightarrow A{H^2} = A{C^2} - C{H^2} = (2)\)
Từ (1) và (2) ta có: \(A{B^2} - B{H^2} = A{C^2} - C{H^2}\)
\(\begin{array}{l} \Rightarrow A{B^2} - {18^2} = {x^2} - {32^2}\\ \Rightarrow A{B^2} = {x^2} - {32^2} + {18^2}\\ \Rightarrow A{B^2} = {x^2} - 1024 + 324\\ \Rightarrow A{B^2} = {x^2} - 700\end{array}\)
Ta có: BC = BH + CH = 18 + 32 = 50
Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:
\(\begin{array}{l}A{B^2} + A{C^2} = B{C^2}\\ \Rightarrow A{B^2} + {x^2} = {50^2}(3)\end{array}\)
Thay \(A{B^2} = {x^2} - 700\) vào (3) ta được:
\(\begin{array}{l}{x^2} - 700 + {{\rm{x}}^2} = {50^2}\\ \Rightarrow 2{{\rm{x}}^2} = 2500 + 700\\ \Rightarrow 2{{\rm{x}}^2} = 3200\\ \Rightarrow {x^2} = 3200:2 = 1600\\ \Rightarrow x = \sqrt {1600} = 40\end{array}\)
Cho tam giác ABC có \(\widehat B,\widehat C\) là các góc nhọn. Gọi H là chân đường vuông góc hạ từ A xuống BC. Biết AH = 6cm ; BH = 4,5cm và HC = 8cm. Khi đó tam giác ABC là tam giác gì?
Đáp án : B
Áp dụng định lý Pythagore vào tam giác AHB vuông tại H ta có:
\(\begin{array}{l}A{B^2} = A{H^2} + B{H^2}\\ \Rightarrow AB = {6^2} + 4,{5^2} = 36 + \frac{{81}}{4} = \frac{{225}}{4}\end{array}\)
Áp dụng định lý Pythagore vào tam giác AHC vuông tại H ta có:
\(\begin{array}{l}A{C^2} = A{H^2} + H{C^2}\\ \Rightarrow A{C^2} = {6^2} + {8^2} = 100\end{array}\)
Ta có: \(BC = BH + HC = 4,5 + 8 = \frac{{25}}{2}\)
\( \Rightarrow B{C^2} = {\left( {\frac{{25}}{2}} \right)^2} = \frac{{625}}{4}(1)\)
Ta có: \(A{B^2} + A{C^2} = \frac{{225}}{4} + 100 = \frac{{625}}{4}(2)\)
Từ (1) và (2) suy ra: \(B{C^2} = A{B^2} + A{C^2}\)
Vậy tam giác ABC vuông tại A
Một tam giác có độ dài ba đường cao là 4,8cm ; 6cm ; 8cm. Tam giác đó là tam giác gì?
Đáp án : B
Gọi a, b, c lần lượt là độ dài ba cạnh của tam giác ứng với các đường cao theo thứ tự đã cho, S là diện tích của tam giác ABC \(\left( {a,b,c,S > 0} \right)\). Chứng minh \({a^2} = {b^2} + {c^2}\) suy ra tam giác ABC là tam giác vuông.
Gọi a, b, c lần lượt là độ dài ba cạnh của tam giác ứng với các đường cao theo thứ tự đã cho, S là diện tích của tam giác ABC \(\left( {a,b,c,S > 0} \right)\)
Ta có: \(S = \frac{1}{2}.4,8.a = \frac{1}{6}.6.b = \frac{1}{2}.8.c\) hay \(4,8{\rm{a}} = 6b = 8c = 2{\rm{S}}\)
Do đó: \(a = \frac{{2{\rm{S}}}}{{4,8}} = \frac{{5{\rm{S}}}}{{12}};b = \frac{{2{\rm{S}}}}{6} = \frac{S}{3};c = \frac{{2{\rm{S}}}}{8} = \frac{S}{4}\)
Ta có: \({b^2} + {c^2} = {\left( {\frac{S}{3}} \right)^2} + {\left( {\frac{S}{4}} \right)^2} = \frac{{{S^2}}}{9} + \frac{{{S^2}}}{{16}} = \frac{{25{{\rm{S}}^2}}}{{144}};{a^2} = {\left( {\frac{{5{\rm{S}}}}{{12}}} \right)^2} = \frac{{25{{\rm{S}}^2}}}{{144}}\)
Suy ra \({a^2} = {b^2} + {c^2}\) nên tam giác đã cho là tam giác vuông, đỉnh góc vuông ứng với đường cao có độ dài là 4,8cm
Chọn phát biểu đúng nhất về định lí Pythagore:
Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 2 dm
Cho hình vẽ. Tính x.
Một tam giác vuông có cạnh huyền bằng 26cm độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
Cho hình vẽ sau. Tính \(x\).
Lựa chọn phương án đúng nhất:
Cho tam giác ABC vuông tại B, khi đó:
Tam giác ABC có AB = 3 cm, AC = 4cm, BC = 5cm. Tam giác ABC là tam giác gì?
Cạnh huyền của một tam giác là bao nhiêu biết hai cạnh góc vuông là 3 và 4.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH = 2cm, AB = 4cm. Tính AH:
Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
Cho ABCD là hình vuông cạnh 4 cm (hình vẽ). Khi đó độ dài đường chéo AC là:
Tìm câu sai trong các câu sau đây. Cho tam giác PQR vuông tại P. Khi đó:
Cho tam giác ABC vuông ở A có AC = 20 cm. Kẻ \(AH \bot BC\). Biết BH = 9cm; HC = 16cm. Tính AB , AH
Cho tam giác ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AB = 5cm, AH = 4 cm, \(HC = \sqrt {184} cm\). (làm tròn đến chữ số thập phân thứ nhất).
Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3 : 4 và chu vi tam giác là 36 cm
Tìm x trong hình vẽ sau:
Tìm x trong hình vẽ sau:
Tìm câu trả lời sai. Cho hình vẽ biết DE // HK. Khi đó:
Cho tam giác ABC biết BC = 7,5cm; CA = 4,5cm, AB = 6cm. Độ dài đường cao AH của tam giác ABC là:
Cho tam giác ABC cân tại A biết AB = AC = 17cm. Kẻ \(B{\rm{D}} \bot AC\), biết BD = 15cm. Tính cạnh đáy BC.
Tính x trong hình sau:
Cho tam giác ABC có \(\widehat B,\widehat C\) là các góc nhọn. Gọi H là chân đường vuông góc hạ từ A xuống BC. Biết AH = 6cm ; BH = 4,5cm và HC = 8cm. Khi đó tam giác ABC là tam giác gì?
Một tam giác có độ dài ba đường cao là 4,8cm ; 6cm ; 8cm. Tam giác đó là tam giác gì?
Chọn phát biểu đúng nhất về định lí Pythagore:
Đáp án : A
Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 2 dm
Đáp án : D
Tam giác ABC vuông cân ở A nên theo định lý Pythagore ta có \(A{B^2} + A{C^2} = B{C^2}\) mà
AB = AC = 2 dm
Nên \(B{C^2} = {2^2} + {2^2} = 8 \Rightarrow BC = \sqrt 8 dm\)
Cho hình vẽ. Tính x.
Đáp án : D
Áp dụng định lí Pythagore cho tam giác ABC vuông tại B ta được :
\(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2} \Rightarrow {x^2} = {13^2} - {12^2} = 25 \Rightarrow x = 5cm\)
Vậy x = 5 cm
Một tam giác vuông có cạnh huyền bằng 26cm độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
Đáp án : C
Gọi độ dài hai cạnh góc vuông là \(x,y\left( {x,y > 0} \right)\)
Theo định lý Pytago ta có: \({x^2} + {y^2} = 26{}^2 \Rightarrow {x^2} + {y^2} = 676\)
Theo đề bài ta có: \(\frac{x}{5} = \frac{y}{{12}} \Rightarrow \frac{{{x^2}}}{{25}} = \frac{{{y^2}}}{{144}} = \frac{{{x^2} + {y^2}}}{{25 + 144}} = \frac{{676}}{{169}} = 4\)
Suy ra \({x^2} = 25.4 \Rightarrow {x^2} = 100 \Rightarrow x = 10cm\)
\({y^2} = 144.4 \Rightarrow {y^2} = 576 \Rightarrow y = 24cm\)
Cho hình vẽ sau. Tính \(x\).
Đáp án : D
Kẻ \(AH \bot B{{D}}\) tại H.
Khi đó ACDH là hình chữ nhật, suy ra: HD = AC = 6; AH = CD = 8.
Do đó: BH = BD – HD = 10 – 6 = 4
Áp dụng định lí Pythagore cho tam giác AHB vuông tại H, ta có:
\(A{B^2} = B{H^2} + A{H^2} = {4^2} + {8^2} = 80 \Rightarrow AB = 4\sqrt 5 \)
Vậy \(x = 4\sqrt 5 \)
Lựa chọn phương án đúng nhất:
Đáp án : B
Cho tam giác ABC vuông tại B, khi đó:
Đáp án : A
Vì tam giác ABC vuông tại B nên theo định lý Pythagore ta có \(A{B^2} + B{C^2} = A{C^2}\).
Tam giác ABC có AB = 3 cm, AC = 4cm, BC = 5cm. Tam giác ABC là tam giác gì?
Đáp án : C
\(\begin{array}{l}A{B^2} + A{C^2} = {3^2} + {4^2} = 25\\B{C^2} = {5^2} = 25\\ \Rightarrow A{B^2} + A{C^2} = B{C^2}\end{array}\)
Vậy tam giác ABC là tam giác vuông
Cạnh huyền của một tam giác là bao nhiêu biết hai cạnh góc vuông là 3 và 4.
Đáp án : D
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH = 2cm, AB = 4cm. Tính AH:
Đáp án : C
Áp dụng định lí Pythagore cho \(\Delta ABH\) vuông tại H ta có:
\(\begin{array}{l}A{B^2} = B{H^2} + A{H^2} \Rightarrow A{H^2} = A{B^2} - B{H^2} = {4^2} - {2^2} = 12\\ \Rightarrow AH = \sqrt {12} cm\end{array}\)
Vậy \(AH = \sqrt {12} cm\)
Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
Đáp án : B
+) Với bộ số: 15cm; 8cm; 18cm ta thấy : \({18^2} = 324{,^{}}{15^2} + {8^2} = 289 < 324\) nên loại đáp án A.
+) Với bộ số: 21dm; 20dm; 29dm ta thấy : \({29^2} = 841{;^{}}{21^2} + {20^2} = 841 = {29^2}\) nên đây là ba cạnh của tam giác vuông.
+) Với bộ số: 5m; 6m; 8m ta thấy : \({8^2} = 64{;^{}}{5^2} + {6^2} = 61 < 64\) nên loại đáp án C.
+) Với bộ số: 2m; 3m; 4m ta thấy : \({4^2} = 16{;^{}}{3^2} + {2^2} = 13 < 16\) nên loại đáp án D.
Cho ABCD là hình vuông cạnh 4 cm (hình vẽ). Khi đó độ dài đường chéo AC là:
Đáp án : A
Vì ABCD là hình vuông nên AB = AC = 4cm
Áp dụng định lý Pythagore: Trong một tam giác vuông, bình phương hai cạnh huyền bằng tổng bình phương hai cạnh góc vuông. cho tam giác ABC vuông tại B ta có
\(A{C^2} = A{B^2} + B{C^2} = {4^2} + {4^2} = 32 \Rightarrow AC = \sqrt {32} = 4\sqrt 2 cm\)
Tìm câu sai trong các câu sau đây. Cho tam giác PQR vuông tại P. Khi đó:
Đáp án : D
Tam giác PQR vuông tại P nên theo định lí Pythagore ta có: \(Q{{{R}}^2} = P{Q^2} + P{{{R}}^2}\) nên câu C đúng.
Vì độ dài đoạn thẳng là một số dương nên QR > PQ; QR > PR
Suy ra các câu A, B đúng.
Câu trả lời sai là câu D.
Cho tam giác ABC vuông ở A có AC = 20 cm. Kẻ \(AH \bot BC\). Biết BH = 9cm; HC = 16cm. Tính AB , AH
Đáp án : A
+) Ta có: BC = BH + HC = 9 + 16 = 25 cm
+) Xét tam giác ABC vuông tại A, theo định lí Pythagore ta có:
\(A{B^2} + A{C^2} = B{C^2} \Rightarrow A{B^2} = B{C^2} - A{C^2} = {25^2} - {20^2} = 225 \Rightarrow AB = 15cm\)
+) Xét tam giác ABH vuông tại H, theo định lí Pythagore ta có:
\(H{B^2} + H{A^2} = A{B^2} \Rightarrow A{H^2} = A{B^2} - H{B^2} = {15^2} - {9^2} = 144 \Rightarrow AH = 12cm\)
+) Vậy AH = 12cm ; AB = 15cm
Cho tam giác ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AB = 5cm, AH = 4 cm, \(HC = \sqrt {184} cm\). (làm tròn đến chữ số thập phân thứ nhất).
Đáp án : B
Áp dụng định lí Pythagore cho tam giác ABH vuông tại H, ta có:
\(\begin{array}{l}A{B^2} = B{H^2} + A{H^2} \Rightarrow B{H^2} = A{B^2} - A{H^2} = {5^2} - {4^2} = 9\\ \Rightarrow BH = 3(cm)\end{array}\)
Suy ra: \(BC = HB + HC = 3 + \sqrt {184} \)
Áp dụng định lí Pythagore cho tam giác AHC vuông tại H ta có:
\(A{C^2} = C{H^2} + A{H^2} = {4^2} + {\left( {\sqrt {184} } \right)^2} = 200 \Rightarrow AC = \sqrt {200} \)
Vậy chu vi tam giác ABC là: \(AB + AC + BC = 5 + \sqrt {200} + 3 + \sqrt {184} \approx 35,7cm\)
Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3 : 4 và chu vi tam giác là 36 cm
Đáp án : C
Gọi độ dài hai cạnh góc vuông là \(x,y\left( {y > x > 0} \right)\) (cm) và độ dài cạnh huyền là \(z\left( {z > y} \right)\)(cm)
Theo đề bài ta có \(\frac{x}{3} = \frac{y}{4}\) và x + y + z = 36
Đặt \(\frac{x}{3} = \frac{y}{4} = k\left( {k > 0} \right) \Rightarrow x = 3k;y = 4k\)
Theo định lý Pythagore ta có: \({x^2} + {y^2} = {z^2} \Rightarrow {z^2} = {\left( {3k} \right)^2} + {\left( {4k} \right)^2} = 25{k^2} = {\left( {5k} \right)^2} \Rightarrow z = 5k\)
Suy ra \(x + y + z = 3k + 4k + 5k = 12k = 36 \Rightarrow k = 3\) (thỏa mãn)
Từ đó: \(x{{ }} = {{ }}9{{ }}cm;{{ }}y{{ }} = {{ }}12{{ }}cm;{{ }}z{{ }} = {{ }}15cm.\)
Vậy cạnh huyền dài 15 cm
Tìm x trong hình vẽ sau:
Đáp án : B
Áp dụng định lý Pythagore: Trong một tam giác vuông, bình phương hai cạnh huyền bằng tổng bình phương hai cạnh góc vuông. vào Tam giác ABH vuông tại H ta có:
\(\begin{array}{l}A{B^2} = A{H^2} + B{H^2}\\ \Rightarrow A{H^2} = A{B^2} - B{H^2} = {9^2} - {3^2} = 72\end{array}\)
Áp dụng định lý Pythagore: Trong một tam giác vuông, bình phương hai cạnh huyền bằng tổng bình phương hai cạnh góc vuông. vào tam giác ACH vuông tại H ta có:
\(\begin{array}{l}A{C^2} = A{H^2} + H{C^2}\\ \Rightarrow H{C^2} = A{C^2} - A{H^2} = {11^2} - 72 = 49\\ \Rightarrow x = HC = \sqrt {49} = 7\end{array}\)
Tìm x trong hình vẽ sau:
Đáp án : C
Tam giác ABC vuông tại A nên \(\widehat {ABC} + \widehat {ACB} = {90^o} \Rightarrow \widehat {ABC} = {90^o} - \widehat {ACB} = {90^o} - {30^o} = {60^o}\).
Lại có BD là tia phân giác của \(\widehat {ABC}\) (gỉa thiết) nên : \(\widehat {AB{{D}}} = \widehat {DBC} = \frac{{\widehat {ABC}}}{2} = \frac{{{{60}^o}}}{2} = {30^o}\).
Tam giác ABC vuông tại A có \(\widehat {ACB} = {30^o}\) nên \(AB = \frac{1}{2}BC\) hay BC = 2 AB.
Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:
\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2}\\ \Rightarrow {\left( {2{{A}}B} \right)^2} = A{B^2} + {3^2}\\ \Rightarrow 4{{A}}B = A{B^2} + 9\\ \Rightarrow 3{{A}}{B^2} = 9\\ \Rightarrow A{B^2} = 3\\ \Rightarrow AB = \sqrt 3 \end{array}\)
Tam giác ABC vuông tại A có: \(\widehat {AB{{D}}} = {30^o}\) nên \(A{{D}} = \frac{1}{2}B{{D}}\) hay BD = 2AD.
Áp dụng định lý Pythagore vào tam giác ABD vuông tại A ta có:
\(\begin{array}{l}B{{{D}}^2} = A{B^2} + A{{{D}}^2}\\ \Rightarrow {\left( {2{{AD}}} \right)^2} = A{B^2} + A{{{D}}^2}\\ \Rightarrow {\left( {2x} \right)^2} = {\left( {\sqrt 3 } \right)^2} + {x^2}\\ \Rightarrow 4{{{x}}^2} = 3 + {x^2}\\ \Rightarrow 3{{{x}}^2} = 3\\ \Rightarrow {x^2} = 1\\ \Rightarrow x = 1\end{array}\)
Tìm câu trả lời sai. Cho hình vẽ biết DE // HK. Khi đó:
Đáp án : C
Ta có DE // HK nên: \(\widehat {E{{D}}H} = \widehat {DHK} = {90^o}\) (so le trong)
Áp dụng định lí Pythagore trong tam giác vuông DHK ta được:
\(D{K^2} = D{H^2} + H{K^2}\)
\(D{K^2} = {8^2} + {\left( {\sqrt {17} } \right)^2}\)
\(D{K^2} = 64 + 17 = 81 = {9^2}\\DK = 9\)
Cho tam giác ABC biết BC = 7,5cm; CA = 4,5cm, AB = 6cm. Độ dài đường cao AH của tam giác ABC là:
Đáp án : C
+ Áp dụng định lí Pythagore trong tam giác vuông.
+ Trong tam giác vuông, tích của hai cạnh góc vuông bằng tích của đường cao nhân với cạnh huyền.
\(B{C^2} = {\left( {7,5} \right)^2} = 56,25\)
\(A{C^2} + A{B^2} = {\left( {4,5} \right)^2} + {6^2} = 56,25\)
Ta thấy: \(B{C^2} = A{B^2} + A{C^2}\)
Suy ra tam giác ABC vuông tại A.
Ta lại có: \(AB.AC = AH.BC \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{6.4,5}}{{7,5}} = 3,6(cm)\)
Cho tam giác ABC cân tại A biết AB = AC = 17cm. Kẻ \(B{\rm{D}} \bot AC\), biết BD = 15cm. Tính cạnh đáy BC.
Đáp án : D
Tam giác ABD vuông tại D nên theo định lí Pythagore ta có: \(A{{\rm{D}}^2} = A{B^2} - B{{\rm{D}}^2} = {17^2} - {15^2} = 64 = {8^2} \)
nên \(A{\rm{D}} = 8(cm)\)
Suy ra \( C{\rm{D}} = AC - A{\rm{D}} = 17 - 8 = 9(cm)\)
Tam giác BCD vuông tại D nên theo định lí Pythagore ta có:
\(\begin{array}{l}B{C^2} = C{{\rm{D}}^2} - B{{\rm{D}}^2} = {9^2} + {15^2} = 81 + 225 = 306\end{array}\)
nên \(BC = 3\sqrt {34} (cm)\)
Tính x trong hình sau:
Đáp án : B
Áp dụng định lý Pythagore vào tam giác AHB vuông tại H ta có:
\(A{H^2} + B{H^2} = A{B^2} \Rightarrow A{H^2} = A{B^2} - B{H^2}(1)\)
Áp dụng định lý Pythagore vào tam giác AHC vuông tại H ta có:
\(A{H^2} + C{H^2} = A{C^2} \Rightarrow A{H^2} = A{C^2} - C{H^2} = (2)\)
Từ (1) và (2) ta có: \(A{B^2} - B{H^2} = A{C^2} - C{H^2}\)
\(\begin{array}{l} \Rightarrow A{B^2} - {18^2} = {x^2} - {32^2}\\ \Rightarrow A{B^2} = {x^2} - {32^2} + {18^2}\\ \Rightarrow A{B^2} = {x^2} - 1024 + 324\\ \Rightarrow A{B^2} = {x^2} - 700\end{array}\)
Ta có: BC = BH + CH = 18 + 32 = 50
Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:
\(\begin{array}{l}A{B^2} + A{C^2} = B{C^2}\\ \Rightarrow A{B^2} + {x^2} = {50^2}(3)\end{array}\)
Thay \(A{B^2} = {x^2} - 700\) vào (3) ta được:
\(\begin{array}{l}{x^2} - 700 + {{\rm{x}}^2} = {50^2}\\ \Rightarrow 2{{\rm{x}}^2} = 2500 + 700\\ \Rightarrow 2{{\rm{x}}^2} = 3200\\ \Rightarrow {x^2} = 3200:2 = 1600\\ \Rightarrow x = \sqrt {1600} = 40\end{array}\)
Cho tam giác ABC có \(\widehat B,\widehat C\) là các góc nhọn. Gọi H là chân đường vuông góc hạ từ A xuống BC. Biết AH = 6cm ; BH = 4,5cm và HC = 8cm. Khi đó tam giác ABC là tam giác gì?
Đáp án : B
Áp dụng định lý Pythagore vào tam giác AHB vuông tại H ta có:
\(\begin{array}{l}A{B^2} = A{H^2} + B{H^2}\\ \Rightarrow AB = {6^2} + 4,{5^2} = 36 + \frac{{81}}{4} = \frac{{225}}{4}\end{array}\)
Áp dụng định lý Pythagore vào tam giác AHC vuông tại H ta có:
\(\begin{array}{l}A{C^2} = A{H^2} + H{C^2}\\ \Rightarrow A{C^2} = {6^2} + {8^2} = 100\end{array}\)
Ta có: \(BC = BH + HC = 4,5 + 8 = \frac{{25}}{2}\)
\( \Rightarrow B{C^2} = {\left( {\frac{{25}}{2}} \right)^2} = \frac{{625}}{4}(1)\)
Ta có: \(A{B^2} + A{C^2} = \frac{{225}}{4} + 100 = \frac{{625}}{4}(2)\)
Từ (1) và (2) suy ra: \(B{C^2} = A{B^2} + A{C^2}\)
Vậy tam giác ABC vuông tại A
Một tam giác có độ dài ba đường cao là 4,8cm ; 6cm ; 8cm. Tam giác đó là tam giác gì?
Đáp án : B
Gọi a, b, c lần lượt là độ dài ba cạnh của tam giác ứng với các đường cao theo thứ tự đã cho, S là diện tích của tam giác ABC \(\left( {a,b,c,S > 0} \right)\). Chứng minh \({a^2} = {b^2} + {c^2}\) suy ra tam giác ABC là tam giác vuông.
Gọi a, b, c lần lượt là độ dài ba cạnh của tam giác ứng với các đường cao theo thứ tự đã cho, S là diện tích của tam giác ABC \(\left( {a,b,c,S > 0} \right)\)
Ta có: \(S = \frac{1}{2}.4,8.a = \frac{1}{6}.6.b = \frac{1}{2}.8.c\) hay \(4,8{\rm{a}} = 6b = 8c = 2{\rm{S}}\)
Do đó: \(a = \frac{{2{\rm{S}}}}{{4,8}} = \frac{{5{\rm{S}}}}{{12}};b = \frac{{2{\rm{S}}}}{6} = \frac{S}{3};c = \frac{{2{\rm{S}}}}{8} = \frac{S}{4}\)
Ta có: \({b^2} + {c^2} = {\left( {\frac{S}{3}} \right)^2} + {\left( {\frac{S}{4}} \right)^2} = \frac{{{S^2}}}{9} + \frac{{{S^2}}}{{16}} = \frac{{25{{\rm{S}}^2}}}{{144}};{a^2} = {\left( {\frac{{5{\rm{S}}}}{{12}}} \right)^2} = \frac{{25{{\rm{S}}^2}}}{{144}}\)
Suy ra \({a^2} = {b^2} + {c^2}\) nên tam giác đã cho là tam giác vuông, đỉnh góc vuông ứng với đường cao có độ dài là 4,8cm
Định lí Pythagore là một trong những định lý cơ bản và quan trọng nhất trong hình học. Nó mô tả mối quan hệ giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng: Trong một tam giác vuông, bình phương cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.
Công thức toán học của định lí Pythagore là: a2 + b2 = c2, trong đó:
Định lí Pythagore có rất nhiều ứng dụng trong thực tế và trong các lĩnh vực khác của toán học. Một số ứng dụng phổ biến bao gồm:
Trong chương trình Toán 8 Chân trời sáng tạo, các bài tập trắc nghiệm về Định lí Pythagore thường tập trung vào các dạng sau:
Để giải các bài tập trắc nghiệm về Định lí Pythagore một cách hiệu quả, học sinh cần:
Ví dụ 1: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Tính độ dài cạnh BC.
Giải:
Áp dụng Định lí Pythagore vào tam giác ABC, ta có:
BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25
Suy ra BC = √25 = 5cm
Để củng cố kiến thức và kỹ năng giải bài tập về Định lí Pythagore, các em có thể luyện tập thêm với các bài tập sau:
STT | Bài tập |
---|---|
1 | Cho tam giác MNP vuông tại M, MN = 5cm, MP = 12cm. Tính độ dài cạnh NP. |
2 | Cho tam giác DEF có DE = 6cm, EF = 8cm, DF = 10cm. Chứng minh tam giác DEF là tam giác vuông. |
3 | Một chiếc thang dài 5m được đặt dựa vào tường. Chân thang cách tường 3m. Tính chiều cao của bức tường. |
Định lí Pythagore là một công cụ quan trọng trong hình học và có nhiều ứng dụng thực tế. Việc nắm vững định lý này và luyện tập thường xuyên sẽ giúp các em học sinh giải quyết các bài toán một cách dễ dàng và hiệu quả.