Bài viết này cung cấp bộ đề trắc nghiệm phong phú và đa dạng về chủ đề Phân tích đa thức thành nhân tử, thuộc Bài 4 chương trình Toán 8 Chân trời sáng tạo.
Mục tiêu chính là giúp học sinh rèn luyện kỹ năng giải bài tập, củng cố kiến thức đã học và chuẩn bị tốt nhất cho các bài kiểm tra, thi học kỳ.
Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.
\(5x({{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 2}) \).
Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:
\(({x + 1}) ({x - y}) \).
\(({x - y}) ({x - 1}) \).
\(({x - y}) ({x + y}) \).
\(x({x - y}) \).
Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)
Tìm x, biết \(2 - 25{x^2} = 0\)
Chọn câu sai.
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).
\({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).
Tính nhanh biểu thức \({37^2} - {13^2}\)
Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:
\(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).
Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.
Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là
Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)
Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng
Chọn câu sai.
Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)
Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử
Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng
Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)
Tính nhanh \(B = 5.101,5 - 50.0,15\)
Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:
Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là
Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.
Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).
Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?
Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)
Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.
Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng
\(\frac{-5}{2}\).
Với a3 + b3 + c3 = 3abc thì
Lời giải và đáp án
Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.
\(5x({{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 2}) \).
Đáp án : D
Ta có:
\(\begin{array}{l}15{x^3} - 5{x^2} + 10x\\ = \;5x.3{x^2} - \;5x.x + \;5x.2\\ = \;5x({3{x^2} - x + 2}) \end{array}\)
Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:
\(({x + 1}) ({x - y}) \).
\(({x - y}) ({x - 1}) \).
\(({x - y}) ({x + y}) \).
\(x({x - y}) \).
Đáp án : A
Ta có:
\(\begin{array}{l}{x^2}\;-xy + x-y\\ = x(x - y) + (x - y)\\ = (x + 1)(x - y)\end{array}\)
Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)
Đáp án : C
Ta dễ dàng nhận thấy \({x^2} + 2x.3 + {3^2}\)
\({x^2} + 6x + 9 = {({x + 3}) ^2}\)
Tìm x, biết \(2 - 25{x^2} = 0\)
Đáp án : D
\({2 - 25{x^2} = 0\;}\)\((\sqrt 2 - 5x)(\sqrt 2 + 5x) = 0\)\(\sqrt 2 - 5x = 0\) hoặc \(\sqrt 2 + 5x = 0\)\(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\)
Chọn câu sai.
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).
\({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).
Đáp án : D
Ta có
+) \({\left( {x-1} \right)^3} + 2{\left( {x-1} \right)^2}\)
\(= {\left( {x-1} \right)^2}\left( {x-1} \right) + 2{\left( {x-1} \right)^2}\\ = {\left( {x-1} \right)^2}(x-1 + 2\\ = {\left( {x-1} \right)^2}\left( {x + 1} \right)\)
nên A đúng
+) \( {{{\left( {x-1} \right)}^3} + 2\left( {x-1} \right)}\)
\({ = \left( {x-1} \right).{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2]\)
nên B đúng
+) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)
\({ = \left( {x-1} \right){{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)\left( {x-1} \right)}\\{ = \left( {x-1} \right)[{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)]}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2x-2]\)
nên C đúng
+) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)
\({ = {{\left( {x-1} \right)}^2}\left( {x + 1} \right)}\\ \ne \left( {x-1} \right)\left( {x + 3} \right)\)
nên D sai
Tính nhanh biểu thức \({37^2} - {13^2}\)
Đáp án : A
Áp dụng hằng đẳng thức \({A^2} - {B^2} = ({A - B}) ({A + B}) \) để thực hiện phép tính.
\(\begin{array}{l}{37^2} - {13^2}\\ = ({37 - 13}) ({37 + 13}) \\ = 24.50\\ = 1200\end{array}\)
Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:
\(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).
Đáp án : B
\({x^2} - 2xy + {y^2}{\rm{ - }}81\; = \;\left( {{x^2} - 2xy + {y^2}} \right) - 81\) (nhóm 3 hạng tử đầu để xuất hiện bình phương một hiệu)
\( = {\rm{ }}{\left( {x{\rm{ }} - {\rm{ }}y} \right)^2}{\rm{ }} - {\rm{ }}{9^2}\) (áp dụng hằng đẳng thức \({A^2} - {\rm{ }}{B^2} = {\rm{ }}\left( {A{\rm{ }} - {\rm{ }}B} \right)\left( {A{\rm{ }} + {\rm{ }}B} \right)\))
\( = {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} - {\rm{ }}9} \right)\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} + {\rm{ }}9} \right)\).
Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.
Đáp án : D
\({x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}{y^2}{\rm{ }} = {\rm{ }}\left( {{x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} - {\rm{ }}{y^2}\;\) (nhóm hạng tử)
\( = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}1} \right)^2}{\rm{ }} - {\rm{ }}{y^2}\) (áp dụng hằng đẳng thức)
\( = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}y} \right)\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}y} \right)\)
Thay x = 94,5 và y = 4,5 vào biểu thức, ta được:
\(\begin{array}{l}\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} - 4,5} \right)\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} + {\rm{ 4,5}}} \right)\\ = 91.100\\ = 9100\end{array}\)
Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là
Đáp án : B
Ta có:
\(\begin{array}{*{20}{l}}{30{{\left( {4-2x} \right)}^2}\; + 3x-6 = 30{{\left( {2x-4} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = {{30.2}^2}\left( {x-2} \right) + 3\left( {x-2} \right)}\\{ = 120{{\left( {x-2} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = 3\left( {x-2} \right)\left( {40\left( {x-2} \right) + 1} \right) = 3\left( {x-2} \right)\left( {40x-79} \right)}\end{array}\)
Nhân tử chung có thể là \(3(x - 2)\).
Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)
Đáp án : A
Vì
\(\begin{array}{*{20}{l}}{{x^5} + {x^3} + {x^2}\; + 1}\\{ = {x^3}\left( {{x^2}\; + 1} \right) + {x^2}\; + 1}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right)}\end{array}\)
nên
\(\begin{array}{*{20}{l}}{\left( {{x^5}\; + {x^3}\; + {x^2}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)}\end{array}\)
Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng
Đáp án : C
\(\begin{array}{l}4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\\ \Leftrightarrow 4\left( {x - {\rm{ 5}}} \right)\; + \;2x\left( {x - {\rm{ 5}}} \right) = 0\\ \Leftrightarrow \left( {x - {\rm{ 5}}} \right)\left( {{\rm{4}} + 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\4 + 2x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 2\end{array} \right.\\ \Rightarrow {x_1} + {x_2} = 5 - 2 = 3\end{array}\)
Chọn câu sai.
Đáp án : B
+) \({x^2} - 6x + 9 = {x^2} - 2.3x + {3^2} = {(x - 3)^2}\) nên A đúng.
+) \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2}} \right)^2}.2.\frac{x}{2}.2y + {\left( {2y} \right)^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\) nên B sai, C đúng.
+) \(4{x^2} - 4xy + {y^2} = {\left( {2x} \right)^2} - 2.2x.y + {y^2} = {(2x - y)^2}\) nên D đúng.
Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)
Đáp án : D
\(\begin{array}{l}{x^3} + 2{x^2} - 9x - 18 = 0\\ \Leftrightarrow ({x^3} + 2{x^2}) - (9x - 18) = 0\\ \Leftrightarrow {x^2}(x + 2) - 9(x - 2) = 0\\ \Leftrightarrow ({x^2} - 9)(x + 2) = 0\\ \Leftrightarrow (x - 3)(x + 3)(x + 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 3 = 0\\x - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 3\\x = - 2\end{array} \right.\end{array}\)
Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử
Đáp án : A
\(\begin{array}{l}3{x^3} - 8{x^2} - 41x + 30\\ = 3{x^3} - 2{x^2} - 6{x^2} + 4x - 45x + 30\\ = \left( {3{x^3} - 2{x^2}} \right) - \left( {6{x^2} - 4x} \right) - \left( {45x - 30} \right)\\ = {x^2}(3x - 2) - 2x(3x - 2) - 15(3x - 2)\\ = ({x^2} - 2x - 15)(3x - 2)\\ = ({x^2} + 3x - 5x - 15)(3x - 2)\\ = \left[ {\left( {{x^2} + 3x} \right) - \left( {5x + 15} \right)} \right](3x - 2)\\ = \left[ {x(x + 3) - 5(x + 3)} \right](3x - 2)\\ = (3x - 2)(x - 5)(x + 3)\end{array}\)
Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng
Đáp án : B
Ta có:
\(\begin{array}{l}{\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2}\\ = (3{x^2} + 3x - 5 - 3{x^2} - 3x - 5)(3{x^2} + 3x - 5 + 3{x^2} + 3x + 5)\\ = - 10(6{x^2} + 6x)\\ = - 10.6x(x + 1)\\ = - 60x(x + 1)\\ = mx(x + 1)\\ \Rightarrow m = - 60 < 0\end{array}\)
Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)
Đáp án : C
\(\begin{array}{l}A = {x^4} + 3{x^3} - 27x - 81\\ = ({x^4} - 81) + (3{x^3} - 27x)\\ = ({x^2} - 9)({x^2} + 9) + 3x({x^2} - 9)\\ = ({x^2} - 9)({x^2} + 3x + 9)\end{array}\)
Ta có: \({x^2} + 3x + 9 = {x^2} + 2.\frac{3}{2}x + \frac{9}{4} + \frac{{27}}{4} \ge \frac{{27}}{4} > 0,\forall x\)
Mà \(\left| x \right| < 3 \Leftrightarrow {x^2} < 9 \Leftrightarrow {x^2} - 9 < 0\)
\( \Rightarrow A = ({x^2} - 9)({x^2} + 3x + 9) < 0\) khi \(\left| x \right| < 3\).
Tính nhanh \(B = 5.101,5 - 50.0,15\)
Đáp án : C
\(\begin{array}{l}B = 5.101,5 - 50.0,15\\ = 5.101,5 - 5.1,5\\ = 5(101,5 - 1,5)\\ = 5.100\\ = 500\end{array}\)
Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:
Đáp án : B
\(\begin{array}{l}{(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2}\\ = (3{x^2} + 6x - 18 - 3{x^2} - 6x)(3{x^2} + 6x - 18 + 3{x^2} + 6x)\\ = - 18(6{x^2} + 12x - 18)\\ = - 18.6({x^2} + 2x - 3)\\ = - 108({x^2} + 2x - 3)\\ = - 108({x^2} - x + 3x - 3)\\ = - 108\left[ {x(x - 1) + 3(x - 1)} \right]\\ = - 108(x + 3)(x - 1)\end{array}\)
Khi đó, m = -108; n = 3 \( \Rightarrow \frac{m}{n} = \frac{{ - 108}}{3} = - 36\)
Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)
Đáp án : D
Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
\(\begin{array}{*{20}{l}}{B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}}\\{ = \left( {{x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}} \right) + \left( {{x^2}\; + 2xy + {y^2}} \right)}\\{ = {{\left( {x + y} \right)}^3}\; + {{\left( {x + y} \right)}^2}\; = {{\left( {x + y} \right)}^2}\left( {x + y + 1} \right)}\end{array}\)
Vì \(x = 20-y\) nên \(x + y = 20\). Thay \(x + y = 20\) vào \(B = {\left( {x + y} \right)^2}\left( {x + y + 1} \right)\) ta được:
\(B = {\left( {20} \right)^2}\left( {{\rm{20 }} + 1} \right) = 400.21 = 8400\).
Vậy \(B > 8300\) khi \(x = 20-y\).
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Đáp án : B
Gọi hai số lẻ liên tiếp là \(2k-1;2k + 1(k \in N*)\)
Theo bài ra ta có:
\({\left( {2k + 1} \right)^{2}}-{\left( {2k-1} \right)^{2}} = 4{k^2} + 4k + 1-4{k^2} + 4k-1 = 8k \vdots 8,\forall k \in \mathbb{N}*\)
Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là
Đáp án : A
\(\begin{array}{l}5{x^2} - 10x + 5 = 0\\ \Leftrightarrow 5({x^2} - 2x + 1) = 0\\ \Leftrightarrow {(x - 1)^2} = 0\\ \Leftrightarrow x - 1 = 0\\ \Leftrightarrow x = 1\end{array}\)
Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.
Đáp án : C
Ta có:
\(\begin{array}{*{20}{l}}{{x^2}\;-4{y^2}\;-2x-4y}\\{ = \left( {{x^2}\;-4{y^2}} \right)-\left( {2x + 4y} \right)}\\{ = \left( {x-2y} \right)\left( {x + 2y} \right)-2\left( {x + 2y} \right)}\\{ = \left( {x + 2y} \right)\left( {x-2y-2} \right)}\end{array}\)
Suy ra m = 2, n = -2
Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).
Đáp án : B
\(\begin{array}{l}A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\\\begin{array}{*{20}{l}}{ \Leftrightarrow A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + \left( {x-1} \right)}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3} \right) + \left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3 + 1} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)[{{\left( {x-2} \right)}^2}\; + 1]}\end{array}\end{array}\)
Tại x = 5, ta có:
\(A = \left( {5-1} \right)[{\left( {5-2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\)
Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?
Đáp án : B
\(\begin{array}{*{20}{l}}{{{\left( {2x-5} \right)}^2}\;-4{{\left( {x-2} \right)}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left[ {2\left( {x-2} \right)} \right]}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left( {2x-4} \right)}^2}\; = 0}\\{ \Leftrightarrow \left( {2x-5 + 2x-4} \right)\left( {2x-5-2x + 4} \right) = 0}\\{ \Leftrightarrow \left( {4x-9} \right).\left( { - 1} \right) = 0}\\{ \Leftrightarrow - 4x + 9 = 0}\\{ \Leftrightarrow 4x = 9}\\{ \Leftrightarrow x = \;\frac{9}{4}}\end{array}\)
Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)
Đáp án : D
\(\begin{array}{l}A = {x^6} - {x^4} - x({x^3} - x)\\ = {x^3}.{x^3} - {x^3}.x - x\left( {{x^3} - x} \right)\\ = {x^3}({x^3} - x) - x({x^3} - x)\\ = \left( {{x^3} - x} \right)\left( {{x^3} - x} \right)\\ = {\left( {{x^3} - x} \right)^2}\end{array}\)
Với \({x^3} - x = 9\), giá trị của biểu thức \(A = {9^2} = 81\)
Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.
Đáp án : C
\(\begin{array}{l}A = {7^{19}} + {7^{20}} + {7^{21}}\\ = {7^{19}} + {7^{19}}.7 + {7^{19}}{.7^2}\\ = {7^{19}}.(1 + 7 + {7^2})\\ = {7^{19}}.57\end{array}\)
Do \({7^{19}} \vdots 7 \Rightarrow {7^{19}}.57 \vdots 7\) (A sai)
Ta có \({7^{19}}\) là số lẻ, 57 là số lẻ nên tích \({7^{19}}.57\) là số lẻ \( \Rightarrow {7^{19}}.57\) không chia hết cho 2. (B sai)
A chia hết cho 57. (C đúng)
A chia hết cho 57 nhưng A không chia hết cho 2 nên A không chia hết cho 57.2 = 114 (D sai)
Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng
\(\frac{-5}{2}\).
Đáp án : D
Sử dụng hằng đẳng thức \(a^2 - b^2 = (a-b)(a+b)\) để phân tích đa thức thành nhân tử.
\(\left( {2x-5} \right)^2-9{(4{x^2}-25)^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{[{{\left( {2x} \right)}^2}-{5^2}]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left[ {\left( {2x-5} \right)\left( {2x + 5} \right)} \right]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left( {{{2x }}-5} \right)}^2}{{\left( {2x + 5} \right)}^2}= 0\)\(\left( {2x-5} \right)^2[4-9{{\left( {2x + 5} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2[4-{{\left( {3\left( {2x + 5} \right)} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2\left( {2 + {{ 6}}x + 15} \right)\left( {2-{{ 6}}x-15} \right) = 0\)\(\left( {2x-5} \right)^2\left( {6x + 17} \right)\left( { - 6x-13} \right) = 0\)Suy ra \(x = \frac{5}{2}\) hoặc \(x = \frac{{ - 17}}{6}\) hoặc \(x = \frac{{-13}}{6}\)Suy ra \({x_1} + {x_2} + {x_3} = \frac{5}{2} - \frac{{17}}{6} + \frac{{-13}}{6} = \frac{{15 - 17 - 13}}{6} = \frac{-5}{2}\)
Với a3 + b3 + c3 = 3abc thì
Đáp án : C
Từ đẳng thức đã cho suy ra \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = 0\)
\({b^3}\; + {c^3}\; = \left( {b + c} \right)\left( {{b^2}\; + {c^2}\; - bc} \right)\)\( = \left( {b + c} \right)\left[ {{{\left( {b + c} \right)}^2}\; - 3bc} \right]\)\( = {\left( {b + c} \right)^3}\; - 3bc\left( {b + c} \right)\)\( \Rightarrow {a^3}\; + {b^3}\; + {c^3}\; - 3abc = {a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc\)\( = {a^3}\; + {\left( {b + c} \right)^3} - 3bc\left( {b + c} \right) - 3abc\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - \left[ {3bc\left( {b + c} \right) + 3abc} \right]\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - 3bc\left( {a + b + c} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - ab\; - ac + {b^2}\; + 2bc + {c^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc} \right)\)
Do đó nếu \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc = 0\) thì \(a + b + c\; = 0\) hoặc \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = 0\)
Mà \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = \left[ {{{\left( {a - b} \right)}^2}\; + {{\left( {a - c} \right)}^2}\; + {{\left( {b - c} \right)}^2}} \right]\)
Nếu \({\left( {a - b} \right)^2}\; + {\left( {a - c} \right)^2}\; + {\left( {b - c} \right)^2}\; = 0 \Leftrightarrow \;\left\{ {\begin{array}{*{20}{l}}{a - b = 0}\\{b - c = 0}\\{a - c = 0}\end{array}} \right. \Rightarrow a = b = c\)
Vậy \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) = 3abc\) thì \(a = b = c\) hoặc \(a + b + c = 0\).
Bài 4 trong chương trình Toán 8 Chân trời sáng tạo tập trung vào phương pháp phân tích đa thức thành nhân tử. Đây là một kỹ năng quan trọng, nền tảng cho việc giải các bài toán đại số ở các lớp trên. Việc nắm vững các phương pháp phân tích đa thức không chỉ giúp học sinh giải quyết các bài tập trong sách giáo khoa mà còn ứng dụng vào nhiều lĩnh vực khác của toán học.
Để giải quyết các bài tập về phân tích đa thức thành nhân tử, học sinh cần nắm vững các phương pháp sau:
Các bài tập trắc nghiệm về phân tích đa thức thành nhân tử thường xoay quanh các dạng sau:
Ví dụ 1: Phân tích đa thức 3x2 + 6x thành nhân tử.
Giải: Ta thấy cả hai hạng tử đều có chung nhân tử là 3x. Do đó, ta có:
3x2 + 6x = 3x(x + 2)
Ví dụ 2: Phân tích đa thức x2 - 4 thành nhân tử.
Giải: Đây là hiệu hai bình phương, ta có:
x2 - 4 = (x - 2)(x + 2)
Dưới đây là một số bài tập trắc nghiệm để bạn luyện tập:
Phân tích đa thức thành nhân tử là một kỹ năng quan trọng trong chương trình Toán 8. Việc luyện tập thường xuyên và nắm vững các phương pháp giải bài tập sẽ giúp học sinh tự tin hơn khi đối mặt với các bài kiểm tra và thi cử. Chúc các em học tốt!