Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo

Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo

Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo

Chào mừng các em học sinh đến với bài trắc nghiệm về Hệ số góc của đường thẳng trong chương trình Toán 8 Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp các em ôn luyện và củng cố kiến thức đã học về hệ số góc, một khái niệm quan trọng trong hình học.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm các câu hỏi từ cơ bản đến nâng cao, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra sắp tới.

Đề bài

    Câu 1 :

    : Cho hai hàm số \(y = x + 3\), \(y = mx + 3\left( {m \ne 0} \right)\) có đồ thị lần lượt là các đường thẳng \({d_1}\) và \({d_2}\). Biết rằng đường thẳng \({d_2}\) có cùng hệ số góc với đường thẳng \(y = - x + 5.\) Gọi A là giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\), B là giao điểm của đường thẳng \({d_1}\) với trục Ox, C là giao điểm của đường thẳng \({d_2}\) với trục Ox. Chu vi của tam giác ABC là:

    • A.
      \(2\sqrt {18} - 3\)
    • B.
      \(2\sqrt {18} + 3\)
    • C.
      \(2\sqrt {18} + 6\)
    • D.
      \(2\sqrt {18} - 6\)
    Câu 2 :

    Hệ số góc của đường thẳng \(y = 2x + 1\) là:

    • A.
      1
    • B.
      2
    • C.
      \(\frac{1}{2}\)
    • D.
      3
    Câu 3 :

    Tìm hàm số bậc nhất có hệ số góc bằng 2 và có đồ thị cắt trục tung tại điểm có tung độ bằng \( - 1\).

    • A.
      \(y = x - 2\)
    • B.
      \(y = x + 2\)
    • C.
      \(y = 2x + 1\)
    • D.
      \(y = 2x - 1\)
    Câu 4 :

    Cho đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) có hệ số góc là:

    • A.
      a
    • B.
      b
    • C.
      \(\frac{a}{b}\)
    • D.
      \(\frac{b}{a}\)
    Câu 5 :

    Đường thẳng \(y = ax + b\) có hệ số góc a dương thì góc tạo bởi đường thẳng này và trục Ox là:

    • A.
      Góc bẹt
    • B.
      Góc tù
    • C.
      Góc nhọn
    • D.
      Góc vuông
    Câu 6 :

    Chọn khẳng định đúng nhất:

    • A.
      Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại
    • B.
      Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại
    • C.
      Cả A và B đều đúng
    • D.
      Cả A và B đều sai
    Câu 7 :

    Đường thẳng \(y = \frac{{3x + 1}}{3}\) có hệ số góc là:

    Chọn đáp án đúng.

    • A.
      \(0\)
    • B.
      1
    • C.
      2
    • D.
      3
    Câu 8 :

    Giá trị của m để đường thẳng \(y = \left( {m + 1} \right)x + 2\left( {m \ne - 1} \right)\) song song với đường thẳng \(y = - 2x + 1\) là:

    • A.
      \(m = \frac{1}{3}\)
    • B.
      \(m = - \frac{1}{3}\)
    • C.
      \(m = 3\)
    • D.
      \(m = - 3\)
    Câu 9 :

    Tìm các giá trị của m để đường thẳng \(y = \left( {m - 1} \right)x - 2\left( {m \ne 1} \right)\) cắt đường thẳng \(y = 2x\) là:

    • A.
      Không có giá trị nào
    • B.
      \(m \ne - 3\)
    • C.
      \(m \ne 3\)
    • D.
      \(m \ne 2\)
    Câu 10 :

    Hai đường thẳng, \(y = 2mx + 1\left( {m \ne 0} \right)\) và \(y = \left( {m + 1} \right)x + 1\left( {m \ne - 1} \right)\) trùng nhau khi:

    • A.
      \(m = - 2\)
    • B.
      \(m = 2\)
    • C.
      \(m = 1\)
    • D.
      \(m = - 1\)
    Câu 11 :

    Cho các đường thẳng sau: \(y = x + 5;y = - x + 5;y = x + 7;y = - x + 3\)

    Có bao nhiêu cặp 2 đường thẳng cắt nhau.

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4
    Câu 12 :

    Cho hai hàm số bậc nhất \(y = 2mx + 1\) và \(y = \left( {m + 1} \right)x + m\), có bao nhiêu giá trị của m để đồ thị của hai hàm số đã cho là hai đường thẳng song song?

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      3
    Câu 13 :

    Tìm hàm số bậc nhất có đồ thị là đường thẳng song song với đường thẳng \(y = 3x + 1\) và đi qua điểm \(\left( {1;7} \right)\)?

    • A.
      \(y = - 4 - 3x\)
    • B.
      \(y = 4 - 3x\)
    • C.
      \(y = 3x + 4\)
    • D.
      \(y = 3x - 4\)
    Câu 14 :

    Hệ số góc của đường thẳng d biết d đi qua gốc tọa độ O và điểm M(2; 6) là:

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4
    Câu 15 :

    Đường thẳng \(y = 2\left( {m + 1} \right)x + m - 2\left( {m \ne - 1} \right)\) đi qua điểm A(1; 9) có hệ số góc là:

    • A.
      6
    • B.
      8
    • C.
      7
    • D.
      9
    Câu 16 :

    Cho hai đồ thị hàm số bậc nhất là hai đường thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = - 2x - 2mx + 3.\) Với giá trị nào của m thì d cắt d’

    • A.
      \(m \ne - 1\)
    • B.
      \(m \ne 0\)
    • C.
      \(m \ne 1\)
    • D.
      Cả A, B, C đều sai.
    Câu 17 :

    Cho hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\). Với giá trị nào của m thì d trùng với d’?

    • A.
      Không có giá trị nào của m
    • B.
      \(m = 0\)
    • C.
      \(m = 1\)
    • D.
      \(m = 2\)
    Câu 18 :

    Cho hàm số bậc nhất \(y = 2ax + a - 1\) có đồ thị hàm số là đường d.

    Đường thẳng d có hệ số góc gấp hai lần hệ số góc của đường thẳng d’: \(y - 4x + 3 = 0\)

    Khi đó, điểm A(x; 6) thuộc đường thẳng d thì giá trị của x là:

    • A.
      \(x = \frac{{ - 8}}{3}\)
    • B.
      \(x = \frac{8}{3}\)
    • C.
      \(x = - \frac{3}{8}\)
    • D.
      \(x = \frac{3}{8}\)
    Câu 19 :

    Hệ số góc của đường thẳng \(\frac{x}{3} + \frac{y}{2} = 1\) là:

    • A.
      \(\frac{2}{3}\)
    • B.
      \(\frac{3}{2}\)
    • C.
      \(\frac{{ - 2}}{3}\)
    • D.
      \(\frac{{ - 3}}{2}\)
    Câu 20 :

    Các điểm A(m; 3) và B(1; m) nằm trên đường thẳng có hệ số góc \(m > 0.\) Tìm m.

    • A.
      \(m = 3\)
    • B.
      \(m = \frac{1}{{\sqrt 3 }}\)
    • C.
      \(m = 2\sqrt 3 \)
    • D.
      \(m = \sqrt 3 \)
    Câu 21 :

    Cho hàm số bậc nhất \(y = mx + 3\) có đồ thị là đường thẳng d. Biết rằng đường thẳng d song song với đường thẳng \(y = - x\). Gọi A là giao điểm của đường thẳng d với đồ thị của hàm số \(y = x + 1.\) B là giao điểm của đường thẳng d với trục Ox. Diện tích tam giác OAB là:

    • A.
      1đvdt
    • B.
      2đvdt
    • C.
      3đvdt
    • D.
      4đvdt
    Câu 22 :

    Cho hàm số bậc nhất \(y = \frac{1}{2}{m^2}x + {m^{10}} - {m^4} - \frac{1}{4}mx + 3\left( 1 \right)\)

    Tìm giá trị của m để đồ thị hàm số (1) có hệ số góc đạt giá trị nhỏ nhất.

    • A.
      \(m = \frac{1}{2}\)
    • B.
      \(m = \frac{1}{4}\)
    • C.
      \(m = - \frac{1}{4}\)
    • D.
      \(m = - \frac{1}{2}\)

    Lời giải và đáp án

    Câu 1 :

    : Cho hai hàm số \(y = x + 3\), \(y = mx + 3\left( {m \ne 0} \right)\) có đồ thị lần lượt là các đường thẳng \({d_1}\) và \({d_2}\). Biết rằng đường thẳng \({d_2}\) có cùng hệ số góc với đường thẳng \(y = - x + 5.\) Gọi A là giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\), B là giao điểm của đường thẳng \({d_1}\) với trục Ox, C là giao điểm của đường thẳng \({d_2}\) với trục Ox. Chu vi của tam giác ABC là:

    • A.
      \(2\sqrt {18} - 3\)
    • B.
      \(2\sqrt {18} + 3\)
    • C.
      \(2\sqrt {18} + 6\)
    • D.
      \(2\sqrt {18} - 6\)

    Đáp án : C

    Phương pháp giải :

    + Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)

    + Đồ thị hàm số bậc nhất

    Lời giải chi tiết :

    Ta có: \({d_2}:y = - x + 3\)

    Vẽ đồ thị của hai hàm số: \(y = x + 3\) và \(y = - x + 3\):

    Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo 0 1

    Từ đồ thị ta có, A(3; 0), B(-3; 0), C(3; 0)

    Do đó, \(OA = 3,OB = 3,OC = 3,BC = 6\)

    Tam giác AOB vuông tại O nên \(AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} \)

    Tam giác AOC vuông tại O nên \(AC = \sqrt {O{A^2} + O{C^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} \)

    Chu vi của tam giác ABC là: \(AB + AC + BC = \sqrt {18} + \sqrt {18} + 6 = 2\sqrt {18} + 6\)

    Câu 2 :

    Hệ số góc của đường thẳng \(y = 2x + 1\) là:

    • A.
      1
    • B.
      2
    • C.
      \(\frac{1}{2}\)
    • D.
      3

    Đáp án : B

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :
    Hệ số góc của đường thẳng \(y = 2x + 1\) là: 2
    Câu 3 :

    Tìm hàm số bậc nhất có hệ số góc bằng 2 và có đồ thị cắt trục tung tại điểm có tung độ bằng \( - 1\).

    • A.
      \(y = x - 2\)
    • B.
      \(y = x + 2\)
    • C.
      \(y = 2x + 1\)
    • D.
      \(y = 2x - 1\)

    Đáp án : D

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :

    Hàm số bậc nhất có dạng \(y = ax + b\left( {a \ne 0} \right)\)

    Vì đường thẳng \(y = ax + b\) có hệ số góc bằng 2 nên \(a = 2\left( {tm} \right)\)

    Do đó hàm số: \(y = 2x + b\)

    Đường thẳng \(y = 2x + b\) cắt trục tung tại điểm có tung độ bằng \( - 1\) nên \(y = - 1;x = 0\)

    Ta có: \( - 1 = 2.0 + b\)

    \(b = - 1\)

    Do đó, hàm số cần tìm là: \(y = 2x - 1\)

    Câu 4 :

    Cho đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) có hệ số góc là:

    • A.
      a
    • B.
      b
    • C.
      \(\frac{a}{b}\)
    • D.
      \(\frac{b}{a}\)

    Đáp án : A

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :
    Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Câu 5 :

    Đường thẳng \(y = ax + b\) có hệ số góc a dương thì góc tạo bởi đường thẳng này và trục Ox là:

    • A.
      Góc bẹt
    • B.
      Góc tù
    • C.
      Góc nhọn
    • D.
      Góc vuông

    Đáp án : C

    Phương pháp giải :
    Sử dụng nhận xét hệ số góc của đường thẳng:Khi hệ số góc a dương, đường thẳng \(y = ax + b\) đi lên từ trái sang phải, góc tạo bởi đường thẳng này và trục Ox là góc nhọn.
    Lời giải chi tiết :
    Đường thẳng \(y = ax + b\) có hệ số góc a dương thì góc tạo bởi đường thẳng này và trục Ox là góc nhọn
    Câu 6 :

    Chọn khẳng định đúng nhất:

    • A.
      Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại
    • B.
      Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại
    • C.
      Cả A và B đều đúng
    • D.
      Cả A và B đều sai

    Đáp án : C

    Phương pháp giải :

    + Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại

    + Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.

    Lời giải chi tiết :

    Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại

    Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.

    Câu 7 :

    Đường thẳng \(y = \frac{{3x + 1}}{3}\) có hệ số góc là:

    Chọn đáp án đúng.

    • A.
      \(0\)
    • B.
      1
    • C.
      2
    • D.
      3

    Đáp án : B

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :

    Ta có: \(y = \frac{{3x + 1}}{3} = x + \frac{1}{3}\) nên hệ số góc của đường thẳng là 1

    Câu 8 :

    Giá trị của m để đường thẳng \(y = \left( {m + 1} \right)x + 2\left( {m \ne - 1} \right)\) song song với đường thẳng \(y = - 2x + 1\) là:

    • A.
      \(m = \frac{1}{3}\)
    • B.
      \(m = - \frac{1}{3}\)
    • C.
      \(m = 3\)
    • D.
      \(m = - 3\)

    Đáp án : D

    Phương pháp giải :

    + Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại

    Lời giải chi tiết :

    Để đường thẳng \(y = \left( {m + 1} \right)x + 2\left( {m \ne - 1} \right)\) song song với đường thẳng \(y = - 2x + 1\) thì \(2 \ne 1\) (luôn đúng) và \(m + 1 = - 2\)

    \(m = - 3\) (thỏa mãn)

    Câu 9 :

    Tìm các giá trị của m để đường thẳng \(y = \left( {m - 1} \right)x - 2\left( {m \ne 1} \right)\) cắt đường thẳng \(y = 2x\) là:

    • A.
      Không có giá trị nào
    • B.
      \(m \ne - 3\)
    • C.
      \(m \ne 3\)
    • D.
      \(m \ne 2\)

    Đáp án : C

    Phương pháp giải :
    + Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
    Lời giải chi tiết :

    Để đường thẳng \(y = \left( {m - 1} \right)x - 2\left( {m \ne 1} \right)\) cắt đường thẳng \(y = 2x\) thì \(m - 1 \ne 2\)

    \(m \ne 3\) (thỏa mãn)

    Câu 10 :

    Hai đường thẳng, \(y = 2mx + 1\left( {m \ne 0} \right)\) và \(y = \left( {m + 1} \right)x + 1\left( {m \ne - 1} \right)\) trùng nhau khi:

    • A.
      \(m = - 2\)
    • B.
      \(m = 2\)
    • C.
      \(m = 1\)
    • D.
      \(m = - 1\)

    Đáp án : C

    Phương pháp giải :
    + Sử dụng nhận biết về hai đường thẳng trùng nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) trùng nhau khi \(a = a',b = b'\) và ngược lại
    Lời giải chi tiết :

    Hai đường thẳng, \(y = 2mx + 1\left( {m \ne 0} \right)\) và \(y = \left( {m + 1} \right)x + 1\) trùng nhau khi: \(1 = 1\) (luôn đúng) và \(2m = m + 1\)

    \(m = 1\) (thỏa mãn)

    Câu 11 :

    Cho các đường thẳng sau: \(y = x + 5;y = - x + 5;y = x + 7;y = - x + 3\)

    Có bao nhiêu cặp 2 đường thẳng cắt nhau.

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4

    Đáp án : D

    Phương pháp giải :
    Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
    Lời giải chi tiết :

    Các cặp 2 đường thẳng cắt nhau là:

    \(y = x + 5\) và \(y = - x + 5\); \(y = x + 5\) và \(y = - x + 3\); \(y = - x + 5\) và \(y = x + 7\); \(y = x + 7\) và \(y = - x + 3\)

    Do đó, có 4 cặp hai đường thẳng cắt nhau.

    Câu 12 :

    Cho hai hàm số bậc nhất \(y = 2mx + 1\) và \(y = \left( {m + 1} \right)x + m\), có bao nhiêu giá trị của m để đồ thị của hai hàm số đã cho là hai đường thẳng song song?

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      3

    Đáp án : A

    Phương pháp giải :

    Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại

    Lời giải chi tiết :

    Hàm số \(y = 2mx + 1\) là hàm số bậc nhất khi \(m \ne 0,\) hàm số \(y = \left( {m + 1} \right)x + m\) là hàm số bậc nhất khi \(m \ne - 1\)

    Để hai đường thẳng \(y = 2mx + 1\) và \(y = \left( {m + 1} \right)x + m\) song song với nhau thì

    \(\left\{ \begin{array}{l}2m = m + 1\\m \ne 1\end{array} \right. \Rightarrow \)\(\left\{ \begin{array}{l}m = 1\\m \ne 1\end{array} \right.\), do đó không có giá trị nào của m thỏa mãn bài toán.

    Câu 13 :

    Tìm hàm số bậc nhất có đồ thị là đường thẳng song song với đường thẳng \(y = 3x + 1\) và đi qua điểm \(\left( {1;7} \right)\)?

    • A.
      \(y = - 4 - 3x\)
    • B.
      \(y = 4 - 3x\)
    • C.
      \(y = 3x + 4\)
    • D.
      \(y = 3x - 4\)

    Đáp án : C

    Phương pháp giải :
    Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại
    Lời giải chi tiết :

    Hàm số cần tìm có dạng \(y = 3x + b\left( {b \ne 1} \right)\)

    Vì đường thẳng cần tìm đi qua điểm (1;7) nên ta có: \(7 = 3.1 + b,\) tìm được \(b = 4\) (thỏa mãn)

    Vậy hàm số cần tìm là \(y = 3x + 4\)

    Câu 14 :

    Hệ số góc của đường thẳng d biết d đi qua gốc tọa độ O và điểm M(2; 6) là:

    • A.
      1
    • B.
      2
    • C.
      3
    • D.
      4

    Đáp án : C

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :

    Gọi phương trình đường thẳng d cần tìm là \(y = ax + b\left( {a \ne 0} \right)\)

    Vì d đi qua gốc tọa độ nên \(b = 0 \Rightarrow y = ax\)

    Vì điểm M(2; 6) thuộc d nên \(6 = 2a,\) \(a = 3\) (thỏa mãn)

    Phương trình đường thẳng d: \(y = 3x\) nên hệ số góc của đường thẳng d là 3.

    Câu 15 :

    Đường thẳng \(y = 2\left( {m + 1} \right)x + m - 2\left( {m \ne - 1} \right)\) đi qua điểm A(1; 9) có hệ số góc là:

    • A.
      6
    • B.
      8
    • C.
      7
    • D.
      9

    Đáp án : B

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :

    Vì điểm A(1; 9) thuộc đường thẳng \(y = 2\left( {m + 1} \right)x + m - 2\) nên:

    \(9 = 2\left( {m + 1} \right).1 + m - 2\)

    \(3m = 9\)

    \(m = 3\) (thỏa mãn)

    Đường thẳng d: \(y = 8x + 1\), do đó đường thẳng d có hệ số góc là 8

    Câu 16 :

    Cho hai đồ thị hàm số bậc nhất là hai đường thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = - 2x - 2mx + 3.\) Với giá trị nào của m thì d cắt d’

    • A.
      \(m \ne - 1\)
    • B.
      \(m \ne 0\)
    • C.
      \(m \ne 1\)
    • D.
      Cả A, B, C đều sai.

    Đáp án : B

    Phương pháp giải :
    Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
    Lời giải chi tiết :

    d là hàm số bậc nhất khi \(m \ne 2\)

    \(d':y = - 2x - 2mx + 3 = \left( { - 2 - 2m} \right)x + 3\)

    d’ là hàm số bậc nhất khi \(m \ne - 1\)

    Hai đường thẳng thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = \left( { - 2 - 2m} \right)x + 3\) cắt nhau thì:

    \(m - 2 \ne - 2 - 2m\)

    \(3m \ne 0\)

    \(m \ne 0\) (thỏa mãn)

    Câu 17 :

    Cho hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\). Với giá trị nào của m thì d trùng với d’?

    • A.
      Không có giá trị nào của m
    • B.
      \(m = 0\)
    • C.
      \(m = 1\)
    • D.
      \(m = 2\)

    Đáp án : A

    Phương pháp giải :
    Sử dụng nhận biết về hai đường thẳng trùng nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) trùng nhau khi \(a = a',b = b'\) và ngược lại
    Lời giải chi tiết :

    d là hàm số bậc nhất khi \(m \ne - 2\)

    Hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\) trùng nhau khi:

    \(\left\{ \begin{array}{l}m + 2 = - 2\\m = - 2m + 1\end{array} \right.\; \Leftrightarrow \;\left\{ \begin{array}{l}m = - 4\\m = \frac{1}{3}\end{array} \right.\) (vô lí)

    Vậy không có giá trị nào của m thỏa mãn bài toán

    Câu 18 :

    Cho hàm số bậc nhất \(y = 2ax + a - 1\) có đồ thị hàm số là đường d.

    Đường thẳng d có hệ số góc gấp hai lần hệ số góc của đường thẳng d’: \(y - 4x + 3 = 0\)

    Khi đó, điểm A(x; 6) thuộc đường thẳng d thì giá trị của x là:

    • A.
      \(x = \frac{{ - 8}}{3}\)
    • B.
      \(x = \frac{8}{3}\)
    • C.
      \(x = - \frac{3}{8}\)
    • D.
      \(x = \frac{3}{8}\)

    Đáp án : D

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :

    Hàm số \(y = 2ax + a - 1\) là hàm số bậc nhất khi \(a \ne 0\)

    d’: \(y - 4x + 3 = 0\), \(y = 4x - 3\)

    Vì đường thẳng d có hệ số góc gấp hai lần hệ số góc của đường thẳng d’: \(y = 4x - 3\) nên hệ số góc của đường thẳng d bằng 8, hay \(2a = 8,\) \(a = 4\) (thỏa mãn)

    Do đó, d: \(y = 8x + 3\)

    Vì điểm A(x; 6) thuộc đường thẳng d nên \(6 = 8.x + 3\)

    \(x = \frac{3}{8}\)

    Câu 19 :

    Hệ số góc của đường thẳng \(\frac{x}{3} + \frac{y}{2} = 1\) là:

    • A.
      \(\frac{2}{3}\)
    • B.
      \(\frac{3}{2}\)
    • C.
      \(\frac{{ - 2}}{3}\)
    • D.
      \(\frac{{ - 3}}{2}\)

    Đáp án : C

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :

    \(\frac{x}{3} + \frac{y}{2} = 1\)

    \(\frac{{2x}}{3} + y = 2\)

    \(y = \frac{{ - 2x}}{3} + 2\)

    Do đó, hệ số góc của đường thẳng trên là \(\frac{{ - 2}}{3}\)

    Câu 20 :

    Các điểm A(m; 3) và B(1; m) nằm trên đường thẳng có hệ số góc \(m > 0.\) Tìm m.

    • A.
      \(m = 3\)
    • B.
      \(m = \frac{1}{{\sqrt 3 }}\)
    • C.
      \(m = 2\sqrt 3 \)
    • D.
      \(m = \sqrt 3 \)

    Đáp án : D

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :

    Đường thẳng có dạng \(y = mx + n\) (d)

    Vì đường thẳng d đi qua điểm A(m; 3) nên \(3 = {m^2} + n\) (1)

    Vì đường thẳng d đi qua điểm B(1; m) nên \(m = m + n\), tìm được \(n = 0\)

    Thay \(n = 0\) vào (1) ta có: \({m^2} = 3,\) tìm được \(m = \pm \sqrt 3 \)

    Mà \(m > 0\) nên \(m = \sqrt 3 \)

    Câu 21 :

    Cho hàm số bậc nhất \(y = mx + 3\) có đồ thị là đường thẳng d. Biết rằng đường thẳng d song song với đường thẳng \(y = - x\). Gọi A là giao điểm của đường thẳng d với đồ thị của hàm số \(y = x + 1.\) B là giao điểm của đường thẳng d với trục Ox. Diện tích tam giác OAB là:

    • A.
      1đvdt
    • B.
      2đvdt
    • C.
      3đvdt
    • D.
      4đvdt

    Đáp án : C

    Phương pháp giải :

    + Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại

    + Đồ thị hàm số bậc nhất

    Lời giải chi tiết :

    Hàm số \(y = mx + 3\) là hàm số bậc nhất khi \(m \ne 0\)

    Vì đường thẳng d song song với đường thẳng \(y = - x\) nên \(m = - 1\) (thỏa mãn)

    Do đó, d: \(y = - x + 3\)

    Vẽ đồ thị của hai hàm số: \(y = - x + 3\) và \(y = x + 1\):

    Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo 0 2

    Nhìn vào đồ thị ta thấy, A(1; 2), B(3; 0), do đó, \(OB = 3\)

    Gọi K là hình chiếu của A trên trục Ox, do đó AK là đường cao trong tam giác OAB và \(AK = 2\)

    Diện tích tam giác OAB là: \(S = \frac{1}{2}AK.OB = \frac{1}{2}.3.2 = 3\) (đvdt)

    Câu 22 :

    Cho hàm số bậc nhất \(y = \frac{1}{2}{m^2}x + {m^{10}} - {m^4} - \frac{1}{4}mx + 3\left( 1 \right)\)

    Tìm giá trị của m để đồ thị hàm số (1) có hệ số góc đạt giá trị nhỏ nhất.

    • A.
      \(m = \frac{1}{2}\)
    • B.
      \(m = \frac{1}{4}\)
    • C.
      \(m = - \frac{1}{4}\)
    • D.
      \(m = - \frac{1}{2}\)

    Đáp án : B

    Phương pháp giải :
    Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
    Lời giải chi tiết :

    Ta có: \(y = \frac{1}{2}{m^2}x + {m^{10}} - {m^4} - \frac{1}{4}mx + 3 = \left( {\frac{1}{2}{m^2} - \frac{1}{4}m} \right)x + {m^{10}} - {m^4} + 3\)

    Hàm số (1) là hàm số bậc nhất khi \(\frac{1}{2}{m^2} - \frac{1}{4}m \ne 0\), tìm được \(m \ne 0,m \ne \frac{1}{2}\)

    Ta có: \(\frac{1}{2}{m^2} - \frac{1}{4}m = \frac{1}{2}\left( {{m^2} - \frac{1}{2}m} \right) = \frac{1}{2}\left( {{m^2} - 2.m.\frac{1}{4} + \frac{1}{{16}} - \frac{1}{{16}}} \right) = \frac{1}{2}{\left( {m - \frac{1}{4}} \right)^2} - \frac{1}{{32}} \ge \frac{{ - 1}}{{32}}\)

    Do đó, hệ số góc của đồ thị hàm số (1) đạt giá trị nhỏ nhất là \(\frac{{ - 1}}{{32}}\) khi \(m - \frac{1}{4} = 0\), \(m = \frac{1}{4}\) (thỏa mãn)

    Lời giải và đáp án

      Câu 1 :

      : Cho hai hàm số \(y = x + 3\), \(y = mx + 3\left( {m \ne 0} \right)\) có đồ thị lần lượt là các đường thẳng \({d_1}\) và \({d_2}\). Biết rằng đường thẳng \({d_2}\) có cùng hệ số góc với đường thẳng \(y = - x + 5.\) Gọi A là giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\), B là giao điểm của đường thẳng \({d_1}\) với trục Ox, C là giao điểm của đường thẳng \({d_2}\) với trục Ox. Chu vi của tam giác ABC là:

      • A.
        \(2\sqrt {18} - 3\)
      • B.
        \(2\sqrt {18} + 3\)
      • C.
        \(2\sqrt {18} + 6\)
      • D.
        \(2\sqrt {18} - 6\)
      Câu 2 :

      Hệ số góc của đường thẳng \(y = 2x + 1\) là:

      • A.
        1
      • B.
        2
      • C.
        \(\frac{1}{2}\)
      • D.
        3
      Câu 3 :

      Tìm hàm số bậc nhất có hệ số góc bằng 2 và có đồ thị cắt trục tung tại điểm có tung độ bằng \( - 1\).

      • A.
        \(y = x - 2\)
      • B.
        \(y = x + 2\)
      • C.
        \(y = 2x + 1\)
      • D.
        \(y = 2x - 1\)
      Câu 4 :

      Cho đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) có hệ số góc là:

      • A.
        a
      • B.
        b
      • C.
        \(\frac{a}{b}\)
      • D.
        \(\frac{b}{a}\)
      Câu 5 :

      Đường thẳng \(y = ax + b\) có hệ số góc a dương thì góc tạo bởi đường thẳng này và trục Ox là:

      • A.
        Góc bẹt
      • B.
        Góc tù
      • C.
        Góc nhọn
      • D.
        Góc vuông
      Câu 6 :

      Chọn khẳng định đúng nhất:

      • A.
        Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại
      • B.
        Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại
      • C.
        Cả A và B đều đúng
      • D.
        Cả A và B đều sai
      Câu 7 :

      Đường thẳng \(y = \frac{{3x + 1}}{3}\) có hệ số góc là:

      Chọn đáp án đúng.

      • A.
        \(0\)
      • B.
        1
      • C.
        2
      • D.
        3
      Câu 8 :

      Giá trị của m để đường thẳng \(y = \left( {m + 1} \right)x + 2\left( {m \ne - 1} \right)\) song song với đường thẳng \(y = - 2x + 1\) là:

      • A.
        \(m = \frac{1}{3}\)
      • B.
        \(m = - \frac{1}{3}\)
      • C.
        \(m = 3\)
      • D.
        \(m = - 3\)
      Câu 9 :

      Tìm các giá trị của m để đường thẳng \(y = \left( {m - 1} \right)x - 2\left( {m \ne 1} \right)\) cắt đường thẳng \(y = 2x\) là:

      • A.
        Không có giá trị nào
      • B.
        \(m \ne - 3\)
      • C.
        \(m \ne 3\)
      • D.
        \(m \ne 2\)
      Câu 10 :

      Hai đường thẳng, \(y = 2mx + 1\left( {m \ne 0} \right)\) và \(y = \left( {m + 1} \right)x + 1\left( {m \ne - 1} \right)\) trùng nhau khi:

      • A.
        \(m = - 2\)
      • B.
        \(m = 2\)
      • C.
        \(m = 1\)
      • D.
        \(m = - 1\)
      Câu 11 :

      Cho các đường thẳng sau: \(y = x + 5;y = - x + 5;y = x + 7;y = - x + 3\)

      Có bao nhiêu cặp 2 đường thẳng cắt nhau.

      • A.
        1
      • B.
        2
      • C.
        3
      • D.
        4
      Câu 12 :

      Cho hai hàm số bậc nhất \(y = 2mx + 1\) và \(y = \left( {m + 1} \right)x + m\), có bao nhiêu giá trị của m để đồ thị của hai hàm số đã cho là hai đường thẳng song song?

      • A.
        0
      • B.
        1
      • C.
        2
      • D.
        3
      Câu 13 :

      Tìm hàm số bậc nhất có đồ thị là đường thẳng song song với đường thẳng \(y = 3x + 1\) và đi qua điểm \(\left( {1;7} \right)\)?

      • A.
        \(y = - 4 - 3x\)
      • B.
        \(y = 4 - 3x\)
      • C.
        \(y = 3x + 4\)
      • D.
        \(y = 3x - 4\)
      Câu 14 :

      Hệ số góc của đường thẳng d biết d đi qua gốc tọa độ O và điểm M(2; 6) là:

      • A.
        1
      • B.
        2
      • C.
        3
      • D.
        4
      Câu 15 :

      Đường thẳng \(y = 2\left( {m + 1} \right)x + m - 2\left( {m \ne - 1} \right)\) đi qua điểm A(1; 9) có hệ số góc là:

      • A.
        6
      • B.
        8
      • C.
        7
      • D.
        9
      Câu 16 :

      Cho hai đồ thị hàm số bậc nhất là hai đường thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = - 2x - 2mx + 3.\) Với giá trị nào của m thì d cắt d’

      • A.
        \(m \ne - 1\)
      • B.
        \(m \ne 0\)
      • C.
        \(m \ne 1\)
      • D.
        Cả A, B, C đều sai.
      Câu 17 :

      Cho hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\). Với giá trị nào của m thì d trùng với d’?

      • A.
        Không có giá trị nào của m
      • B.
        \(m = 0\)
      • C.
        \(m = 1\)
      • D.
        \(m = 2\)
      Câu 18 :

      Cho hàm số bậc nhất \(y = 2ax + a - 1\) có đồ thị hàm số là đường d.

      Đường thẳng d có hệ số góc gấp hai lần hệ số góc của đường thẳng d’: \(y - 4x + 3 = 0\)

      Khi đó, điểm A(x; 6) thuộc đường thẳng d thì giá trị của x là:

      • A.
        \(x = \frac{{ - 8}}{3}\)
      • B.
        \(x = \frac{8}{3}\)
      • C.
        \(x = - \frac{3}{8}\)
      • D.
        \(x = \frac{3}{8}\)
      Câu 19 :

      Hệ số góc của đường thẳng \(\frac{x}{3} + \frac{y}{2} = 1\) là:

      • A.
        \(\frac{2}{3}\)
      • B.
        \(\frac{3}{2}\)
      • C.
        \(\frac{{ - 2}}{3}\)
      • D.
        \(\frac{{ - 3}}{2}\)
      Câu 20 :

      Các điểm A(m; 3) và B(1; m) nằm trên đường thẳng có hệ số góc \(m > 0.\) Tìm m.

      • A.
        \(m = 3\)
      • B.
        \(m = \frac{1}{{\sqrt 3 }}\)
      • C.
        \(m = 2\sqrt 3 \)
      • D.
        \(m = \sqrt 3 \)
      Câu 21 :

      Cho hàm số bậc nhất \(y = mx + 3\) có đồ thị là đường thẳng d. Biết rằng đường thẳng d song song với đường thẳng \(y = - x\). Gọi A là giao điểm của đường thẳng d với đồ thị của hàm số \(y = x + 1.\) B là giao điểm của đường thẳng d với trục Ox. Diện tích tam giác OAB là:

      • A.
        1đvdt
      • B.
        2đvdt
      • C.
        3đvdt
      • D.
        4đvdt
      Câu 22 :

      Cho hàm số bậc nhất \(y = \frac{1}{2}{m^2}x + {m^{10}} - {m^4} - \frac{1}{4}mx + 3\left( 1 \right)\)

      Tìm giá trị của m để đồ thị hàm số (1) có hệ số góc đạt giá trị nhỏ nhất.

      • A.
        \(m = \frac{1}{2}\)
      • B.
        \(m = \frac{1}{4}\)
      • C.
        \(m = - \frac{1}{4}\)
      • D.
        \(m = - \frac{1}{2}\)
      Câu 1 :

      : Cho hai hàm số \(y = x + 3\), \(y = mx + 3\left( {m \ne 0} \right)\) có đồ thị lần lượt là các đường thẳng \({d_1}\) và \({d_2}\). Biết rằng đường thẳng \({d_2}\) có cùng hệ số góc với đường thẳng \(y = - x + 5.\) Gọi A là giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\), B là giao điểm của đường thẳng \({d_1}\) với trục Ox, C là giao điểm của đường thẳng \({d_2}\) với trục Ox. Chu vi của tam giác ABC là:

      • A.
        \(2\sqrt {18} - 3\)
      • B.
        \(2\sqrt {18} + 3\)
      • C.
        \(2\sqrt {18} + 6\)
      • D.
        \(2\sqrt {18} - 6\)

      Đáp án : C

      Phương pháp giải :

      + Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)

      + Đồ thị hàm số bậc nhất

      Lời giải chi tiết :

      Ta có: \({d_2}:y = - x + 3\)

      Vẽ đồ thị của hai hàm số: \(y = x + 3\) và \(y = - x + 3\):

      Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo 0 1

      Từ đồ thị ta có, A(3; 0), B(-3; 0), C(3; 0)

      Do đó, \(OA = 3,OB = 3,OC = 3,BC = 6\)

      Tam giác AOB vuông tại O nên \(AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} \)

      Tam giác AOC vuông tại O nên \(AC = \sqrt {O{A^2} + O{C^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} \)

      Chu vi của tam giác ABC là: \(AB + AC + BC = \sqrt {18} + \sqrt {18} + 6 = 2\sqrt {18} + 6\)

      Câu 2 :

      Hệ số góc của đường thẳng \(y = 2x + 1\) là:

      • A.
        1
      • B.
        2
      • C.
        \(\frac{1}{2}\)
      • D.
        3

      Đáp án : B

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :
      Hệ số góc của đường thẳng \(y = 2x + 1\) là: 2
      Câu 3 :

      Tìm hàm số bậc nhất có hệ số góc bằng 2 và có đồ thị cắt trục tung tại điểm có tung độ bằng \( - 1\).

      • A.
        \(y = x - 2\)
      • B.
        \(y = x + 2\)
      • C.
        \(y = 2x + 1\)
      • D.
        \(y = 2x - 1\)

      Đáp án : D

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :

      Hàm số bậc nhất có dạng \(y = ax + b\left( {a \ne 0} \right)\)

      Vì đường thẳng \(y = ax + b\) có hệ số góc bằng 2 nên \(a = 2\left( {tm} \right)\)

      Do đó hàm số: \(y = 2x + b\)

      Đường thẳng \(y = 2x + b\) cắt trục tung tại điểm có tung độ bằng \( - 1\) nên \(y = - 1;x = 0\)

      Ta có: \( - 1 = 2.0 + b\)

      \(b = - 1\)

      Do đó, hàm số cần tìm là: \(y = 2x - 1\)

      Câu 4 :

      Cho đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) có hệ số góc là:

      • A.
        a
      • B.
        b
      • C.
        \(\frac{a}{b}\)
      • D.
        \(\frac{b}{a}\)

      Đáp án : A

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :
      Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Câu 5 :

      Đường thẳng \(y = ax + b\) có hệ số góc a dương thì góc tạo bởi đường thẳng này và trục Ox là:

      • A.
        Góc bẹt
      • B.
        Góc tù
      • C.
        Góc nhọn
      • D.
        Góc vuông

      Đáp án : C

      Phương pháp giải :
      Sử dụng nhận xét hệ số góc của đường thẳng:Khi hệ số góc a dương, đường thẳng \(y = ax + b\) đi lên từ trái sang phải, góc tạo bởi đường thẳng này và trục Ox là góc nhọn.
      Lời giải chi tiết :
      Đường thẳng \(y = ax + b\) có hệ số góc a dương thì góc tạo bởi đường thẳng này và trục Ox là góc nhọn
      Câu 6 :

      Chọn khẳng định đúng nhất:

      • A.
        Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại
      • B.
        Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại
      • C.
        Cả A và B đều đúng
      • D.
        Cả A và B đều sai

      Đáp án : C

      Phương pháp giải :

      + Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại

      + Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.

      Lời giải chi tiết :

      Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại

      Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.

      Câu 7 :

      Đường thẳng \(y = \frac{{3x + 1}}{3}\) có hệ số góc là:

      Chọn đáp án đúng.

      • A.
        \(0\)
      • B.
        1
      • C.
        2
      • D.
        3

      Đáp án : B

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :

      Ta có: \(y = \frac{{3x + 1}}{3} = x + \frac{1}{3}\) nên hệ số góc của đường thẳng là 1

      Câu 8 :

      Giá trị của m để đường thẳng \(y = \left( {m + 1} \right)x + 2\left( {m \ne - 1} \right)\) song song với đường thẳng \(y = - 2x + 1\) là:

      • A.
        \(m = \frac{1}{3}\)
      • B.
        \(m = - \frac{1}{3}\)
      • C.
        \(m = 3\)
      • D.
        \(m = - 3\)

      Đáp án : D

      Phương pháp giải :

      + Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại

      Lời giải chi tiết :

      Để đường thẳng \(y = \left( {m + 1} \right)x + 2\left( {m \ne - 1} \right)\) song song với đường thẳng \(y = - 2x + 1\) thì \(2 \ne 1\) (luôn đúng) và \(m + 1 = - 2\)

      \(m = - 3\) (thỏa mãn)

      Câu 9 :

      Tìm các giá trị của m để đường thẳng \(y = \left( {m - 1} \right)x - 2\left( {m \ne 1} \right)\) cắt đường thẳng \(y = 2x\) là:

      • A.
        Không có giá trị nào
      • B.
        \(m \ne - 3\)
      • C.
        \(m \ne 3\)
      • D.
        \(m \ne 2\)

      Đáp án : C

      Phương pháp giải :
      + Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
      Lời giải chi tiết :

      Để đường thẳng \(y = \left( {m - 1} \right)x - 2\left( {m \ne 1} \right)\) cắt đường thẳng \(y = 2x\) thì \(m - 1 \ne 2\)

      \(m \ne 3\) (thỏa mãn)

      Câu 10 :

      Hai đường thẳng, \(y = 2mx + 1\left( {m \ne 0} \right)\) và \(y = \left( {m + 1} \right)x + 1\left( {m \ne - 1} \right)\) trùng nhau khi:

      • A.
        \(m = - 2\)
      • B.
        \(m = 2\)
      • C.
        \(m = 1\)
      • D.
        \(m = - 1\)

      Đáp án : C

      Phương pháp giải :
      + Sử dụng nhận biết về hai đường thẳng trùng nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) trùng nhau khi \(a = a',b = b'\) và ngược lại
      Lời giải chi tiết :

      Hai đường thẳng, \(y = 2mx + 1\left( {m \ne 0} \right)\) và \(y = \left( {m + 1} \right)x + 1\) trùng nhau khi: \(1 = 1\) (luôn đúng) và \(2m = m + 1\)

      \(m = 1\) (thỏa mãn)

      Câu 11 :

      Cho các đường thẳng sau: \(y = x + 5;y = - x + 5;y = x + 7;y = - x + 3\)

      Có bao nhiêu cặp 2 đường thẳng cắt nhau.

      • A.
        1
      • B.
        2
      • C.
        3
      • D.
        4

      Đáp án : D

      Phương pháp giải :
      Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
      Lời giải chi tiết :

      Các cặp 2 đường thẳng cắt nhau là:

      \(y = x + 5\) và \(y = - x + 5\); \(y = x + 5\) và \(y = - x + 3\); \(y = - x + 5\) và \(y = x + 7\); \(y = x + 7\) và \(y = - x + 3\)

      Do đó, có 4 cặp hai đường thẳng cắt nhau.

      Câu 12 :

      Cho hai hàm số bậc nhất \(y = 2mx + 1\) và \(y = \left( {m + 1} \right)x + m\), có bao nhiêu giá trị của m để đồ thị của hai hàm số đã cho là hai đường thẳng song song?

      • A.
        0
      • B.
        1
      • C.
        2
      • D.
        3

      Đáp án : A

      Phương pháp giải :

      Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại

      Lời giải chi tiết :

      Hàm số \(y = 2mx + 1\) là hàm số bậc nhất khi \(m \ne 0,\) hàm số \(y = \left( {m + 1} \right)x + m\) là hàm số bậc nhất khi \(m \ne - 1\)

      Để hai đường thẳng \(y = 2mx + 1\) và \(y = \left( {m + 1} \right)x + m\) song song với nhau thì

      \(\left\{ \begin{array}{l}2m = m + 1\\m \ne 1\end{array} \right. \Rightarrow \)\(\left\{ \begin{array}{l}m = 1\\m \ne 1\end{array} \right.\), do đó không có giá trị nào của m thỏa mãn bài toán.

      Câu 13 :

      Tìm hàm số bậc nhất có đồ thị là đường thẳng song song với đường thẳng \(y = 3x + 1\) và đi qua điểm \(\left( {1;7} \right)\)?

      • A.
        \(y = - 4 - 3x\)
      • B.
        \(y = 4 - 3x\)
      • C.
        \(y = 3x + 4\)
      • D.
        \(y = 3x - 4\)

      Đáp án : C

      Phương pháp giải :
      Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại
      Lời giải chi tiết :

      Hàm số cần tìm có dạng \(y = 3x + b\left( {b \ne 1} \right)\)

      Vì đường thẳng cần tìm đi qua điểm (1;7) nên ta có: \(7 = 3.1 + b,\) tìm được \(b = 4\) (thỏa mãn)

      Vậy hàm số cần tìm là \(y = 3x + 4\)

      Câu 14 :

      Hệ số góc của đường thẳng d biết d đi qua gốc tọa độ O và điểm M(2; 6) là:

      • A.
        1
      • B.
        2
      • C.
        3
      • D.
        4

      Đáp án : C

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :

      Gọi phương trình đường thẳng d cần tìm là \(y = ax + b\left( {a \ne 0} \right)\)

      Vì d đi qua gốc tọa độ nên \(b = 0 \Rightarrow y = ax\)

      Vì điểm M(2; 6) thuộc d nên \(6 = 2a,\) \(a = 3\) (thỏa mãn)

      Phương trình đường thẳng d: \(y = 3x\) nên hệ số góc của đường thẳng d là 3.

      Câu 15 :

      Đường thẳng \(y = 2\left( {m + 1} \right)x + m - 2\left( {m \ne - 1} \right)\) đi qua điểm A(1; 9) có hệ số góc là:

      • A.
        6
      • B.
        8
      • C.
        7
      • D.
        9

      Đáp án : B

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :

      Vì điểm A(1; 9) thuộc đường thẳng \(y = 2\left( {m + 1} \right)x + m - 2\) nên:

      \(9 = 2\left( {m + 1} \right).1 + m - 2\)

      \(3m = 9\)

      \(m = 3\) (thỏa mãn)

      Đường thẳng d: \(y = 8x + 1\), do đó đường thẳng d có hệ số góc là 8

      Câu 16 :

      Cho hai đồ thị hàm số bậc nhất là hai đường thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = - 2x - 2mx + 3.\) Với giá trị nào của m thì d cắt d’

      • A.
        \(m \ne - 1\)
      • B.
        \(m \ne 0\)
      • C.
        \(m \ne 1\)
      • D.
        Cả A, B, C đều sai.

      Đáp án : B

      Phương pháp giải :
      Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
      Lời giải chi tiết :

      d là hàm số bậc nhất khi \(m \ne 2\)

      \(d':y = - 2x - 2mx + 3 = \left( { - 2 - 2m} \right)x + 3\)

      d’ là hàm số bậc nhất khi \(m \ne - 1\)

      Hai đường thẳng thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = \left( { - 2 - 2m} \right)x + 3\) cắt nhau thì:

      \(m - 2 \ne - 2 - 2m\)

      \(3m \ne 0\)

      \(m \ne 0\) (thỏa mãn)

      Câu 17 :

      Cho hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\). Với giá trị nào của m thì d trùng với d’?

      • A.
        Không có giá trị nào của m
      • B.
        \(m = 0\)
      • C.
        \(m = 1\)
      • D.
        \(m = 2\)

      Đáp án : A

      Phương pháp giải :
      Sử dụng nhận biết về hai đường thẳng trùng nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) trùng nhau khi \(a = a',b = b'\) và ngược lại
      Lời giải chi tiết :

      d là hàm số bậc nhất khi \(m \ne - 2\)

      Hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\) trùng nhau khi:

      \(\left\{ \begin{array}{l}m + 2 = - 2\\m = - 2m + 1\end{array} \right.\; \Leftrightarrow \;\left\{ \begin{array}{l}m = - 4\\m = \frac{1}{3}\end{array} \right.\) (vô lí)

      Vậy không có giá trị nào của m thỏa mãn bài toán

      Câu 18 :

      Cho hàm số bậc nhất \(y = 2ax + a - 1\) có đồ thị hàm số là đường d.

      Đường thẳng d có hệ số góc gấp hai lần hệ số góc của đường thẳng d’: \(y - 4x + 3 = 0\)

      Khi đó, điểm A(x; 6) thuộc đường thẳng d thì giá trị của x là:

      • A.
        \(x = \frac{{ - 8}}{3}\)
      • B.
        \(x = \frac{8}{3}\)
      • C.
        \(x = - \frac{3}{8}\)
      • D.
        \(x = \frac{3}{8}\)

      Đáp án : D

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :

      Hàm số \(y = 2ax + a - 1\) là hàm số bậc nhất khi \(a \ne 0\)

      d’: \(y - 4x + 3 = 0\), \(y = 4x - 3\)

      Vì đường thẳng d có hệ số góc gấp hai lần hệ số góc của đường thẳng d’: \(y = 4x - 3\) nên hệ số góc của đường thẳng d bằng 8, hay \(2a = 8,\) \(a = 4\) (thỏa mãn)

      Do đó, d: \(y = 8x + 3\)

      Vì điểm A(x; 6) thuộc đường thẳng d nên \(6 = 8.x + 3\)

      \(x = \frac{3}{8}\)

      Câu 19 :

      Hệ số góc của đường thẳng \(\frac{x}{3} + \frac{y}{2} = 1\) là:

      • A.
        \(\frac{2}{3}\)
      • B.
        \(\frac{3}{2}\)
      • C.
        \(\frac{{ - 2}}{3}\)
      • D.
        \(\frac{{ - 3}}{2}\)

      Đáp án : C

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :

      \(\frac{x}{3} + \frac{y}{2} = 1\)

      \(\frac{{2x}}{3} + y = 2\)

      \(y = \frac{{ - 2x}}{3} + 2\)

      Do đó, hệ số góc của đường thẳng trên là \(\frac{{ - 2}}{3}\)

      Câu 20 :

      Các điểm A(m; 3) và B(1; m) nằm trên đường thẳng có hệ số góc \(m > 0.\) Tìm m.

      • A.
        \(m = 3\)
      • B.
        \(m = \frac{1}{{\sqrt 3 }}\)
      • C.
        \(m = 2\sqrt 3 \)
      • D.
        \(m = \sqrt 3 \)

      Đáp án : D

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :

      Đường thẳng có dạng \(y = mx + n\) (d)

      Vì đường thẳng d đi qua điểm A(m; 3) nên \(3 = {m^2} + n\) (1)

      Vì đường thẳng d đi qua điểm B(1; m) nên \(m = m + n\), tìm được \(n = 0\)

      Thay \(n = 0\) vào (1) ta có: \({m^2} = 3,\) tìm được \(m = \pm \sqrt 3 \)

      Mà \(m > 0\) nên \(m = \sqrt 3 \)

      Câu 21 :

      Cho hàm số bậc nhất \(y = mx + 3\) có đồ thị là đường thẳng d. Biết rằng đường thẳng d song song với đường thẳng \(y = - x\). Gọi A là giao điểm của đường thẳng d với đồ thị của hàm số \(y = x + 1.\) B là giao điểm của đường thẳng d với trục Ox. Diện tích tam giác OAB là:

      • A.
        1đvdt
      • B.
        2đvdt
      • C.
        3đvdt
      • D.
        4đvdt

      Đáp án : C

      Phương pháp giải :

      + Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại

      + Đồ thị hàm số bậc nhất

      Lời giải chi tiết :

      Hàm số \(y = mx + 3\) là hàm số bậc nhất khi \(m \ne 0\)

      Vì đường thẳng d song song với đường thẳng \(y = - x\) nên \(m = - 1\) (thỏa mãn)

      Do đó, d: \(y = - x + 3\)

      Vẽ đồ thị của hai hàm số: \(y = - x + 3\) và \(y = x + 1\):

      Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo 0 2

      Nhìn vào đồ thị ta thấy, A(1; 2), B(3; 0), do đó, \(OB = 3\)

      Gọi K là hình chiếu của A trên trục Ox, do đó AK là đường cao trong tam giác OAB và \(AK = 2\)

      Diện tích tam giác OAB là: \(S = \frac{1}{2}AK.OB = \frac{1}{2}.3.2 = 3\) (đvdt)

      Câu 22 :

      Cho hàm số bậc nhất \(y = \frac{1}{2}{m^2}x + {m^{10}} - {m^4} - \frac{1}{4}mx + 3\left( 1 \right)\)

      Tìm giá trị của m để đồ thị hàm số (1) có hệ số góc đạt giá trị nhỏ nhất.

      • A.
        \(m = \frac{1}{2}\)
      • B.
        \(m = \frac{1}{4}\)
      • C.
        \(m = - \frac{1}{4}\)
      • D.
        \(m = - \frac{1}{2}\)

      Đáp án : B

      Phương pháp giải :
      Sử dụng hệ số góc của đường thẳng:Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
      Lời giải chi tiết :

      Ta có: \(y = \frac{1}{2}{m^2}x + {m^{10}} - {m^4} - \frac{1}{4}mx + 3 = \left( {\frac{1}{2}{m^2} - \frac{1}{4}m} \right)x + {m^{10}} - {m^4} + 3\)

      Hàm số (1) là hàm số bậc nhất khi \(\frac{1}{2}{m^2} - \frac{1}{4}m \ne 0\), tìm được \(m \ne 0,m \ne \frac{1}{2}\)

      Ta có: \(\frac{1}{2}{m^2} - \frac{1}{4}m = \frac{1}{2}\left( {{m^2} - \frac{1}{2}m} \right) = \frac{1}{2}\left( {{m^2} - 2.m.\frac{1}{4} + \frac{1}{{16}} - \frac{1}{{16}}} \right) = \frac{1}{2}{\left( {m - \frac{1}{4}} \right)^2} - \frac{1}{{32}} \ge \frac{{ - 1}}{{32}}\)

      Do đó, hệ số góc của đồ thị hàm số (1) đạt giá trị nhỏ nhất là \(\frac{{ - 1}}{{32}}\) khi \(m - \frac{1}{4} = 0\), \(m = \frac{1}{4}\) (thỏa mãn)

      Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sách giáo khoa toán 8 trên đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

      Trắc nghiệm Bài 4: Hệ số góc của đường thẳng Toán 8 Chân trời sáng tạo - Tổng quan

      Bài 4 trong chương trình Toán 8 Chân trời sáng tạo tập trung vào việc tìm hiểu về hệ số góc của đường thẳng. Hệ số góc là một đại lượng quan trọng, thể hiện độ dốc của đường thẳng so với trục hoành. Việc nắm vững kiến thức về hệ số góc giúp học sinh giải quyết nhiều bài toán liên quan đến đường thẳng, đặc biệt là trong các bài toán về hình học phân tích sau này.

      I. Khái niệm Hệ số góc

      Hệ số góc của đường thẳng có phương trình y = ax + b được ký hiệu là 'a'. Nó cho biết độ dốc của đường thẳng. Nếu:

      • a > 0: Đường thẳng đi lên (tăng) khi x tăng.
      • a < 0: Đường thẳng đi xuống (giảm) khi x tăng.
      • a = 0: Đường thẳng là đường thẳng ngang (song song với trục hoành).

      II. Cách xác định Hệ số góc

      Có nhiều cách để xác định hệ số góc của một đường thẳng:

      1. Từ phương trình đường thẳng: Nếu đường thẳng có phương trình y = ax + b, thì hệ số góc là 'a'.
      2. Từ hai điểm trên đường thẳng: Nếu đường thẳng đi qua hai điểm M(x1, y1) và N(x2, y2), thì hệ số góc được tính bằng công thức: a = (y2 - y1) / (x2 - x1).
      3. Từ góc tạo bởi đường thẳng và trục hoành: Nếu đường thẳng tạo với trục hoành một góc α, thì hệ số góc được tính bằng công thức: a = tan(α).

      III. Các dạng bài tập Trắc nghiệm thường gặp

      Các bài tập trắc nghiệm về hệ số góc thường xoay quanh các chủ đề sau:

      • Xác định hệ số góc của đường thẳng từ phương trình.
      • Xác định hệ số góc của đường thẳng khi biết hai điểm.
      • Xác định góc tạo bởi đường thẳng và trục hoành.
      • So sánh độ dốc của các đường thẳng khác nhau.
      • Tìm điều kiện để các đường thẳng song song, vuông góc.

      IV. Ví dụ minh họa

      Ví dụ 1: Xác định hệ số góc của đường thẳng có phương trình y = -2x + 3.

      Giải: Hệ số góc của đường thẳng là a = -2.

      Ví dụ 2: Xác định hệ số góc của đường thẳng đi qua hai điểm A(1, 2) và B(3, 6).

      Giải: Hệ số góc của đường thẳng là a = (6 - 2) / (3 - 1) = 4 / 2 = 2.

      V. Luyện tập với các bài Trắc nghiệm

      Để nắm vững kiến thức về hệ số góc, các em hãy luyện tập với các bài trắc nghiệm sau đây. Các bài tập được thiết kế với nhiều mức độ khó khác nhau, giúp các em rèn luyện kỹ năng giải quyết bài toán một cách hiệu quả.

      VI. Mở rộng kiến thức

      Hệ số góc không chỉ quan trọng trong chương trình Toán 8 mà còn là nền tảng cho các kiến thức hình học nâng cao hơn. Việc hiểu rõ về hệ số góc giúp các em giải quyết các bài toán về đường thẳng, đường tròn, và các hình học khác một cách dễ dàng hơn.

      Bảng tổng hợp công thức

      Công thứcMô tả
      y = ax + bPhương trình đường thẳng, a là hệ số góc
      a = (y2 - y1) / (x2 - x1)Hệ số góc khi biết hai điểm
      a = tan(α)Hệ số góc khi biết góc tạo bởi đường thẳng và trục hoành

      Chúc các em học tốt và đạt kết quả cao trong các bài kiểm tra!

      Tài liệu, đề thi và đáp án Toán 8