Chào mừng bạn đến với bài trắc nghiệm trực tuyến về Bài 1: Khái niệm hàm số thuộc chương trình Toán 8 Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp bạn củng cố kiến thức và đánh giá mức độ hiểu bài của mình.
Với các câu hỏi đa dạng, bao gồm cả lý thuyết và bài tập vận dụng, bạn sẽ có cơ hội ôn luyện và nắm vững các khái niệm cơ bản về hàm số.
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y.
Chọn đáp án đúng
Cho bảng giá trị sau:
x | 12 | -5 | 10 | 6 | 4 |
y | 4 | 2 | 1 | 2 | 5 |
Chọn câu đúng
Trong các công thức dưới đây, công thức nào thể hiện y không phải là hàm số của x?
Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y...f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Đáp án đúng điền vào “…”.
Nhiệt độ N của một nhà máy ấp trứng vịt được cài đặt luôn bằng 37oC không thay đổi theo thời gian t. Khi đó, công thức xác định hàm số N(t) của nhiệt độ theo thời gian là:
Một hàm số được cho bởi công thức \(f\left( x \right) = \frac{{ - 1}}{2}x + 5.\) Khẳng định nào sau đây là đúng?
Một hình lập phương có độ dài cạnh là x (cm) và thể tích là \(V\left( {c{m^3}} \right)\).
Chọn khẳng định đúng.
Nhà bác học Galileo Galilei là người đầu tiên phát hiện ra quan hệ giữa quãng đường chuyển động y(m) và thời gian chuyển động x (giây) của một vật được biểu diễn gần đúng bởi hàm số \(y = 5{x^2}.\) Quãng đường mà vật đó chuyển động được sau 4 giây là:
Cho hàm số \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\) So sánh f(x) và f(-x)
Cho hàm số \(f\left( x \right) = 30x + 100.\) Để \(f\left( x \right) = 190\) thì giá trị của x là:
Cho hàm số \(f\left( x \right) = \frac{{ - 3}}{4}x.\) Để f(x) nhận giá trị dương thì
Cho hàm số: \(f\left( x \right) = \frac{3}{4}{x^2} + 5.\) Khẳng định nào sau đây là đúng?
Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1\;khi\;x \ge \frac{{ - 1}}{2}\\ - 2x - 1\;khi\;x < \frac{{ - 1}}{2}\end{array} \right.\). Chọn khẳng định đúng.
Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}.\) Khẳng định nào dưới đây đúng?
Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ nghịch với x theo hệ số \(a = 12.\)
Khẳng định nào sau đây đúng?
Cho hàm số \(y = f\left( x \right) = kx\) (k là hằng số, \(k \ne 0\)). Chọn đáp án đúng.
Hàm số f(x) được cho bởi bảng sau
x | 2 | 3 | 4 |
f(x) | -4 | -6 | -8 |
Hàm số trên được cho bởi công thức:
Cho hàm số \(f\left( x \right) = a{x^2} + ax + 1.\) Biết rằng \(f\left( 1 \right) = 3\), khi đó giá trị của a là:
Có bao nhiêu giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0?
Giầy cỡ 36 ứng với khoảng cách d từ gót chân đến mũi ngón chân là 23cm. Khi khoảng cách d tăng (hay giảm) \(\frac{2}{3}cm\) thì cỡ giầy tăng (hay giảm) 1 số. Ta có bảng:
d(cm) | 19 | 23 | |
Cỡ giầy | 33 | 36 |
Hãy chọn bảng đúng trong các bảng dưới đây:
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 32 | 33 | 36 |
d(cm) | 19 | 22 | 23 |
Cỡ giầy | 29 | 33 | 36 |
d(cm) | 19 | 20 | 23 |
Cỡ giầy | 31 | 33 | 36 |
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 30 | 33 | 36 |
Cho hàm số \(y = f\left( x \right)\) được xác định bởi tương ứng giữa số que diêm (f(x)) và số hình vuông tạo thành (x) được nêu trong bảng sau:
Tính \(f\left( {12} \right)\)
Cho hai hàm số: \(f\left( x \right) = - 6{x^2} + 12x - 7,g\left( x \right) = 3{x^2} + 6x + 4\)
Khẳng định nào sau đây là đúng?
Lời giải và đáp án
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y.
Chọn đáp án đúng
Đáp án : A
Cho bảng giá trị sau:
x | 12 | -5 | 10 | 6 | 4 |
y | 4 | 2 | 1 | 2 | 5 |
Chọn câu đúng
Đáp án : A
Tuy nhiên, x không phải là hàm số của biến số y, vì với y = 2, ta có 2 giá trị x tương ứng x = -5 và x = 6.
Trong các công thức dưới đây, công thức nào thể hiện y không phải là hàm số của x?
Đáp án : D
Với \(x = 4\) thì \({y^2} = 4\) nên \(y = 2\) hoặc \(y = - 2\)
Ta thấy với mỗi giá trị của x có tương ứng 2 giá trị của y nên \({y^2} = x\)không phải là hàm số của x.
Các công thức còn lại ta đều thấy với mỗi giá trị của x có duy nhất một giá trị tương ứng của y nên y là hàm số của x.
Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y...f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Đáp án đúng điền vào “…”.
Đáp án : C
Nhiệt độ N của một nhà máy ấp trứng vịt được cài đặt luôn bằng 37oC không thay đổi theo thời gian t. Khi đó, công thức xác định hàm số N(t) của nhiệt độ theo thời gian là:
Đáp án : A
Một hàm số được cho bởi công thức \(f\left( x \right) = \frac{{ - 1}}{2}x + 5.\) Khẳng định nào sau đây là đúng?
Đáp án : A
Ta có: \(f\left( 1 \right) = \frac{{ - 1}}{2}.1 + 5 = \frac{9}{2};f\left( 2 \right) = \frac{{ - 1}}{2}.2 + 5 = 4\)
Vì \(\frac{9}{2} > 4\) nên \(f\left( 1 \right) > f\left( 2 \right)\)
Một hình lập phương có độ dài cạnh là x (cm) và thể tích là \(V\left( {c{m^3}} \right)\).
Chọn khẳng định đúng.
Đáp án : C
Thể tích của hình lập phương là: \(V = {x^3}\)
Vì mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của V nên V là hàm số của biến số x.
Nhà bác học Galileo Galilei là người đầu tiên phát hiện ra quan hệ giữa quãng đường chuyển động y(m) và thời gian chuyển động x (giây) của một vật được biểu diễn gần đúng bởi hàm số \(y = 5{x^2}.\) Quãng đường mà vật đó chuyển động được sau 4 giây là:
Đáp án : C
Xét hàm số \(y = 5{x^2}.\)
Quãng đường vật chuyển động được sau 4 giây ứng với \(x = 4\)
Do đó, \(y = {5.4^2} = 5.16 = 80\left( m \right)\)
Cho hàm số \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\) So sánh f(x) và f(-x)
Đáp án : B
Ta có: \(f\left( { - x} \right) = 3{\left( { - x} \right)^4} - 3{\left( { - x} \right)^2} - 1 = 3{x^4} - 3{x^2} - 1\)
Mà \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\)
Do đó, \(f\left( x \right) = f\left( { - x} \right)\)
Cho hàm số \(f\left( x \right) = 30x + 100.\) Để \(f\left( x \right) = 190\) thì giá trị của x là:
Đáp án : D
Với \(f\left( x \right) = 190\) thì ta có: \(190 = 30x + 100\)
\(30x = 90\)
\(x = 3\)
Cho hàm số \(f\left( x \right) = \frac{{ - 3}}{4}x.\) Để f(x) nhận giá trị dương thì
Đáp án : B
Để f(x) nhận giá trị dương thì \(f\left( x \right) > 0\) tức là \(\frac{{ - 3}}{4}.x > 0\)
Mà \(\frac{{ - 3}}{4} < 0\) nên \(x < 0\)
Cho hàm số: \(f\left( x \right) = \frac{3}{4}{x^2} + 5.\) Khẳng định nào sau đây là đúng?
Đáp án : A
Vì \({x^2} \ge 0\) với mọi số thực x nên \(\frac{3}{4}{x^2} \ge 0\) với mọi số thực x.
Do đó, \(\frac{3}{4}{x^2} + 5 > 0\) với mọi số thực x.
Suy ra: \(f\left( x \right) > 0\) với mọi số thực x.
Vậy \(f\left( x \right)\) nhận giá trị dương với mọi giá trị của x.
Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1\;khi\;x \ge \frac{{ - 1}}{2}\\ - 2x - 1\;khi\;x < \frac{{ - 1}}{2}\end{array} \right.\). Chọn khẳng định đúng.
Đáp án : B
Với \(x = - 1 < \frac{{ - 1}}{2}\) thì ta có: \(f\left( { - 1} \right) = - 2\left( { - 1} \right) - 1 = 2 - 1 = 1\)
Với \(x = 2 > \frac{{ - 1}}{2}\) thì ta có: \(f\left( 2 \right) = 2.2 + 1 = 4 + 1 = 5\)
Do đó, \(f\left( { - 1} \right) + f\left( 2 \right) = 1 + 5 = 6\)
Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}.\) Khẳng định nào dưới đây đúng?
Đáp án : D
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Vì y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}\) nên \(y = f\left( x \right) = \frac{1}{2}x\)
Ta có: \(f\left( 1 \right) = \frac{1}{2}.1 = \frac{1}{2}\) nên \(f\left( 1 \right) + \frac{1}{2} = 1\)
Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ nghịch với x theo hệ số \(a = 12.\)
Khẳng định nào sau đây đúng?
Đáp án : B
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Vì y tỉ lệ nghịch với x theo hệ số \(a = 12\) nên \(xy = 12,\) do đó \(y = f\left( x \right) = \frac{{12}}{x}\)
Ta có: \(f\left( { - x} \right) = \frac{{12}}{{ - x}} = - \frac{{12}}{x} = - f\left( x \right)\)
Vậy \(f\left( { - x} \right) = - f\left( x \right)\)
Cho hàm số \(y = f\left( x \right) = kx\) (k là hằng số, \(k \ne 0\)). Chọn đáp án đúng.
Đáp án : A
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Ta có: \(f\left( {{x_1}} \right) = k{x_1},f\left( {{x_2}} \right) = k{x_2},f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = k{x_1} + k{x_2} = k\left( {{x_1} + {x_2}} \right)\)
\(f\left( {{x_1} + {x_2}} \right) = k\left( {{x_1} + {x_2}} \right)\)
Do đó, \(f\left( {{x_1} + {x_2}} \right) = f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)
Hàm số f(x) được cho bởi bảng sau
x | 2 | 3 | 4 |
f(x) | -4 | -6 | -8 |
Hàm số trên được cho bởi công thức:
Đáp án : C
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Với \(x = 2\) ta có: \(f\left( 2 \right) = - 4 = - 2.2\)
Với \(x = 3\) ta có: \(f\left( 3 \right) = - 6 = - 2.3\)
Với \(x = 4\) ta có: \(f\left( 4 \right) = - 8 = - 2.4\)
Do đó, \(f\left( x \right) = - 2x\)
Cho hàm số \(f\left( x \right) = a{x^2} + ax + 1.\) Biết rằng \(f\left( 1 \right) = 3\), khi đó giá trị của a là:
Đáp án : A
Ta có: \(f\left( 1 \right) = a{.1^2} + a.1 + 1 = 2a + 1\)
Mà \(f\left( 1 \right) = 3\) nên \(2a + 1 = 3\)
\(2a = 2\)
\(a = 1\)
Có bao nhiêu giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0?
Đáp án : D
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Ta có: \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1 = {\left( {x - a} \right)^2} + 1\)
Vì \({\left( {x - a} \right)^2} \ge 0\) với mọi giá trị của a, x nên \({\left( {x - a} \right)^2} + 1 > 0\) với mọi giá trị của x, a.
Vậy có vô số giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0.
Giầy cỡ 36 ứng với khoảng cách d từ gót chân đến mũi ngón chân là 23cm. Khi khoảng cách d tăng (hay giảm) \(\frac{2}{3}cm\) thì cỡ giầy tăng (hay giảm) 1 số. Ta có bảng:
d(cm) | 19 | 23 | |
Cỡ giầy | 33 | 36 |
Hãy chọn bảng đúng trong các bảng dưới đây:
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 32 | 33 | 36 |
d(cm) | 19 | 22 | 23 |
Cỡ giầy | 29 | 33 | 36 |
d(cm) | 19 | 20 | 23 |
Cỡ giầy | 31 | 33 | 36 |
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 30 | 33 | 36 |
Đáp án : D
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Với \(d = 19\) ta có: \(23 - 19 = 4 = \frac{2}{3}.6\left( {cm} \right)\), tức là từ \(d = 23\) xuống \(d = 19\) thì khoảng cách d giảm đi \(6.\frac{2}{3}cm\), do đó, cỡ giày giảm đi 6 số. Vậy \(d = 19\) ứng với cỡ giày: \(36 - 6 = 30\)
Với giày cỡ 33 thì từ cỡ giày 36 xuống cỡ giày 33 giảm đi \(3.\frac{2}{3} = 2\left( {cm} \right)\)
Do đó, với cỡ giày thứ 33 thì khoảng cách d là: \(23 - 2 = 21\left( {cm} \right)\)
Vậy ta có bảng đúng là:
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 30 | 33 | 36 |
Cho hàm số \(y = f\left( x \right)\) được xác định bởi tương ứng giữa số que diêm (f(x)) và số hình vuông tạo thành (x) được nêu trong bảng sau:
Tính \(f\left( {12} \right)\)
Đáp án : D
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Với \(x = 1\) ta có: \(f\left( 1 \right) = 4 = 3.1 + 1\)
Với \(x = 2\) ta có: \(f\left( 2 \right) = 7 = 3.2 + 1\)
Với \(x = 3\) ta có: \(f\left( 3 \right) = 10 = 3.3 + 1\)
Do đó, công thức của hàm số là: \(f\left( x \right) = 3x + 1\)
Vậy \(f\left( {12} \right) = 3.12 + 1 = 37\)
Cho hai hàm số: \(f\left( x \right) = - 6{x^2} + 12x - 7,g\left( x \right) = 3{x^2} + 6x + 4\)
Khẳng định nào sau đây là đúng?
Đáp án : B
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Ta có: \(f\left( x \right) = - 6{x^2} + 12x - 7 = - 6{x^2} + 12x - 6 - 1 = - 6\left( {{x^2} - 2x + 1} \right) - 1 = - 6{\left( {x - 1} \right)^2} - 1 < 0\) với mọi x.
\(g\left( x \right) = 3{x^2} + 6x + 4 = 3{x^2} + 6x + 3 + 1 = 3\left( {{x^2} + 2x + 1} \right) + 1 = 3{\left( {x + 1} \right)^2} + 1 > 0\) với mọi x.
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y.
Chọn đáp án đúng
Cho bảng giá trị sau:
x | 12 | -5 | 10 | 6 | 4 |
y | 4 | 2 | 1 | 2 | 5 |
Chọn câu đúng
Trong các công thức dưới đây, công thức nào thể hiện y không phải là hàm số của x?
Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y...f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Đáp án đúng điền vào “…”.
Nhiệt độ N của một nhà máy ấp trứng vịt được cài đặt luôn bằng 37oC không thay đổi theo thời gian t. Khi đó, công thức xác định hàm số N(t) của nhiệt độ theo thời gian là:
Một hàm số được cho bởi công thức \(f\left( x \right) = \frac{{ - 1}}{2}x + 5.\) Khẳng định nào sau đây là đúng?
Một hình lập phương có độ dài cạnh là x (cm) và thể tích là \(V\left( {c{m^3}} \right)\).
Chọn khẳng định đúng.
Nhà bác học Galileo Galilei là người đầu tiên phát hiện ra quan hệ giữa quãng đường chuyển động y(m) và thời gian chuyển động x (giây) của một vật được biểu diễn gần đúng bởi hàm số \(y = 5{x^2}.\) Quãng đường mà vật đó chuyển động được sau 4 giây là:
Cho hàm số \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\) So sánh f(x) và f(-x)
Cho hàm số \(f\left( x \right) = 30x + 100.\) Để \(f\left( x \right) = 190\) thì giá trị của x là:
Cho hàm số \(f\left( x \right) = \frac{{ - 3}}{4}x.\) Để f(x) nhận giá trị dương thì
Cho hàm số: \(f\left( x \right) = \frac{3}{4}{x^2} + 5.\) Khẳng định nào sau đây là đúng?
Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1\;khi\;x \ge \frac{{ - 1}}{2}\\ - 2x - 1\;khi\;x < \frac{{ - 1}}{2}\end{array} \right.\). Chọn khẳng định đúng.
Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}.\) Khẳng định nào dưới đây đúng?
Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ nghịch với x theo hệ số \(a = 12.\)
Khẳng định nào sau đây đúng?
Cho hàm số \(y = f\left( x \right) = kx\) (k là hằng số, \(k \ne 0\)). Chọn đáp án đúng.
Hàm số f(x) được cho bởi bảng sau
x | 2 | 3 | 4 |
f(x) | -4 | -6 | -8 |
Hàm số trên được cho bởi công thức:
Cho hàm số \(f\left( x \right) = a{x^2} + ax + 1.\) Biết rằng \(f\left( 1 \right) = 3\), khi đó giá trị của a là:
Có bao nhiêu giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0?
Giầy cỡ 36 ứng với khoảng cách d từ gót chân đến mũi ngón chân là 23cm. Khi khoảng cách d tăng (hay giảm) \(\frac{2}{3}cm\) thì cỡ giầy tăng (hay giảm) 1 số. Ta có bảng:
d(cm) | 19 | 23 | |
Cỡ giầy | 33 | 36 |
Hãy chọn bảng đúng trong các bảng dưới đây:
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 32 | 33 | 36 |
d(cm) | 19 | 22 | 23 |
Cỡ giầy | 29 | 33 | 36 |
d(cm) | 19 | 20 | 23 |
Cỡ giầy | 31 | 33 | 36 |
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 30 | 33 | 36 |
Cho hàm số \(y = f\left( x \right)\) được xác định bởi tương ứng giữa số que diêm (f(x)) và số hình vuông tạo thành (x) được nêu trong bảng sau:
Tính \(f\left( {12} \right)\)
Cho hai hàm số: \(f\left( x \right) = - 6{x^2} + 12x - 7,g\left( x \right) = 3{x^2} + 6x + 4\)
Khẳng định nào sau đây là đúng?
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y.
Chọn đáp án đúng
Đáp án : A
Cho bảng giá trị sau:
x | 12 | -5 | 10 | 6 | 4 |
y | 4 | 2 | 1 | 2 | 5 |
Chọn câu đúng
Đáp án : A
Tuy nhiên, x không phải là hàm số của biến số y, vì với y = 2, ta có 2 giá trị x tương ứng x = -5 và x = 6.
Trong các công thức dưới đây, công thức nào thể hiện y không phải là hàm số của x?
Đáp án : D
Với \(x = 4\) thì \({y^2} = 4\) nên \(y = 2\) hoặc \(y = - 2\)
Ta thấy với mỗi giá trị của x có tương ứng 2 giá trị của y nên \({y^2} = x\)không phải là hàm số của x.
Các công thức còn lại ta đều thấy với mỗi giá trị của x có duy nhất một giá trị tương ứng của y nên y là hàm số của x.
Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y...f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Đáp án đúng điền vào “…”.
Đáp án : C
Nhiệt độ N của một nhà máy ấp trứng vịt được cài đặt luôn bằng 37oC không thay đổi theo thời gian t. Khi đó, công thức xác định hàm số N(t) của nhiệt độ theo thời gian là:
Đáp án : A
Một hàm số được cho bởi công thức \(f\left( x \right) = \frac{{ - 1}}{2}x + 5.\) Khẳng định nào sau đây là đúng?
Đáp án : A
Ta có: \(f\left( 1 \right) = \frac{{ - 1}}{2}.1 + 5 = \frac{9}{2};f\left( 2 \right) = \frac{{ - 1}}{2}.2 + 5 = 4\)
Vì \(\frac{9}{2} > 4\) nên \(f\left( 1 \right) > f\left( 2 \right)\)
Một hình lập phương có độ dài cạnh là x (cm) và thể tích là \(V\left( {c{m^3}} \right)\).
Chọn khẳng định đúng.
Đáp án : C
Thể tích của hình lập phương là: \(V = {x^3}\)
Vì mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của V nên V là hàm số của biến số x.
Nhà bác học Galileo Galilei là người đầu tiên phát hiện ra quan hệ giữa quãng đường chuyển động y(m) và thời gian chuyển động x (giây) của một vật được biểu diễn gần đúng bởi hàm số \(y = 5{x^2}.\) Quãng đường mà vật đó chuyển động được sau 4 giây là:
Đáp án : C
Xét hàm số \(y = 5{x^2}.\)
Quãng đường vật chuyển động được sau 4 giây ứng với \(x = 4\)
Do đó, \(y = {5.4^2} = 5.16 = 80\left( m \right)\)
Cho hàm số \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\) So sánh f(x) và f(-x)
Đáp án : B
Ta có: \(f\left( { - x} \right) = 3{\left( { - x} \right)^4} - 3{\left( { - x} \right)^2} - 1 = 3{x^4} - 3{x^2} - 1\)
Mà \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\)
Do đó, \(f\left( x \right) = f\left( { - x} \right)\)
Cho hàm số \(f\left( x \right) = 30x + 100.\) Để \(f\left( x \right) = 190\) thì giá trị của x là:
Đáp án : D
Với \(f\left( x \right) = 190\) thì ta có: \(190 = 30x + 100\)
\(30x = 90\)
\(x = 3\)
Cho hàm số \(f\left( x \right) = \frac{{ - 3}}{4}x.\) Để f(x) nhận giá trị dương thì
Đáp án : B
Để f(x) nhận giá trị dương thì \(f\left( x \right) > 0\) tức là \(\frac{{ - 3}}{4}.x > 0\)
Mà \(\frac{{ - 3}}{4} < 0\) nên \(x < 0\)
Cho hàm số: \(f\left( x \right) = \frac{3}{4}{x^2} + 5.\) Khẳng định nào sau đây là đúng?
Đáp án : A
Vì \({x^2} \ge 0\) với mọi số thực x nên \(\frac{3}{4}{x^2} \ge 0\) với mọi số thực x.
Do đó, \(\frac{3}{4}{x^2} + 5 > 0\) với mọi số thực x.
Suy ra: \(f\left( x \right) > 0\) với mọi số thực x.
Vậy \(f\left( x \right)\) nhận giá trị dương với mọi giá trị của x.
Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1\;khi\;x \ge \frac{{ - 1}}{2}\\ - 2x - 1\;khi\;x < \frac{{ - 1}}{2}\end{array} \right.\). Chọn khẳng định đúng.
Đáp án : B
Với \(x = - 1 < \frac{{ - 1}}{2}\) thì ta có: \(f\left( { - 1} \right) = - 2\left( { - 1} \right) - 1 = 2 - 1 = 1\)
Với \(x = 2 > \frac{{ - 1}}{2}\) thì ta có: \(f\left( 2 \right) = 2.2 + 1 = 4 + 1 = 5\)
Do đó, \(f\left( { - 1} \right) + f\left( 2 \right) = 1 + 5 = 6\)
Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}.\) Khẳng định nào dưới đây đúng?
Đáp án : D
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Vì y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}\) nên \(y = f\left( x \right) = \frac{1}{2}x\)
Ta có: \(f\left( 1 \right) = \frac{1}{2}.1 = \frac{1}{2}\) nên \(f\left( 1 \right) + \frac{1}{2} = 1\)
Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ nghịch với x theo hệ số \(a = 12.\)
Khẳng định nào sau đây đúng?
Đáp án : B
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Vì y tỉ lệ nghịch với x theo hệ số \(a = 12\) nên \(xy = 12,\) do đó \(y = f\left( x \right) = \frac{{12}}{x}\)
Ta có: \(f\left( { - x} \right) = \frac{{12}}{{ - x}} = - \frac{{12}}{x} = - f\left( x \right)\)
Vậy \(f\left( { - x} \right) = - f\left( x \right)\)
Cho hàm số \(y = f\left( x \right) = kx\) (k là hằng số, \(k \ne 0\)). Chọn đáp án đúng.
Đáp án : A
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Ta có: \(f\left( {{x_1}} \right) = k{x_1},f\left( {{x_2}} \right) = k{x_2},f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = k{x_1} + k{x_2} = k\left( {{x_1} + {x_2}} \right)\)
\(f\left( {{x_1} + {x_2}} \right) = k\left( {{x_1} + {x_2}} \right)\)
Do đó, \(f\left( {{x_1} + {x_2}} \right) = f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)
Hàm số f(x) được cho bởi bảng sau
x | 2 | 3 | 4 |
f(x) | -4 | -6 | -8 |
Hàm số trên được cho bởi công thức:
Đáp án : C
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Với \(x = 2\) ta có: \(f\left( 2 \right) = - 4 = - 2.2\)
Với \(x = 3\) ta có: \(f\left( 3 \right) = - 6 = - 2.3\)
Với \(x = 4\) ta có: \(f\left( 4 \right) = - 8 = - 2.4\)
Do đó, \(f\left( x \right) = - 2x\)
Cho hàm số \(f\left( x \right) = a{x^2} + ax + 1.\) Biết rằng \(f\left( 1 \right) = 3\), khi đó giá trị của a là:
Đáp án : A
Ta có: \(f\left( 1 \right) = a{.1^2} + a.1 + 1 = 2a + 1\)
Mà \(f\left( 1 \right) = 3\) nên \(2a + 1 = 3\)
\(2a = 2\)
\(a = 1\)
Có bao nhiêu giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0?
Đáp án : D
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Ta có: \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1 = {\left( {x - a} \right)^2} + 1\)
Vì \({\left( {x - a} \right)^2} \ge 0\) với mọi giá trị của a, x nên \({\left( {x - a} \right)^2} + 1 > 0\) với mọi giá trị của x, a.
Vậy có vô số giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0.
Giầy cỡ 36 ứng với khoảng cách d từ gót chân đến mũi ngón chân là 23cm. Khi khoảng cách d tăng (hay giảm) \(\frac{2}{3}cm\) thì cỡ giầy tăng (hay giảm) 1 số. Ta có bảng:
d(cm) | 19 | 23 | |
Cỡ giầy | 33 | 36 |
Hãy chọn bảng đúng trong các bảng dưới đây:
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 32 | 33 | 36 |
d(cm) | 19 | 22 | 23 |
Cỡ giầy | 29 | 33 | 36 |
d(cm) | 19 | 20 | 23 |
Cỡ giầy | 31 | 33 | 36 |
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 30 | 33 | 36 |
Đáp án : D
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Với \(d = 19\) ta có: \(23 - 19 = 4 = \frac{2}{3}.6\left( {cm} \right)\), tức là từ \(d = 23\) xuống \(d = 19\) thì khoảng cách d giảm đi \(6.\frac{2}{3}cm\), do đó, cỡ giày giảm đi 6 số. Vậy \(d = 19\) ứng với cỡ giày: \(36 - 6 = 30\)
Với giày cỡ 33 thì từ cỡ giày 36 xuống cỡ giày 33 giảm đi \(3.\frac{2}{3} = 2\left( {cm} \right)\)
Do đó, với cỡ giày thứ 33 thì khoảng cách d là: \(23 - 2 = 21\left( {cm} \right)\)
Vậy ta có bảng đúng là:
d(cm) | 19 | 21 | 23 |
Cỡ giầy | 30 | 33 | 36 |
Cho hàm số \(y = f\left( x \right)\) được xác định bởi tương ứng giữa số que diêm (f(x)) và số hình vuông tạo thành (x) được nêu trong bảng sau:
Tính \(f\left( {12} \right)\)
Đáp án : D
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Với \(x = 1\) ta có: \(f\left( 1 \right) = 4 = 3.1 + 1\)
Với \(x = 2\) ta có: \(f\left( 2 \right) = 7 = 3.2 + 1\)
Với \(x = 3\) ta có: \(f\left( 3 \right) = 10 = 3.3 + 1\)
Do đó, công thức của hàm số là: \(f\left( x \right) = 3x + 1\)
Vậy \(f\left( {12} \right) = 3.12 + 1 = 37\)
Cho hai hàm số: \(f\left( x \right) = - 6{x^2} + 12x - 7,g\left( x \right) = 3{x^2} + 6x + 4\)
Khẳng định nào sau đây là đúng?
Đáp án : B
+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Ta có: \(f\left( x \right) = - 6{x^2} + 12x - 7 = - 6{x^2} + 12x - 6 - 1 = - 6\left( {{x^2} - 2x + 1} \right) - 1 = - 6{\left( {x - 1} \right)^2} - 1 < 0\) với mọi x.
\(g\left( x \right) = 3{x^2} + 6x + 4 = 3{x^2} + 6x + 3 + 1 = 3\left( {{x^2} + 2x + 1} \right) + 1 = 3{\left( {x + 1} \right)^2} + 1 > 0\) với mọi x.
Bài 1 trong chương trình Toán 8 Chân trời sáng tạo giới thiệu khái niệm hàm số một cách trực quan và dễ hiểu. Hàm số là một công cụ toán học quan trọng, được sử dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật. Việc nắm vững khái niệm hàm số ngay từ lớp 8 là nền tảng để học tốt các kiến thức toán học nâng cao hơn.
Hàm số là một quy tắc tương ứng giữa hai tập hợp, tập hợp A (tập xác định) và tập hợp B (tập giá trị). Với mỗi phần tử x thuộc tập A, quy tắc này xác định duy nhất một phần tử y thuộc tập B. Ký hiệu: y = f(x).
Hàm số có thể được xác định bằng nhiều cách khác nhau:
Ví dụ 1: Hàm số y = 2x + 1
Ví dụ 2: Hàm số y = 1/x
Để nắm vững kiến thức về khái niệm hàm số, bạn nên luyện tập thêm nhiều bài tập khác nhau. Bạn có thể tìm thấy các bài tập trong sách giáo khoa, sách bài tập, hoặc trên các trang web học toán online như giaitoan.edu.vn.
Bài 1: Khái niệm hàm số Toán 8 Chân trời sáng tạo là một bài học quan trọng, giúp bạn làm quen với một khái niệm toán học cơ bản nhưng vô cùng hữu ích. Hy vọng rằng, với những kiến thức và bài tập đã trình bày, bạn sẽ tự tin hơn trong việc học toán và giải quyết các bài toán liên quan đến hàm số.