Logo Header
  1. Môn Toán
  2. Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo

Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo

Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo

Chào mừng các em học sinh đến với đề thi học kì 1 Toán 8 - Đề số 5 chương trình Chân trời sáng tạo. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học hiệu quả và tự tin hơn trong kỳ thi sắp tới.

Đề bài

    I. Trắc nghiệm
    Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
    Câu 1 :

    Giá trị của đa thức x2 - y2 - 2y - 1 tại x = 73 và y = 26 là:

    • A.
      4698.
    • B.
      6400.
    • C.
      4649.
    • D.
      4600.
    Câu 2 :

    Tính giá trị của biểu thức: 302 + 452 - 252 + 60.45 được kết quả là 

    • A.
      50000.
    • B.
      10000.
    • C.
      9000.
    • D.
      5000.
    Câu 3 :

    Giá trị của biểu thức \(\frac{{{x^2} + 4x + 4}}{{{x^2} + 2x}}\) khi x = -2 là:

    • A.
      0.
    • B.
      -1.
    • C.
      4.
    • D.
      Không xác định.
    Câu 4 :

    Hiệu của biểu thức \(\frac{{{\rm{x\;}} + {\rm{\;}}1{\rm{\;}}}}{{{\rm{x\;}} - {\rm{\;}}1{\rm{\;}}}}\) \(-\) \(\frac{{{\rm{x\;}}-\;4}}{{{\rm{x\;}}-{\rm{\;}}1}}\) bằng:

    • A.
      \(\frac{5}{{x - 1}}\).
    • B.
      \(\frac{{5\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\).
    • C.
      \(\frac{{ - 3}}{{x - 1}}\).
    • D.
      \(\frac{5}{2}\).
    Câu 5 :

    Cho \(\frac{{{{\left( {x + y} \right)}^2}}}{{x - y}} = \frac{P}{{{x^2} - {y^2}}}\). Đa thức P là: 

    • A.
      \({x^3} - {y^3}\).
    • B.
      \({\left( {x - y} \right)^3}\).
    • C.
      \({\left( {x + y} \right)^3}\).
    • D.
      \({x^3} + {y^3}\).
    Câu 6 :

    Cho ABCD là hình bình hành với các điều kiện như trên hình vẽ.

    Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 0 1

    Trên hình này có:

    • A.
      Ba hình bình hành.
    • B.
      Bốn hình bình hành.
    • C.
      Năm hình bình hành.
    • D.
      Sáu hình bình hành.
    Câu 7 :

    Tứ giác là hình chữ nhật nếu:

    • A.
      Là tứ giác có hai đường chéo bằng nhau.
    • B.
      Là hình thang có hai góc vuông.
    • C.
      Là hình thang có một góc vuông.
    • D.
      Là hình bình hành có một góc vuông.
    Câu 8 :

    Một hình chóp tứ giác đều có độ dài cạnh bên bằng 25cm, đáy là hình vuông ABCD cạnh 30cm. Tính diện tích xung quanh của hình chóp.

    • A.
      600 cm2.
    • B.
      1200 cm2.
    • C.
      1500 cm2.
    • D.
      1800 cm2.
    Câu 9 :

    Cho hình chóp tam giác đều S.ABC có thể tích là 100 cm3; chiều cao của hình chóp là 3cm. Độ dài cạnh đáy của hình chóp đó là (Làm tròn đến hàng đơn vị)

    • A.
      13.
    • B.
      14.
    • C.
      15.
    • D.
      16.
    Câu 10 :

    Độ dài một cạnh góc vuông và cạnh huyền của một tam giác vuông lần lượt là 3cm và 5cm. Diện tích của tam giác vuông đó là:

    • A.
      12cm2.
    • B.
      14cm2 .
    • C.
      6cm2.
    • D.
      7cm2.
    Câu 11 :

    Hình bình hành ABCD là hình chữ nhật khi:

    • A.
      AB = BC.
    • B.
      AC = BD.
    • C.
      BC = CD.
    • D.
      A, B, C đều đúng.
    Câu 12 :

    Thống kê số lượng học sinh từng lớp ở khối 8 của một trường THCS dự thi hết học kì I môn Toán. Số liệu trong bảng bên không hợp lí là:

    Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 0 2

    • A.
      Số học sinh dự thi lớp 8A
    • B.
      Số học sinh dự thi lớp 8B
    • C.
      Số học sinh dự thi lớp 8C
    • D.
      Số học sinh dự thi lớp 8D

    Biểu đồ đoạn thẳng biểu diễn sô lượt người nước ngoài đến Việt Nam qua các năm 2018; 2019; 2020; 2021. (đơn vị: nghìn lượt người)

    Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 0 3

    (Nguồn: Niên giám thống kê 2021)

    Câu 13

    Lựa chọn biểu đồ nào để biểu diễn các dữ liệu thống kê có trong biểu đồ đoạn thẳng ở hình bên ?

    • A.
      Biểu đồ hình quạt tròn.
    • B.
      Biểu đồ cột kép.
    • C.
      Biểu đồ cột.
    • D.
      A; B; C đều đúng.
    Câu 14

    Số lượt người nước ngoài đến Việt Nam năm 2019 là bao nhiêu nghìn lượt người ?

    • A.
      15497,8.
    • B.
      18008,6.
    • C.
      3837,3.
    • D.
      157,3.
    Câu 15

    So với năm 2018 số lượt người nước ngoài đến Việt Nam năm 2019 tăng bao nhiêu phần trăm (làm tròn kết quả đến hàng phần mười) ?

    • A.
      16,2%.
    • B.
      18,2%.
    • C.
      37,3%.
    • D.
      17,3%.
    II. Tự luận
    Câu 1 :

    Cho phân thức: \(A = \frac{{1 - 2x}}{{1 - 4{x^2}}}\)

    a) Với điều kiện nào của x thì giá trị của phân thức A được xác định?

    b) Rút gọn phân thức A.

    c) Tính giá trị nguyên của x để phân thức A có giá trị nguyên.

    Câu 2 :

    a) Tìm x, biết: x2 + 3x = 0

    b) Tìm giá trị nhỏ nhất của biểu thức: x2 \(-\) 4x + 7

    Câu 3 :

    Biểu đồ tranh ở hình bên thống kê số gạo bán của một cửa hàng trong ba tháng cuối năm 2022.

    Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 0 4

    a) Lập bảng thống kê số gạo bán được của một cửa hàng trong ba tháng cuối năm 2022 theo mẫu sau :

    Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 0 5

    b) Hãy hoàn thiện biểu đồ ở hình bên dưới để nhận biểu đồ cột biểu diễn các dữ liệu có trong biểu đồ tranh.

    Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 0 6

    Câu 4 :

    1. Mái nhà của một chòi trên bãi biển có dạng hình chóp tứ giác đều như hình bên. Tính diện tích vải bạc cần dùng để phủ mái chòi, biết rằng người ta chỉ dùng một lớp vải bạt (Không tính phần viền xung quanh)

    Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 0 7

    2. Cho tam giác \(ABC\) vuông tại \(A\) có \(AB < AC\). Gọi \(M\) là trung điểm của \(BC\), kẻ \(MD\) vuông góc với \(AB\) tại \(D\), \(ME\) vuông góc với \(AC\) tại \(E\).

    a) Chứng minh \(AM = DE\).

    b) Chứng minh tứ giác \(DMCE\) là hình bình hành.

    c) Gọi \(AH\) là đường cao của tam giác \(ABC\) (\(H \in BC\)). Chứng minh tứ giác \(DHME\) là hình thang cân.

    Câu 5 :

    Tìm \(n \in \mathbb{N}\) để biểu thức \(A = {({n^2} + 10)^2} - 36{n^2}\) có giá trị là một số nguyên tố.

    Lời giải và đáp án

      I. Trắc nghiệm
      Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
      Câu 1 :

      Giá trị của đa thức x2 - y2 - 2y - 1 tại x = 73 và y = 26 là:

      • A.
        4698.
      • B.
        6400.
      • C.
        4649.
      • D.
        4600.

      Đáp án : D

      Phương pháp giải :

      - Rút gọn đa thức.

      - Thay x = 73 và y = 26 vào đa thức để tính giá trị.

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}{x^2} - {y^2} - 2y - 1\\ = {x^2} - \left( {{y^2} + 2y + 1} \right)\\ = {x^2} - {\left( {y + 1} \right)^2}\\ = \left( {x - y - 1} \right)\left( {x + y + 1} \right)\end{array}\)

      Thay x = 73 và y = 26, ta được:

      \(\left( {73 - 26 - 1} \right)\left( {73 + 26 + 1} \right) = 46.100 = 4600\).

      Câu 2 :

      Tính giá trị của biểu thức: 302 + 452 - 252 + 60.45 được kết quả là 

      • A.
        50000.
      • B.
        10000.
      • C.
        9000.
      • D.
        5000.

      Đáp án : D

      Phương pháp giải :

      Sử dụng hằng đẳng thức để tính nhanh biểu thức.

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}{30^2} + {45^2} - {25^2} + 60.45\\ = {30^2} + {45^2} - {25^2} + 2.30.45\\ = \left( {{{30}^2} + 2.30.45 + {{45}^2}} \right) - {25^2}\\ = {\left( {30 + 45} \right)^2} - {25^2}\\ = {75^2} - {25^2}\\ = \left( {75 - 25} \right)\left( {75 + 25} \right)\\ = 50.100 = 5000\end{array}\)

      Câu 3 :

      Giá trị của biểu thức \(\frac{{{x^2} + 4x + 4}}{{{x^2} + 2x}}\) khi x = -2 là:

      • A.
        0.
      • B.
        -1.
      • C.
        4.
      • D.
        Không xác định.

      Đáp án : D

      Phương pháp giải :

      Kiểm tra điều kiện xác định của biểu thức. Thay x = -2 vào biểu thức.

      Lời giải chi tiết :

      Điều kiện xác định của biểu thức là: \({x^2} + 2x \ne 0 \Leftrightarrow x\left( {x + 2} \right) \ne 0 \Leftrightarrow \left[ \begin{array}{l}x \ne 0\\x \ne - 2\end{array} \right.\)

      Vì x = -2 không thỏa mãn điều kiện xác định nên biểu thức không xác định.

      Câu 4 :

      Hiệu của biểu thức \(\frac{{{\rm{x\;}} + {\rm{\;}}1{\rm{\;}}}}{{{\rm{x\;}} - {\rm{\;}}1{\rm{\;}}}}\) \(-\) \(\frac{{{\rm{x\;}}-\;4}}{{{\rm{x\;}}-{\rm{\;}}1}}\) bằng:

      • A.
        \(\frac{5}{{x - 1}}\).
      • B.
        \(\frac{{5\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\).
      • C.
        \(\frac{{ - 3}}{{x - 1}}\).
      • D.
        \(\frac{5}{2}\).

      Đáp án : A

      Phương pháp giải :

      Sử dụng quy tắc tính với phân thức đại số.

      Lời giải chi tiết :

      Ta có:

      \(\frac{{{\rm{x\;}} + {\rm{\;}}1{\rm{\;}}}}{{{\rm{x\;}} - {\rm{\;}}1{\rm{\;}}}}\) \(-\) \(\frac{{{\rm{x\;}}-\;4}}{{{\rm{x\;}}-{\rm{\;}}1}}\)\( = \frac{{x + 1 - \left( {x - 4} \right)}}{{x - 1}} = \frac{5}{{x - 1}}\).

      Câu 5 :

      Cho \(\frac{{{{\left( {x + y} \right)}^2}}}{{x - y}} = \frac{P}{{{x^2} - {y^2}}}\). Đa thức P là: 

      • A.
        \({x^3} - {y^3}\).
      • B.
        \({\left( {x - y} \right)^3}\).
      • C.
        \({\left( {x + y} \right)^3}\).
      • D.
        \({x^3} + {y^3}\).

      Đáp án : C

      Phương pháp giải :

      Sử dụng quy tắc tính với phân thức đại số.

      Lời giải chi tiết :

      Ta có:

      \(\frac{{{{\left( {x + y} \right)}^2}}}{{x - y}} = \frac{{{{\left( {x + y} \right)}^2}\left( {x + y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{{\left( {x + y} \right)}^3}}}{{{x^2} - {y^2}}} = \frac{P}{{{x^2} - {y^2}}} \Rightarrow P = {\left( {x + y} \right)^3}\).

      Câu 6 :

      Cho ABCD là hình bình hành với các điều kiện như trên hình vẽ.

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 1

      Trên hình này có:

      • A.
        Ba hình bình hành.
      • B.
        Bốn hình bình hành.
      • C.
        Năm hình bình hành.
      • D.
        Sáu hình bình hành.

      Đáp án : D

      Phương pháp giải :

      Sử dụng kiến thức về hình bình hành.

      Lời giải chi tiết :

      Các hình bình hành trong hình là: ABCD; AFHD; AFCH; FBCH; FBHD; EFGH. Vậy có 6 hình bình hành.

      Câu 7 :

      Tứ giác là hình chữ nhật nếu:

      • A.
        Là tứ giác có hai đường chéo bằng nhau.
      • B.
        Là hình thang có hai góc vuông.
      • C.
        Là hình thang có một góc vuông.
      • D.
        Là hình bình hành có một góc vuông.

      Đáp án : D

      Phương pháp giải :

      Dựa vào kiến thức về hình chữ nhật.

      Lời giải chi tiết :

      Tứ giác có hai đường chéo bằng nhau có thể là hình thang cân nên A sai.

      Hình thang có một góc vuông, hai góc vuông là hình thang vuông nên B, C sai.

      Hình bình hành có một góc vuông là hình chữ nhật nên D đúng.

      Câu 8 :

      Một hình chóp tứ giác đều có độ dài cạnh bên bằng 25cm, đáy là hình vuông ABCD cạnh 30cm. Tính diện tích xung quanh của hình chóp.

      • A.
        600 cm2.
      • B.
        1200 cm2.
      • C.
        1500 cm2.
      • D.
        1800 cm2.

      Đáp án : B

      Phương pháp giải :

      Dựa vào công thức tính diện tích xung quanh của hình chóp tứ giác đều.

      Lời giải chi tiết :

      Độ dài trung đoạn là: \(\sqrt {{{25}^2} - {{\left( {\frac{{30}}{2}} \right)}^2}} = 20(cm)\)

      Diện tích xung quanh của hình chóp tứ giác đều đó là:

      \({S_{xq}} = \frac{{30.4}}{2}.20 = 1200\left( {c{m^2}} \right)\).

      Câu 9 :

      Cho hình chóp tam giác đều S.ABC có thể tích là 100 cm3; chiều cao của hình chóp là 3cm. Độ dài cạnh đáy của hình chóp đó là (Làm tròn đến hàng đơn vị)

      • A.
        13.
      • B.
        14.
      • C.
        15.
      • D.
        16.

      Đáp án : C

      Phương pháp giải :

      Dựa vào công thức tính thể tích hình chóp tam giác.

      Lời giải chi tiết :

      Ta có thể tích hình chóp tam giác đều là: \(V = \frac{1}{3}S.h \Rightarrow S = \frac{{3V}}{h}\)

      Diện tích đáy hình chóp tam giác đều là:

      \(S = \frac{{3.100}}{3} = 100\left( {c{m^2}} \right)\)

      Công thức tính diện tích tam giác đều là:

      \(\begin{array}{l}S = \frac{{{a^2}\sqrt 3 }}{4} = 100 \Rightarrow {a^2} = 100:\frac{{\sqrt 3 }}{4} \approx 231\\ \Rightarrow a \approx 15\left( {cm} \right)\end{array}\)

      Câu 10 :

      Độ dài một cạnh góc vuông và cạnh huyền của một tam giác vuông lần lượt là 3cm và 5cm. Diện tích của tam giác vuông đó là:

      • A.
        12cm2.
      • B.
        14cm2 .
      • C.
        6cm2.
      • D.
        7cm2.

      Đáp án : C

      Phương pháp giải :

      Sử dụng định lí Pythagore để tính cạnh góc vuông còn lại.

      Sử dụng công thức diện tích tam giác.

      Lời giải chi tiết :

      Độ dài cạnh góc vuông còn lại là: \(\sqrt {{5^2} - {3^2}} = 4\) (cm)

      Diện tích của tam giác vuông đó là: \(\frac{1}{2}.3.4 = 6\left( {c{m^2}} \right)\)

      Câu 11 :

      Hình bình hành ABCD là hình chữ nhật khi:

      • A.
        AB = BC.
      • B.
        AC = BD.
      • C.
        BC = CD.
      • D.
        A, B, C đều đúng.

      Đáp án : B

      Phương pháp giải :

      Sử dụng dấu hiệu nhận biết hình chữ nhật.

      Lời giải chi tiết :

      Hình bình hành là hình chữ nhật nếu có hai đường chéo bằng nhau hay AC = BD.

      Câu 12 :

      Thống kê số lượng học sinh từng lớp ở khối 8 của một trường THCS dự thi hết học kì I môn Toán. Số liệu trong bảng bên không hợp lí là:

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 2

      • A.
        Số học sinh dự thi lớp 8A
      • B.
        Số học sinh dự thi lớp 8B
      • C.
        Số học sinh dự thi lớp 8C
      • D.
        Số học sinh dự thi lớp 8D

      Đáp án : D

      Phương pháp giải :

      Quan sát bảng thống kê để chỉ ra dữ liệu chưa hợp lý

      Lời giải chi tiết :

      Quan sát bảng thống kê, ta thấy lớp 8D có sĩ số 44 học sinh nhưng số học sinh dự thi là 50 > 44 không hợp lí.

      Biểu đồ đoạn thẳng biểu diễn sô lượt người nước ngoài đến Việt Nam qua các năm 2018; 2019; 2020; 2021. (đơn vị: nghìn lượt người)

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 3

      (Nguồn: Niên giám thống kê 2021)

      Câu 13

      Lựa chọn biểu đồ nào để biểu diễn các dữ liệu thống kê có trong biểu đồ đoạn thẳng ở hình bên ?

      • A.
        Biểu đồ hình quạt tròn.
      • B.
        Biểu đồ cột kép.
      • C.
        Biểu đồ cột.
      • D.
        A; B; C đều đúng.

      Đáp án: C

      Phương pháp giải :

      Quan sát biểu đồ để trả lời câu hỏi.

      Lời giải chi tiết :

      Dữ liệu trên còn có thể biểu diễn bằng biểu đồ cột.

      Câu 14

      Số lượt người nước ngoài đến Việt Nam năm 2019 là bao nhiêu nghìn lượt người ?

      • A.
        15497,8.
      • B.
        18008,6.
      • C.
        3837,3.
      • D.
        157,3.

      Đáp án: B

      Phương pháp giải :

      Quan sát biểu đồ để trả lời câu hỏi.

      Lời giải chi tiết :

      Số lượt người nước ngoài đến Việt Nam năm 2019 là 18008,6 nghìn lượt người.

      Câu 15

      So với năm 2018 số lượt người nước ngoài đến Việt Nam năm 2019 tăng bao nhiêu phần trăm (làm tròn kết quả đến hàng phần mười) ?

      • A.
        16,2%.
      • B.
        18,2%.
      • C.
        37,3%.
      • D.
        17,3%.

      Đáp án: A

      Phương pháp giải :

      Quan sát biểu đồ để trả lời câu hỏi.

      Lời giải chi tiết :

      Số lượt người nước ngoài đến Việt Nam năm 2018 là 15497,8 nghìn lượt người.

      Số lượt người nước ngoài đến Việt Nam năm 2019 hơn năm 2018 là: 18008,6 - 15497,8 = 2510,8 (nghìn lượt người).

      So với năm 2018 số lượt người nước ngoài đến Việt Nam năm 2019 tăng: \(\frac{{2510,8}}{{15497,8}}.100\% \approx 16,2\% \)

      II. Tự luận
      Câu 1 :

      Cho phân thức: \(A = \frac{{1 - 2x}}{{1 - 4{x^2}}}\)

      a) Với điều kiện nào của x thì giá trị của phân thức A được xác định?

      b) Rút gọn phân thức A.

      c) Tính giá trị nguyên của x để phân thức A có giá trị nguyên.

      Phương pháp giải :

      a) Điều kiện để phân thức A xác định là mẫu thức khác 0.

      b) Phân tích mẫu thức thành nhân tử để rút gọn.

      c) Để phân thức A nguyên thì tử thức phải chia hết cho mẫu thức.

      Lời giải chi tiết :

      a) Phân thức A xác định khi và chỉ khi \(1 - 4{x^2} \ne 0 \Leftrightarrow \left( {1 - 2x} \right)\left( {1 + 2x} \right) \ne 0 \Leftrightarrow \left[ \begin{array}{l}1 - 2x \ne 0\\1 + 2x \ne 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ne \frac{1}{2}\\x \ne - \frac{1}{2}\end{array} \right.\)

      b) Ta có:

      \(A = \frac{{1 - 2x}}{{1 - 4{x^2}}} = \frac{{\left( {1 - 2x} \right)}}{{\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} = \frac{1}{{1 + 2x}}\)

      c) Phân thức A có giá trị nguyên khi và chỉ khi \(\frac{1}{{1 + 2x}}\) nguyên, hay \(\left( {1 + 2x} \right) \in U\left( 1 \right) = \left\{ { \pm 1} \right\}\).

      Ta có bảng giá trị sau:

      1 + 2x

      -1

      1

      x

      -1 (TM)

      0 (TM)

      \(A = \frac{1}{{1 + 2x}}\)

      -1

      1

      Vậy \(x \in \left\{ { - 1;0} \right\}\) thì phân thức A có giá trị nguyên.

      Câu 2 :

      a) Tìm x, biết: x2 + 3x = 0

      b) Tìm giá trị nhỏ nhất của biểu thức: x2 \(-\) 4x + 7

      Phương pháp giải :

      a) Nhóm nhân tử chung để tìm x.

      b) Biến đổi bằng hằng đẳng thức \({a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}\).

      Lời giải chi tiết :

      a) \({x^2} + 3x = 0\)

      \(\begin{array}{l}x(x + 3) = 0\\\left[ \begin{array}{l}x = 0\\x + 3 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 0\\x = - 3\end{array} \right.\end{array}\)

      Vậy x = 0 hoặc x = -3.

      b) Ta có: \({x^2} - 4x + 7 = {x^2} - 4x + 4 + 3 = {\left( {x - 2} \right)^2} + 3\)

      Vì \({\left( {x - 2} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\) nên \({\left( {x - 2} \right)^2} + 3 \ge 3\) với mọi \(x \in \mathbb{R}\).

      Dấu “=” xảy ra là giá trị nhỏ nhất của biểu thức x2 \(-\) 4x + 7.

      Vậy giá trị nhỏ nhất của x2 \(-\) 4x + 7 bằng 3 khi x – 2 = 0 hay x = 2.

      Câu 3 :

      Biểu đồ tranh ở hình bên thống kê số gạo bán của một cửa hàng trong ba tháng cuối năm 2022.

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 4

      a) Lập bảng thống kê số gạo bán được của một cửa hàng trong ba tháng cuối năm 2022 theo mẫu sau :

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 5

      b) Hãy hoàn thiện biểu đồ ở hình bên dưới để nhận biểu đồ cột biểu diễn các dữ liệu có trong biểu đồ tranh.

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 6

      Phương pháp giải :

      a) Dựa vào dữ liệu đề bài cho để điền vào bảng.

      b) Điền số tương ứng vào biểu đồ.

      Lời giải chi tiết :

      a)

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 7

      b) Biểu đồ cột biểu diễn các dữ liệu có trong biểu đồ tranh là :

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 8

      Câu 4 :

      1. Mái nhà của một chòi trên bãi biển có dạng hình chóp tứ giác đều như hình bên. Tính diện tích vải bạc cần dùng để phủ mái chòi, biết rằng người ta chỉ dùng một lớp vải bạt (Không tính phần viền xung quanh)

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 9

      2. Cho tam giác \(ABC\) vuông tại \(A\) có \(AB < AC\). Gọi \(M\) là trung điểm của \(BC\), kẻ \(MD\) vuông góc với \(AB\) tại \(D\), \(ME\) vuông góc với \(AC\) tại \(E\).

      a) Chứng minh \(AM = DE\).

      b) Chứng minh tứ giác \(DMCE\) là hình bình hành.

      c) Gọi \(AH\) là đường cao của tam giác \(ABC\) (\(H \in BC\)). Chứng minh tứ giác \(DHME\) là hình thang cân.

      Phương pháp giải :

      1. Sử dụng định lí Pythagore để tính độ dài trung đoạn.

      Sử dụng công thức tính diện tích xung quanh hình chóp tứ giác đều để tính diện tích vải bạc cần dùng để phủ mái chòi.

      2. 

      a) Chứng mình ADME có 3 góc vuông nên là hình chữ nhật.

      b) Chứng minh \(MD\parallel EC\), \(MD = EC = \frac{1}{2}AC\) \( \Rightarrow \) đpcm.

      c) \(ME = DH = AD = \frac{1}{2}AB\); \(HM\parallel DE\) nên \(DHME\) là hình thang cân.

      Lời giải chi tiết :

      1. 

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 10

      Ta có hình vẽ minh họa cho mái nhà của chòi như hình trên.

      Gọi SH là đường cao của tam giác SAB nên SH là trung đoạn của hình chóp S.ABCD.

      Vì S.ABCD là hình chóp tứ giác đều nên SAB là tam giác cân. Do đó SA = SB = 1,2m. Khi đó SH là đường cao đồng thời là đường trung tuyến nên AH = BH = \(\frac{1}{2}\) AB = \(\frac{1}{2}\).1,5 = 0,75(m).

      Áp dụng định lí Pythagore vào tam giác vuông SHB, ta có:

      \(SH = \sqrt {S{B^2} - B{H^2}} = \sqrt {1,{2^2} - 0,{{75}^2}} \approx 1\left( m \right)\)

      Diện tích vải bạc cần dùng để phủ mái chòi chính là diện tích xung quanh của hình chóp tứ giác đó.

      Diện tích xung quanh của hình chóp là:

      \({S_{xq}} = \frac{{4.1,5}}{2}.1 = 3\left( {{m^2}} \right)\).

      Vậy diện tích vải bạc cần dùng để phủ mái chòi là 3m2.

      2. 

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo 1 11

      a) Xét tứ giác ADME có:

      \(\widehat A = {90^0}\) (tam giác ABC vuông tại A)

      \(\widehat D = \widehat E = {90^0}\) (\(MD\) vuông góc với \(AB\) tại \(D\), \(ME\) vuông góc với \(AC\) tại \(E\))

      => ADME là hình chữ nhật (tứ giác có 3 góc vuông).

      b) Xét tam giác ABC vuông tại A có M là trung điểm của BC nên AM là đường trung tuyến ứng với cạnh huyền của tam giác ABC nên AM = MC = \(\frac{1}{2}\)

      Khi đó tam giác AMC cân tại M. Mà ME vuông góc với AC nên ME là đường cao đồng thời là đường trung tuyến của tam giác AMC suy ra E là trung điểm của AC \( \Rightarrow \) AE = EC. (1)

      ADME là hình chữ nhật nên DM // AE và DM = AE (2)

      Từ (1) và (2) suy ra DM // EC và DM = EC, do đó tứ giác DMCE là hình bình hành.

      c) DMCE là hình bình hành nên DE // MC => DE // HM (H thuộc đường thẳng CM)

      => DHME là hình thang.

      Xét tam giác AMB có AM = BM nên tam giác AMB cân tại M. Mà MD vuông góc với AB nên MD đường cao đồng thời là đường trung tuyến của tam giác ABM suy ra D là trung điểm của AB.

      Xét tam giác ABH vuông tại H, D là trung điểm của AB nên HD là đường trung tuyến ứng với cạnh huyền của tam giác AHB => \(HD = AD = \frac{1}{2}AB\).

      Mà ADME là hình chữ nhật nên AD = ME suy ra HD = ME.

      Hình thang DHME có HD = ME nên DHME là hình thang cân.

      Câu 5 :

      Tìm \(n \in \mathbb{N}\) để biểu thức \(A = {({n^2} + 10)^2} - 36{n^2}\) có giá trị là một số nguyên tố.

      Phương pháp giải :

      Biến đổi biểu thức bằng cách sử dụng hằng đẳng thức.

      Lời giải chi tiết :

      Ta có: \(A = {({n^2} + 10)^2} - 36{n^2} = ({n^2} + 10 - 6n)({n^2} + 10 + 6n)\)

      Để A là số nguyên tố thì A chỉ có 2 ước là 1 và chính nó.

      \(A = ({n^2} + 10 - 6n)({n^2} + 10 + 6n)\) có ước là 1 và chính nó khi và chỉ khi \({n^2} + 10 - 6n = 1\) hoặc \({n^2} + 10 + 6n = 1\).

      Trường hợp 1. Với \({n^2} + 10 - 6n = 1\), ta có:

      \(\begin{array}{l}{n^2} + 10 - 6n = 1\\{n^2} - 6n + 9 = 0\\{\left( {n - 3} \right)^2} = 0\\n = 3\,(tm)\end{array}\)

      Khi đó \(A = 1.\left( {{3^2} + 10 + 6.3} \right) = 37\)

      Trường hợp 2. Với \({n^2} + 10 + 6n = 1\), ta có:

      \(\begin{array}{l}{n^2} + 10 + 6n = 1\\{n^2} + 6n + 9 = 0\\{\left( {n + 3} \right)^2} = 0\end{array}\)

      \(n = - 3\) (không thỏa mãn vì \(n \in \mathbb{N}\)).

      Vậy n = 3 thì biểu thức \(A = {({n^2} + 10)^2} - 36{n^2}\) có giá trị là một số nguyên tố.

      Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo đặc sắc thuộc chuyên mục vở bài tập toán 8 trên đề thi toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo: Tổng quan và Hướng dẫn Giải chi tiết

      Đề thi học kì 1 Toán 8 - Đề số 5 chương trình Chân trời sáng tạo là một bài kiểm tra quan trọng, đánh giá mức độ nắm vững kiến thức và kỹ năng giải toán của học sinh sau nửa học kì đầu tiên. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính đã được học, như biểu thức đại số, phương trình bậc nhất một ẩn, bất đẳng thức, hệ phương trình, và các ứng dụng thực tế của đại số.

      Cấu trúc đề thi và các dạng bài tập thường gặp

      Cấu trúc đề thi thường bao gồm các phần sau:

      1. Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng nhận biết các khái niệm toán học.
      2. Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, thể hiện khả năng vận dụng kiến thức và kỹ năng giải toán.

      Các dạng bài tập thường gặp trong đề thi:

      • Bài tập về biểu thức đại số: Tính giá trị của biểu thức, thu gọn biểu thức, phân tích đa thức thành nhân tử.
      • Bài tập về phương trình bậc nhất một ẩn: Giải phương trình, tìm nghiệm của phương trình, ứng dụng phương trình để giải bài toán thực tế.
      • Bài tập về bất đẳng thức: Giải bất đẳng thức, tìm tập nghiệm của bất đẳng thức, ứng dụng bất đẳng thức để giải bài toán thực tế.
      • Bài tập về hệ phương trình: Giải hệ phương trình, tìm nghiệm của hệ phương trình, ứng dụng hệ phương trình để giải bài toán thực tế.
      • Bài tập ứng dụng: Giải các bài toán liên quan đến thực tế, đòi hỏi học sinh phải vận dụng kiến thức toán học để giải quyết vấn đề.

      Hướng dẫn giải chi tiết một số bài tập tiêu biểu

      Để giúp các em học sinh ôn tập và làm quen với các dạng bài tập trong đề thi, chúng ta sẽ cùng nhau giải chi tiết một số bài tập tiêu biểu:

      Bài tập 1: Giải phương trình 2x + 3 = 7

      Lời giải:

      1. Chuyển số 3 sang vế phải: 2x = 7 - 3
      2. Rút gọn: 2x = 4
      3. Chia cả hai vế cho 2: x = 2

      Vậy nghiệm của phương trình là x = 2.

      Bài tập 2: Thu gọn biểu thức (x + 2)(x - 2)

      Lời giải:

      (x + 2)(x - 2) = x2 - 22 = x2 - 4

      Lưu ý khi làm bài thi

      • Đọc kỹ đề bài trước khi làm.
      • Viết rõ ràng, trình bày mạch lạc.
      • Kiểm tra lại kết quả sau khi làm xong.
      • Sử dụng máy tính bỏ túi khi cần thiết.
      • Phân bổ thời gian hợp lý cho từng phần của đề thi.

      Tài liệu ôn tập và luyện thi hiệu quả

      Để đạt kết quả tốt trong kỳ thi học kì 1 Toán 8, các em học sinh nên:

      • Học thuộc lý thuyết và công thức toán học.
      • Làm nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán.
      • Ôn tập các đề thi cũ.
      • Tìm kiếm sự giúp đỡ của giáo viên hoặc bạn bè khi gặp khó khăn.

      Giaitoan.edu.vn – Nền tảng học toán online uy tín

      Giaitoan.edu.vn là một nền tảng học toán online uy tín, cung cấp đầy đủ các tài liệu ôn tập, đề thi và bài giảng chất lượng cao. Với đội ngũ giáo viên giàu kinh nghiệm và phương pháp giảng dạy hiện đại, Giaitoan.edu.vn sẽ giúp các em học sinh học toán hiệu quả và đạt kết quả tốt nhất.

      Kết luận

      Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo là một cơ hội để các em học sinh thể hiện kiến thức và kỹ năng giải toán của mình. Hy vọng rằng với những hướng dẫn và lời khuyên trên, các em sẽ tự tin và đạt kết quả tốt nhất trong kỳ thi sắp tới. Chúc các em thành công!

      Tài liệu, đề thi và đáp án Toán 8