Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều

Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều

Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều, một tài liệu ôn tập vô cùng quan trọng dành cho học sinh lớp 8. Đề thi này được biên soạn theo chương trình sách giáo khoa Cánh diều, giúp các em làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Với đề thi này, các em có thể tự đánh giá năng lực của mình, xác định những kiến thức còn yếu và tập trung ôn tập để đạt kết quả tốt nhất trong kỳ thi sắp tới.

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn?

    • A.
      \(1 - {x^2} = 0\).
    • B.
      \(2x - 5 = 0\).
    • C.
      \(\frac{2}{{x - 3}} + 1 = 0\).
    • D.
      \({x^3} - x + 2 = 0\).
    Câu 2 :

    Với \(m = - 1\) thì phương trình \(\left( {2{m^2} - 2} \right)x = m + 1\)

    • A.
      vô nghiệm.
    • B.
      vô số nghiệm.
    • C.
      có nghiệm duy nhất là \(x = m - 1\).
    • D.
      Có 1 nghiệm là \(x = \frac{1}{{m - 1}}\).
    Câu 3 :

    Phương trình \(4x - 2 = 0\) có nghiệm là

    • A.
      \(x = 2\).
    • B.
      \(x = 0\).
    • C.
      \(x = - 2\).
    • D.
      \(x = \frac{1}{2}\).
    Câu 4 :

    Nếu một vòi nước chảy đầy bể trong 5 giờ thì 1 giờ vòi nước đó chảy được bao nhiêu phần bể?

    • A.
      \(1\).
    • B.
      \(\frac{1}{4}\).
    • C.
      \(\frac{1}{5}\).
    • D.
      \(5\).
    Câu 5 :

    Một tam giác có độ dài các cạnh là \(x + 3\); \(x + 1\); \(x + 5\). Biểu thức biểu thị chu vi tam giác đó là

    • A.
      \(3x + 9\)
    • B.
      \(x + 9\)
    • C.
      \(3x - 9\)
    • D.
      \(3x + 16\)
    Câu 6 :

    Năm nay chị 27 tuổi và tuổi em ít hơn tuổi chị 5 tuổi. Vậy năm sau tuổi em là

    • A.
      21 tuổi
    • B.
      22 tuổi
    • C.
      23 tuổi
    • D.
      24 tuổi
    Câu 7 :

    Hãy chọn câu khẳng định đúng.

    • A.
      Hai tam giác bằng nhau thì đồng dạng.
    • B.
      Hai tam giác đồng dạng thì bằng nhau.
    • C.
      Hai tam giác cân luôn đồng dạng.
    • D.
      Hai tam giác vuông luôn đồng dạng.
    Câu 8 :

    $\Delta ABC\backsim \Delta DEF$ theo tỉ số đồng dạng k. Vậy k bằng tỉ số nào sau đây?

    • A.
      \(k = \frac{{AB}}{{BC}}\).
    • B.
      \(k = \frac{{AC}}{{DF}}\).
    • C.
      \(k = \frac{{DE}}{{AB}}\).
    • D.
      \(k = \frac{{DE}}{{DF}}\).
    Câu 9 :

    Cho hình sau. Biết \(\Delta ABC,\Delta ADE\) là hai tam giác cân.

    Chọn kết luận đúng trong các câu sau:

    Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 0 1

    • A.
      $\Delta ADE\backsim \Delta ABC\left( g.g \right)$ với $k=2$.
    • B.
      $\Delta ADE\backsim \Delta ABC\left( c.c.c \right)$ với $k=\frac{2}{3}$.
    • C.
      $\Delta ABC\backsim \Delta ADE\left( c.g.c \right)$ với $k=\frac{3}{2}$.
    • D.
      $\Delta ABC\backsim \Delta ADE\left( g.g \right)$ với $k=\frac{1}{2}$.
    Câu 10 :

    Cho hình vẽ sau. Độ lớn x bằng bao nhiêu để hai tam giác đồng dạng?

    Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 0 2

    • A.
      \(x = 3\).
    • B.
      \(x = 4\).
    • C.
      \(x = \frac{5}{2}\).
    • D.
      \(x = \frac{3}{2}\).
    Câu 11 :

    Cho hình dưới đây. Biết AB // DE. Chọn hệ thức sai trong các câu sau:

    Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 0 3

    • A.
      \(AB.EC = AC.DC\).
    • B.
      \(AB.DE = BC.DC\).
    • C.
      \(AC.DE = BC.EC\).
    • D.
      \(AB.AC = DE.DC\).
    Câu 12 :

    Cặp hình đồng dạng trong hình dưới đây là:

    Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 0 4

    • A.
      Hình 1 và hình 2.
    • B.
      Hình 1 và hình 3.
    • C.
      Hình 2 và hình 3.
    • D.
      Không có hình nào đồng dạng.
    II. Tự luận
    Câu 1 :

    Giải các phương trình sau:

    a) \(\frac{2}{3}x + 2\frac{1}{2} = 0\)

    b) \(4 - 3x = 5\)

    c) \(\frac{{7x - 1}}{6} = \frac{{16 - x}}{5} - 2x\)

    Câu 2 :

    Giải bài toán bằng cách lập phương trình

    Một xe tải và một xe con cùng khởi hành từ tỉnh A đến tỉnh B. Xe tải đi với vận tốc 30km/h, xe con đi với vận tốc 45km/h. Sau khi đi được \(\frac{3}{4}\) quãng đường AB, xe con tăng vận tốc 5km/h trên quãng đường còn lại thì đến B sớm hơn xe tải là 2 giờ 27 phút. Tính quãng đường AB.

    Câu 3 :

    Tìm m để phương trình \(2\left( {x - 1} \right) - mx = 3\):

    a) Vô nghiệm

    b) Có nghiệm duy nhất

    Câu 4 :

    Cho \(\Delta ABC\) nhọn có AB < AC. Đường cao AH. Qua H vẽ \(HM \bot AB\) và \(HN \bot AC\).

    a) Chứng minh $\Delta AMH\backsim \Delta AHB$.

    b) Chứng minh \(AN.AC = A{H^2}\).

    c) Vẽ đường cao BD cắt AH tại E. Qua D vẽ đường thẳng song song với MN cắt AB tại F. Chứng minh \(\widehat {AEF} = \widehat {ABC}\).

    Câu 5 :

    Giải phương trình:

    \(\left( {\frac{1}{{1.51}} + \frac{1}{{2.52}} + ... + \frac{1}{{10.60}}} \right)x = \left( {\frac{1}{{1.11}} + \frac{1}{{2.12}} + ... + \frac{1}{{50.60}}} \right)\)

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn?

      • A.
        \(1 - {x^2} = 0\).
      • B.
        \(2x - 5 = 0\).
      • C.
        \(\frac{2}{{x - 3}} + 1 = 0\).
      • D.
        \({x^3} - x + 2 = 0\).

      Đáp án : B

      Phương pháp giải :

      Phương trình bậc nhất một ẩn có dạng \(ax + b = 0\) với \(a \ne 0\).

      Lời giải chi tiết :

      Phương trình \(2x - 5 = 0\) có dạng \(ax + b = 0\) với \(a = 2\) nên ta chọn đáp án B.

      Đáp án B.

      Câu 2 :

      Với \(m = - 1\) thì phương trình \(\left( {2{m^2} - 2} \right)x = m + 1\)

      • A.
        vô nghiệm.
      • B.
        vô số nghiệm.
      • C.
        có nghiệm duy nhất là \(x = m - 1\).
      • D.
        Có 1 nghiệm là \(x = \frac{1}{{m - 1}}\).

      Đáp án : B

      Phương pháp giải :

      Thay m vào phương trình, đưa phương trình về dạng ax + b = 0 để giải.

      Lời giải chi tiết :

      Thay \(m = - 1\) vào phương trình \(\left( {2{m^2} - 2} \right)x = m + 1\), ta có:

      \(\begin{array}{l}\left[ {2{{\left( { - 1} \right)}^2} - 2} \right]x = - 1 + 1\\\left( {2 - 2} \right)x = 0\end{array}\)

      \(0.x = 0\) (luôn đúng).

      Vậy phương trình có vô số nghiệm.

      Đáp án B.

      Câu 3 :

      Phương trình \(4x - 2 = 0\) có nghiệm là

      • A.
        \(x = 2\).
      • B.
        \(x = 0\).
      • C.
        \(x = - 2\).
      • D.
        \(x = \frac{1}{2}\).

      Đáp án : D

      Phương pháp giải :

      Giải phương trình có dạng \(ax + b = 0\).

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}4x - 2 = 0\\4x = 2\\x = \frac{1}{2}\end{array}\)

      Đáp án D.

      Câu 4 :

      Nếu một vòi nước chảy đầy bể trong 5 giờ thì 1 giờ vòi nước đó chảy được bao nhiêu phần bể?

      • A.
        \(1\).
      • B.
        \(\frac{1}{4}\).
      • C.
        \(\frac{1}{5}\).
      • D.
        \(5\).

      Đáp án : C

      Phương pháp giải :

      Coi bể nước bằng 1. Tính số phần bể mà vòi chảy được trong 1 giờ.

      Lời giải chi tiết :

      Coi bể nước là 1. Vì vòi nước chảy đầy bể trong 5 giờ nên trong 1 giờ vòi chảy được là:

      \(1:5 = \frac{1}{5}\) (bể)

      Đáp án C.

      Câu 5 :

      Một tam giác có độ dài các cạnh là \(x + 3\); \(x + 1\); \(x + 5\). Biểu thức biểu thị chu vi tam giác đó là

      • A.
        \(3x + 9\)
      • B.
        \(x + 9\)
      • C.
        \(3x - 9\)
      • D.
        \(3x + 16\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính chu vi tam giác để viết biểu thức.

      Lời giải chi tiết :

      Biểu thức biểu thị chu vi tam giác đó là:

      \(x + 3 + x + 1 + x + 5 = 3x + 9\).

      Đáp án A.

      Câu 6 :

      Năm nay chị 27 tuổi và tuổi em ít hơn tuổi chị 5 tuổi. Vậy năm sau tuổi em là

      • A.
        21 tuổi
      • B.
        22 tuổi
      • C.
        23 tuổi
      • D.
        24 tuổi

      Đáp án : C

      Phương pháp giải :

      Gọi tuổi của em là x, biểu thị tuổi của chị theo tuổi của em và tính tuổi em năm sau.

      Lời giải chi tiết :

      Gọi tuổi của em là x (tuổi), \(x \in N*\).

      Vì tuổi em ít hơn tuổi chị 5 tuổi nên x + 5 = 27

      Giải phương trình ta được x = 27 – 5 = 22 (tuổi) (TM)

      Vậy năm sau tuổi của em là: 22 + 1 = 23 tuổi.

      Đáp án C.

      Câu 7 :

      Hãy chọn câu khẳng định đúng.

      • A.
        Hai tam giác bằng nhau thì đồng dạng.
      • B.
        Hai tam giác đồng dạng thì bằng nhau.
      • C.
        Hai tam giác cân luôn đồng dạng.
      • D.
        Hai tam giác vuông luôn đồng dạng.

      Đáp án : A

      Phương pháp giải :

      Dựa vào kiến thức về hai tam giác đồng dạng.

      Lời giải chi tiết :

      Hai tam giác bằng nhau thì đồng dạng nên ta chọn đáp án A.

      Đáp án A.

      Câu 8 :

      $\Delta ABC\backsim \Delta DEF$ theo tỉ số đồng dạng k. Vậy k bằng tỉ số nào sau đây?

      • A.
        \(k = \frac{{AB}}{{BC}}\).
      • B.
        \(k = \frac{{AC}}{{DF}}\).
      • C.
        \(k = \frac{{DE}}{{AB}}\).
      • D.
        \(k = \frac{{DE}}{{DF}}\).

      Đáp án : B

      Phương pháp giải :

      Xác định tỉ số giữa các cạnh tương ứng của hai tam giác.

      Lời giải chi tiết :

      $\Delta ABC\backsim \Delta DEF$ nên \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}} = k\).

      Vậy \(k = \frac{{AC}}{{DF}}\).

      Đáp án B.

      Câu 9 :

      Cho hình sau. Biết \(\Delta ABC,\Delta ADE\) là hai tam giác cân.

      Chọn kết luận đúng trong các câu sau:

      Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 1 1

      • A.
        $\Delta ADE\backsim \Delta ABC\left( g.g \right)$ với $k=2$.
      • B.
        $\Delta ADE\backsim \Delta ABC\left( c.c.c \right)$ với $k=\frac{2}{3}$.
      • C.
        $\Delta ABC\backsim \Delta ADE\left( c.g.c \right)$ với $k=\frac{3}{2}$.
      • D.
        $\Delta ABC\backsim \Delta ADE\left( g.g \right)$ với $k=\frac{1}{2}$.

      Đáp án : C

      Phương pháp giải :

      Chứng minh $\Delta ADE\backsim \Delta ABC$ theo trường hợp cạnh – góc – cạnh.

      Lời giải chi tiết :

      Vì \(\Delta ABC,\Delta ADE\) cân nên \(AB = AC\); \(AD = AE\left( { = 6cm} \right)\).

      Xét \(\Delta ABC\) và \(\Delta ADE\) có:

      \(\widehat A\) chung

      \(\frac{{AB}}{{AD}} = \frac{{AC}}{{AE}}\) (vì \(AB = AC;AD = AE\))

      suy ra $\Delta ABC\backsim \Delta ADE\left( c.g.c \right)$

      suy ra \(k = \frac{{AC}}{{AE}} = \frac{{AE + EC}}{{AE}} = \frac{{6 + 3}}{6} = \frac{9}{6} = \frac{3}{2}\).

      Đáp án C.

      Câu 10 :

      Cho hình vẽ sau. Độ lớn x bằng bao nhiêu để hai tam giác đồng dạng?

      Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 1 2

      • A.
        \(x = 3\).
      • B.
        \(x = 4\).
      • C.
        \(x = \frac{5}{2}\).
      • D.
        \(x = \frac{3}{2}\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào các trường hợp đồng dạng của hai tam giác để tìm x.

      Lời giải chi tiết :

      Để hai tam giác đồng dạng thì \(\frac{2}{3} = \frac{x}{6}\) suy ra \(x = \frac{2}{3}.6 = 4\).

      Đáp án B.

      Câu 11 :

      Cho hình dưới đây. Biết AB // DE. Chọn hệ thức sai trong các câu sau:

      Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 1 3

      • A.
        \(AB.EC = AC.DC\).
      • B.
        \(AB.DE = BC.DC\).
      • C.
        \(AC.DE = BC.EC\).
      • D.
        \(AB.AC = DE.DC\).

      Đáp án : D

      Phương pháp giải :

      Dựa vào AB // DE suy ra \(\widehat {ABC} = \widehat {EDC}\).

      Chứng minh $\Delta ABC\backsim \Delta CDE\left( g.g \right)$ suy ra tỉ số giữa các cặp cạnh tương ứng.

      Lời giải chi tiết :

      Vì AB // DE nên \(\widehat {ABC} = \widehat {EDC}\) (hai góc đồng vị)

      Xẻ \(\Delta ABC\) và \(\Delta CDE\) có:

      \(\widehat A = \widehat C\left( { = {{90}^0}} \right)\)

      \(\widehat {ABC} = \widehat {EDC}\) (cmt)

      Suy ra $\Delta ABC\backsim \Delta CDE\left( g.g \right)$. Từ đó ta được:

      \(\frac{{AB}}{{AC}} = \frac{{CD}}{{CE}}\) suy ra \(AB.CE = AC.CD\). (A đúng)

      \(\frac{{AB}}{{BC}} = \frac{{CD}}{{DE}}\) suy ra \(AB.DE = BC.CD\) (B đúng)

      \(\frac{{AC}}{{BC}} = \frac{{CE}}{{DE}}\) suy ra \(AC.DE = CE.BC\) (C đúng)

      Vậy D sai (vì không có tỉ lệ nào suy ra \(AB.AC = DE.DC\)).

      Đáp án D.

      Câu 12 :

      Cặp hình đồng dạng trong hình dưới đây là:

      Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 1 4

      • A.
        Hình 1 và hình 2.
      • B.
        Hình 1 và hình 3.
      • C.
        Hình 2 và hình 3.
      • D.
        Không có hình nào đồng dạng.

      Đáp án : A

      Phương pháp giải :

      Kiểm tra tỉ số các cặp cạnh của các hình trên.

      Lời giải chi tiết :

      Ta có: \(\frac{2}{{2,5}} = \frac{4}{5} \ne \frac{3}{6}\) nên hình 1 và hình 2 là hai hình đồng dạng

      Đáp án A.

      II. Tự luận
      Câu 1 :

      Giải các phương trình sau:

      a) \(\frac{2}{3}x + 2\frac{1}{2} = 0\)

      b) \(4 - 3x = 5\)

      c) \(\frac{{7x - 1}}{6} = \frac{{16 - x}}{5} - 2x\)

      Phương pháp giải :

      Đưa phương trình về dạng ax + b = 0 để giải.

      Lời giải chi tiết :

      a) \(\frac{2}{3}x + 2\frac{1}{2} = 0\)

      \(\begin{array}{l}\frac{2}{3}x + \frac{5}{2} = 0\\\frac{2}{3}x = - \frac{5}{2}\\x = - \frac{5}{2}:\frac{2}{3}\\x = - \frac{{15}}{4}\end{array}\)

      Vậy nghiệm của phương trình là \(x = - \frac{{15}}{4}\).

      b) \(4 - 3x = 5\)

      \(\begin{array}{l} - 3x = 5 - 4\\ - 3x = 1\\x = \frac{{ - 1}}{3}\end{array}\)

      Vậy nghiệm của phương trình là \(x = \frac{{ - 1}}{3}\).

      c) \(\frac{{7x - 1}}{6} = \frac{{16 - x}}{5} - 2x\)

      \(\begin{array}{l}\frac{{5\left( {7x - 1} \right)}}{{5.6}} = \frac{{6\left( {16 - x} \right)}}{{6.5}} - \frac{{30.2x}}{{30}}\\5\left( {7x - 1} \right) = 6\left( {16 - x} \right) - 60x\\35x - 5 = 96 - 6x - 60x\\35x + 6x + 60x = 96 + 5\\101x = 101\\x = 1\end{array}\)

      Vậy nghiệm của phương trình là \(x = 1\)

      Câu 2 :

      Giải bài toán bằng cách lập phương trình

      Một xe tải và một xe con cùng khởi hành từ tỉnh A đến tỉnh B. Xe tải đi với vận tốc 30km/h, xe con đi với vận tốc 45km/h. Sau khi đi được \(\frac{3}{4}\) quãng đường AB, xe con tăng vận tốc 5km/h trên quãng đường còn lại thì đến B sớm hơn xe tải là 2 giờ 27 phút. Tính quãng đường AB.

      Phương pháp giải :

      Giải bài toán bằng cách lập phương trình.

      Gọi quãng đường AB là x (km) (x > 0).

      Biểu diễn thời gian xe tải, xe con đi theo x và lập phương trình.

      Giải phương trình và kiểm tra nghiệm.

      Lời giải chi tiết :

      Gọi quãng đường AB dài x (km) (x > 0).

      Thời gian xe tải đi hết quãng đường AB là \(\frac{x}{{30}}\) (giờ).

      \(\frac{3}{4}\) quãng đường AB là \(\frac{3}{4}x\) (km), khi đó thời gian ô tô con đi hết \(\frac{3}{4}\) quãng đường AB là:

      \(\frac{3}{4}x:45 = \frac{x}{{60}}\) (giờ)

      Vận tốc xe con sau khi tăng thêm 5km/h là:

      45 + 5 = 50 (km/h)

      Quãng đường còn lại là: \(1 - \frac{3}{4}x = \frac{x}{4}\) (km)

      Thời gian xe con đi hết \(\frac{1}{4}\) quãng đường AB là:

      \(\frac{x}{4}:50 = \frac{x}{{200}}\) (h)

      Vì xe con đến B sớm hơn xe tải là 2 giờ 27 phút = \(\frac{{49}}{{20}}\)h nên ta có phương trình:

      \(\begin{array}{l}\frac{x}{{30}} - \left( {\frac{x}{{60}} + \frac{x}{{200}}} \right) = \frac{{49}}{{20}}\\\frac{{20x}}{{600}} - \frac{{10x}}{{600}} - \frac{{3x}}{{600}} = \frac{{1470}}{{600}}\\\frac{{7x}}{{600}} = \frac{{1470}}{{600}}\\7x = 1470\\x = 210(TM)\end{array}\)

      Vậy quãng đường AB dài 210km.

      Câu 3 :

      Tìm m để phương trình \(2\left( {x - 1} \right) - mx = 3\):

      a) Vô nghiệm

      b) Có nghiệm duy nhất

      Phương pháp giải :

      Biến đổi tương đương đưa phương trình về dạng ax = b:

      + Nếu a = 0 và b ≠ 0 thì phương trình vô nghiệm.

      + Nếu a ≠ 0 thì phương trình có nghiệm duy nhất \(x = \frac{b}{a}\).

      Lời giải chi tiết :

      Ta có:

      \(2\left( {x - 1} \right) - mx = 3\)

      \(\begin{array}{l}2x - 2 - mx = 3\\2x - mx = 3 + 2\\(2 - m)x = 5\end{array}\)

      a) Để phương trình \(2\left( {x - 1} \right) - mx = 3\) vô nghiệm thì:

      \(2 - m = 0\) suy ra \(m = 2\).

      Vậy khi m = 2 thì phương trình vô nghiệm.

      b) Để phương trình \(2\left( {x - 1} \right) - mx = 3\) có nghiệm duy nhất thì:

      \(2 - m \ne 0\) suy ra \(m \ne 2\).

      Vậy khi \(m \ne 2\) thì phương trình có nghiệm duy nhất \(x = \frac{5}{{2 - m}}\).

      Câu 4 :

      Cho \(\Delta ABC\) nhọn có AB < AC. Đường cao AH. Qua H vẽ \(HM \bot AB\) và \(HN \bot AC\).

      a) Chứng minh $\Delta AMH\backsim \Delta AHB$.

      b) Chứng minh \(AN.AC = A{H^2}\).

      c) Vẽ đường cao BD cắt AH tại E. Qua D vẽ đường thẳng song song với MN cắt AB tại F. Chứng minh \(\widehat {AEF} = \widehat {ABC}\).

      Phương pháp giải :

      a) Chứng minh $\Delta AMH\backsim \Delta AHB\left( g.g \right)$

      b) Chứng minh $\Delta ANH\backsim \Delta AHC\left( g.g \right)$ suy ra \(\frac{{AN}}{{AH}} = \frac{{AH}}{{AC}}\) suy ra \(AN.AC = A{H^2}\).

      c) Áp dụng định lý Thales để chứng minh \(\frac{{AF}}{{AM}} = \frac{{AE}}{{AH}}\left( { = \frac{{AD}}{{AN}}} \right)\)

      Chứng minh $\Delta AFE\backsim \Delta AMH\left( c.g.c \right)$ suy ra \(\widehat {AEF} = \widehat {AHM}\) mà \(\widehat {AHM} = \widehat {ABC}\) nên \(\widehat {AEF} = \widehat {ABC}\).

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều 1 5

      a) Xét \(\Delta AMH\) và \(\Delta AHB\) có:

      \(\widehat {AMH} = \widehat {AHB}\left( { = {{90}^0}} \right)\)

      \(\widehat A\) chung

      suy ra $\Delta AMH\backsim \Delta AHB\left( g.g \right)$ (đpcm)

      b) Xét \(\Delta ANH\) và \(\Delta AHC\) có:

      \(\widehat {ANH} = \widehat {AHC}\left( { = {{90}^0}} \right)\)

      \(\widehat A\) chung

      suy ra $\Delta ANH\backsim \Delta AHC\left( g.g \right)$

      suy ra \(\frac{{AN}}{{AH}} = \frac{{AH}}{{AC}}\) suy ra \(AN.AC = A{H^2}\) (đpcm)

      c) Vì DF // NM nên \(\frac{{AF}}{{AM}} = \frac{{AD}}{{AN}}\)

      Vì DE // HN nên \(\frac{{AE}}{{AH}} = \frac{{AD}}{{AN}}\)

      suy ra \(\frac{{AF}}{{AM}} = \frac{{AE}}{{AH}}\)

      Xét \(\Delta AFE\) và \(\Delta AMH\) có:

      \(\widehat A\) chung

      \(\frac{{AF}}{{AM}} = \frac{{AE}}{{AH}}\)

      suy ra $\Delta AFE\backsim \Delta AMH\left( c.g.c \right)$ nên \(\widehat {AEF} = \widehat {AHM}\)

      Mà \(\widehat {AHM} = \widehat {ABC}\)(vì $\Delta AMH\backsim \Delta AHB$)

      Do đó \(\widehat {AEF} = \widehat {ABC}\) (đpcm)

      Câu 5 :

      Giải phương trình:

      \(\left( {\frac{1}{{1.51}} + \frac{1}{{2.52}} + ... + \frac{1}{{10.60}}} \right)x = \left( {\frac{1}{{1.11}} + \frac{1}{{2.12}} + ... + \frac{1}{{50.60}}} \right)\)

      Phương pháp giải :

      Biến đổi a, b trong phương trình ax = b để tìm x.

      Sử dụng kiến thức: \(\frac{1}{{a.b}} = \frac{1}{{b - a}}\left( {\frac{1}{a} - \frac{1}{b}} \right)\) với b > a

      Lời giải chi tiết :

      Phương trình \(\left( {\frac{1}{{1.51}} + \frac{1}{{2.52}} + ... + \frac{1}{{10.60}}} \right)x = \left( {\frac{1}{{1.11}} + \frac{1}{{2.12}} + ... + \frac{1}{{50.60}}} \right)\) có dạng ax = b với \(a = \frac{1}{{1.51}} + \frac{1}{{2.52}} + ... + \frac{1}{{10.60}}\) và \(b = \frac{1}{{1.11}} + \frac{1}{{2.12}} + ... + \frac{1}{{50.60}}\)

      Ta có:

      \(\begin{array}{l}a = \frac{1}{{1.51}} + \frac{1}{{2.52}} + ... + \frac{1}{{10.60}}\\ = \frac{1}{{50}}\left( {\frac{{50}}{{1.51}} + \frac{{50}}{{2.52}} + ... + \frac{{50}}{{10.60}}} \right)\\ = \frac{1}{{50}}\left[ {\left( {1 - \frac{1}{{51}}} \right) + \left( {\frac{1}{2} - \frac{1}{{52}}} \right) + ... + \left( {\frac{1}{{10}} - \frac{1}{{60}}} \right)} \right]\\ = \frac{1}{{50}}\left[ {\left( {1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{10}}} \right) - \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right)} \right]\end{array}\)

      \(\begin{array}{l}b = \frac{1}{{1.11}} + \frac{1}{{2.12}} + ... + \frac{1}{{50.60}}\\ = \frac{1}{{10}}\left( {\frac{{10}}{{1.11}} + \frac{{10}}{{2.12}} + ... + \frac{{10}}{{50.60}}} \right)\\ = \frac{1}{{10}}\left[ {\left( {1 - \frac{1}{{11}}} \right) + \left( {\frac{1}{2} - \frac{1}{{12}}} \right) + ... + \left( {\frac{1}{{50}} - \frac{1}{{60}}} \right)} \right]\\ = \frac{1}{{10}}\left[ {\left( {1 + \frac{1}{2} + ... + \frac{1}{{50}}} \right) - \left( {\frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{60}}} \right)} \right]\\ = \frac{1}{{10}}\left[ {\left( {1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{10}}} \right) - \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right)} \right]\\ = 5.\frac{1}{{50}}\left[ {\left( {1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{10}}} \right) - \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right)} \right]\\ = 5a\end{array}\)

      Phương trình trở thành: \(ax = 5a\) suy ra \(x = 5\).

      Vậy nghiệm của phương trình \(\left( {\frac{1}{{1.51}} + \frac{1}{{2.52}} + ... + \frac{1}{{10.60}}} \right)x = \left( {\frac{1}{{1.11}} + \frac{1}{{2.12}} + ... + \frac{1}{{50.60}}} \right)\) là \(x = 5\).

      Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều đặc sắc thuộc chuyên mục toán 8 trên học toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

      Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều: Phân tích chi tiết và hướng dẫn giải

      Đề thi học kì 2 Toán 8 - Đề số 1 - Cánh diều là một bài kiểm tra quan trọng đánh giá kiến thức và kỹ năng giải toán của học sinh sau một học kỳ học tập. Đề thi bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, tập trung vào các chủ đề chính như đa thức, phân thức đại số, phương trình bậc nhất một ẩn, bất phương trình bậc nhất một ẩn, hệ phương trình bậc nhất hai ẩn, hàm số bậc nhất, và ứng dụng thực tế của đại số.

      Cấu trúc đề thi và trọng tâm kiến thức

      Cấu trúc đề thi thường bao gồm:

      • Phần trắc nghiệm: Kiểm tra khả năng nắm vững kiến thức cơ bản và vận dụng nhanh các công thức, định lý.
      • Phần tự luận: Đòi hỏi học sinh phải trình bày bài giải một cách logic, rõ ràng, và chính xác.

      Trọng tâm kiến thức cần nắm vững để làm tốt đề thi này bao gồm:

      • Đa thức và phân thức đại số: Các phép toán cộng, trừ, nhân, chia đa thức và phân thức.
      • Phương trình bậc nhất một ẩn: Giải phương trình, ứng dụng phương trình để giải bài toán thực tế.
      • Bất phương trình bậc nhất một ẩn: Giải bất phương trình, biểu diễn tập nghiệm trên trục số.
      • Hệ phương trình bậc nhất hai ẩn: Giải hệ phương trình bằng phương pháp thế và phương pháp cộng đại số.
      • Hàm số bậc nhất: Xác định hàm số, vẽ đồ thị hàm số, và ứng dụng hàm số để giải bài toán.

      Hướng dẫn giải một số dạng bài tập thường gặp

      Dạng 1: Bài tập về đa thức và phân thức đại số

      Để giải các bài tập về đa thức và phân thức đại số, học sinh cần nắm vững các quy tắc cộng, trừ, nhân, chia đa thức và phân thức. Ví dụ:

      Bài tập: Rút gọn biểu thức: (x + 2)(x - 2) + x2

      Giải: (x + 2)(x - 2) + x2 = x2 - 4 + x2 = 2x2 - 4

      Dạng 2: Bài tập về phương trình bậc nhất một ẩn

      Để giải phương trình bậc nhất một ẩn, học sinh cần thực hiện các phép biến đổi tương đương để đưa phương trình về dạng x = a. Ví dụ:

      Bài tập: Giải phương trình: 2x + 3 = 7

      Giải: 2x + 3 = 7 => 2x = 4 => x = 2

      Dạng 3: Bài tập về hệ phương trình bậc nhất hai ẩn

      Để giải hệ phương trình bậc nhất hai ẩn, học sinh có thể sử dụng phương pháp thế hoặc phương pháp cộng đại số. Ví dụ:

      Bài tập: Giải hệ phương trình: x + y = 5 x - y = 1

      Giải: Cộng hai phương trình, ta được: 2x = 6 => x = 3. Thay x = 3 vào phương trình x + y = 5, ta được: 3 + y = 5 => y = 2. Vậy nghiệm của hệ phương trình là (x, y) = (3, 2).

      Lời khuyên để ôn thi hiệu quả

      1. Nắm vững kiến thức cơ bản: Đọc kỹ sách giáo khoa, ghi chép đầy đủ các công thức, định lý, và ví dụ minh họa.
      2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán và làm quen với các dạng bài tập thường gặp.
      3. Ôn tập theo chủ đề: Chia nhỏ kiến thức thành các chủ đề nhỏ và ôn tập từng chủ đề một cách có hệ thống.
      4. Làm đề thi thử: Làm các đề thi thử để đánh giá năng lực của mình và làm quen với áp lực thời gian.
      5. Hỏi thầy cô giáo: Nếu gặp khó khăn trong quá trình ôn tập, hãy hỏi thầy cô giáo để được giải đáp.

      Tài liệu tham khảo hữu ích

      Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách bài tập Toán 8: Cung cấp nhiều bài tập luyện tập với các mức độ khó khác nhau.
      • Các trang web học toán online: Cung cấp các bài giảng, bài tập, và đề thi thử trực tuyến.
      • Các video hướng dẫn giải toán: Giúp học sinh hiểu rõ hơn về các khái niệm và phương pháp giải toán.

      Chúc các em học sinh ôn thi tốt và đạt kết quả cao trong kỳ thi học kì 2 Toán 8!

      Tài liệu, đề thi và đáp án Toán 8