Chào mừng các em học sinh lớp 8 đến với đề thi học kì 1 môn Toán năm học 2023-2024, Đề số 1 theo chương trình Kết nối tri thức. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.
Giaitoan.edu.vn cung cấp đề thi chính thức, đáp án chi tiết và lời giải bài tập giúp các em tự tin hơn trong kỳ thi sắp tới.
Thu gọn đa thức \(4{x^2}y + 6{x^3}{y^2} - 10{x^2}y + 4{x^3}{y^2}\) ta được
Giá trị của đa thức \(xy + 2{x^2}{y^3} - {x^4}y\) tại x = y = -1 là :
Ghép mỗi ý ở cộtA với mỗi ý ở cột B để được kết quả đúng.
1. \(\left( {x + y} \right)\left( {x - y} \right)\)
2. \({x^2} - 2xy + {y^2}\)
3. \({\left( {x + y} \right)^2}\)
4. \(\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\)
a. \({x^3} + {y^3}\)
b. \({x^2} + 2xy + {y^2}\)
c. \({x^2} - {y^2}\)
d. \({\left( {x - y} \right)^2}\)
Tam giác ABC có đường trung tuyến AM = 2cm; cạnh BC = 4 cm. khi đó:
Một tứ giác có nhiều nhất :
Hình bình hành là một tứ giác có:
Cho tam giác ABC. AD là tia phân giác của góc A. Độ dài đoạn thẳng DB bằng
Cho tam giác ABC, vẽ MN//BC sao cho AN =\(\frac{1}{2}\)AB, M \( \in \) AB, N \( \in \) AC. Biết AN = 2cm, AM = 1cm, thì AC bằng:
Có bao nhiêu đường trung bình trong một tam giác?
Các món ăn yêu thích của học sinh lớp 8A ghi lại trong bảng sau :
Dữ liệu định lượng (số liệu) trong bảng là :
Một công ty kinh doanh vật liệu xây dựng có bốn kho hàng có 50 tấn hàng. Kế toán của công ty lập biểu đồ cột kép ở hình bên biểu diễn số lượng vật liệu đã xuất bán và số lượng vật liệu còn tồn lại trong mỗi kho sau tuần lễ kinh doanh đầu tiên.
Kế toán đã ghi nhầm số liệu của một kho trong biểu đồ cột kép đó. Theo em, kế toán đã ghi nhầm số liệu ở kho nào ?
Rút gọn các biểu thức:
a) \({(x + 1)^2} - \left( {x + 3} \right)\left( {x - 3} \right) - 10\)
b) \(\left( {x + 5} \right)\left( {{x^2} - 5x + 25} \right) - x{\left( {x - 4} \right)^2} + 16x\)
c) \({\left( {x - 2y} \right)^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + 6{x^2}y\)
Tìm x, biết:
a) \({\left( {x + 3} \right)^2} - \left( {x + 2} \right)\left( {x - 2} \right) = 4x + 17\)
b) \(\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - x\left( {{x^2} - 4} \right) = 1\)
Thống kê số lượt hành khách vận chuyển bằng đường bộ ở Hải Phòng trong các năm 2018; 2019; 2020; 2021; 2022 lần lượt là 55,02; 62,00; 64,20; 57,14; 67,71. (đơn vi : triệu lượt người). (Nguồn : Niên giám thống kê 2023)
a) Lập bảng thống kê số lượt hành khách vận chuyển bằng đường bộ ở Hải Phòng trong các năm theo mẫu sau:
b) Hãy hoàn thiện biểu đồ ở hình bên để nhận được biểu đồ cột biểu diễn các dữ liệu thống kê số lượt hành khách vận chuyển bằng đường bộ ở Hải Phòng trong các năm trên.
Cho hình chữ nhật ABCD có AB = 2AD. Vẽ BH vuông góc với AC . Gọi M, N, P lần lượt là trung điểm của AH, BH, CD.
a) Chứng minh tứ giác MNCP là hình bình hành.
b) Chứng minh MP vuông góc MB.
c) Gọi I là trung điểm của BP và J là giao điểm của MC và NP. Chứng minh rằng: MI – IJ < JP
Cho các số x, y thoả mãn đẳng thức \(5{x^2} + 5{y^2} + 8xy - 2x + 2y + 2 = 0\).
Tính giá trị của biểu thức M = \({(x + y)^{2017}} + {(x - 2)^{2018}} + {(y + 1)^{2019}}\)
Thu gọn đa thức \(4{x^2}y + 6{x^3}{y^2} - 10{x^2}y + 4{x^3}{y^2}\) ta được
Đáp án : D
Sử dụng quy tắc tính với đa thức.
Ta có:
\(\begin{array}{l}4{x^2}y + 6{x^3}{y^2} - 10{x^2}y + 4{x^3}{y^2}\\ = \left( {4{x^2}y - 10{x^2}y} \right) + \left( {6{x^3}{y^2} + 4{x^3}{y^2}} \right)\\ = - 6{x^2}y + 10{x^3}{y^2}\end{array}\)
Giá trị của đa thức \(xy + 2{x^2}{y^3} - {x^4}y\) tại x = y = -1 là :
Đáp án : D
Thay x = y = -1 vào đa thức rồi tính toán.
Thay x = y = -1 vào đa thức \(xy + 2{x^2}{y^3} - {x^4}y\) ta được
\(\begin{array}{l}\left( { - 1} \right).\left( { - 1} \right) + 2{\left( { - 1} \right)^2}.{\left( { - 1} \right)^3} - {\left( { - 1} \right)^4}\left( { - 1} \right)\\ = 1 - 2 + 1 = 0\end{array}\)
Ghép mỗi ý ở cộtA với mỗi ý ở cột B để được kết quả đúng.
1. \(\left( {x + y} \right)\left( {x - y} \right)\)
2. \({x^2} - 2xy + {y^2}\)
3. \({\left( {x + y} \right)^2}\)
4. \(\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\)
a. \({x^3} + {y^3}\)
b. \({x^2} + 2xy + {y^2}\)
c. \({x^2} - {y^2}\)
d. \({\left( {x - y} \right)^2}\)
1. \(\left( {x + y} \right)\left( {x - y} \right)\)
c. \({x^2} - {y^2}\)
2. \({x^2} - 2xy + {y^2}\)
d. \({\left( {x - y} \right)^2}\)
3. \({\left( {x + y} \right)^2}\)
b. \({x^2} + 2xy + {y^2}\)
4. \(\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\)
a. \({x^3} + {y^3}\)
Sử dụng kiến thức về các hằng đẳng thức đáng nhớ.
Tam giác ABC có đường trung tuyến AM = 2cm; cạnh BC = 4 cm. khi đó:
Đáp án : A
Sử dụng tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông.
Ta có: AM = 2cm; BC = 4cm \( \Rightarrow AM = \frac{1}{2}BC\). Mà AM là đường trung tuyến ứng với cạnh BC nên AM là đường trung tuyến ứng với cạnh huyền BC hay tam giác ABC vuông tại A.
Một tứ giác có nhiều nhất :
Đáp án : C
Áp dụng định lí tổng các góc của một tứ giác bằng \(360^0\).
- Nếu 4 góc trong tứ giác đều nhọn (nhỏ hơn \(90^0\)) => Tổng 4 góc < \(4.90^0\) = \(360^0\) => Vô lí vì tổng 4 góc trong tứ giác bằng \(360^0\).
- Nếu có 3 góc nhỏ hơn \(90^0\) ; 1 góc > \(90^0\) => Tổng 3 góc đó < 3.\(90^0\) = \(270^0\) => góc còn lại lớn hơn \(360^0- 270^0 = 90^0\) (thỏa mãn)
Vậy tứ giác có thể có nhiều nhất 3 góc nhọn.
Hình bình hành là một tứ giác có:
Đáp án : C
Ta sử dụng kiến thức về hình bình hành.
Hình bình hành là một tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên C đúng.
Cho tam giác ABC. AD là tia phân giác của góc A. Độ dài đoạn thẳng DB bằng
Đáp án : D
Sử dụng tính chất của đường phân giác trong tam giác.
Ta có AD là tia phân giác của góc A nên \(\frac{{AB}}{{BD}} = \frac{{AC}}{{CD}} \Leftrightarrow \frac{9}{{BD}} = \frac{6}{2} = 3\)
\( \Rightarrow BD = \frac{9}{3} = 3\)(cm)
Cho tam giác ABC, vẽ MN//BC sao cho AN =\(\frac{1}{2}\)AB, M \( \in \) AB, N \( \in \) AC. Biết AN = 2cm, AM = 1cm, thì AC bằng:
Đáp án : C
Áp dụng định lí Thalès để tính BC.
Vì AN = \(\frac{1}{2}\)AB nên AB = 2.AN = 2.2 = 4(cm).
Ta có MN // BC. Áp dụng định lí Thales, ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} \Leftrightarrow \frac{1}{4} = \frac{2}{{AC}} \Leftrightarrow AC = 4.2 = 8\) (cm).
Vậy AC = 8cm.
Có bao nhiêu đường trung bình trong một tam giác?
Đáp án : C
Sử dụng khái niệm đường trung bình.
Xét tam giác ABC bất kì. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
MN là đường trung bình của tam giác ABC.
NP là đường trung bình của tam giác ABC.
MP là đường trung bình của tam giác ABC.
Vậy có 3 đường trung bình trong một tam giác.
Các món ăn yêu thích của học sinh lớp 8A ghi lại trong bảng sau :
Dữ liệu định lượng (số liệu) trong bảng là :
Đáp án : B
Dựa vào phân loại dữ liệu: Dữ liệu được chia thành hai loại: Dữ liệu định tính (dữ liệu không phải số) và dữ liệu định lượng (số liệu).
Dữ liệu định lượng (số liệu) trong bảng trên là dữ liệu Số bạn yêu thích : 5; 8; 15; 2.
Một công ty kinh doanh vật liệu xây dựng có bốn kho hàng có 50 tấn hàng. Kế toán của công ty lập biểu đồ cột kép ở hình bên biểu diễn số lượng vật liệu đã xuất bán và số lượng vật liệu còn tồn lại trong mỗi kho sau tuần lễ kinh doanh đầu tiên.
Kế toán đã ghi nhầm số liệu của một kho trong biểu đồ cột kép đó. Theo em, kế toán đã ghi nhầm số liệu ở kho nào ?
Đáp án : D
Kiểm tra xem dữ liệu trong biểu đồ có cột nào chưa chính xác.
Vì mỗi kho hàng đều có 50 tấn hàng nên tổng số lượng vật liệu đã xuất bán và số lượng vật liệu còn tồn lại phải bằng 50 tấn. Mà cột kho 4, số lượng vật liệu đã xuất bán và số lượng vật liệu còn tồn lại là: 30 + 15 = 45 (tấn) nên số liệu ở kho 4 không đúng.
Rút gọn các biểu thức:
a) \({(x + 1)^2} - \left( {x + 3} \right)\left( {x - 3} \right) - 10\)
b) \(\left( {x + 5} \right)\left( {{x^2} - 5x + 25} \right) - x{\left( {x - 4} \right)^2} + 16x\)
c) \({\left( {x - 2y} \right)^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + 6{x^2}y\)
Sử dụng các hằng đẳng thức đáng nhớ.
a) \({(x + 1)^2} - \left( {x + 3} \right)\left( {x - 3} \right) - 10\)
\(\begin{array}{l} = {\left( {x + 1} \right)^2} - \left( {{x^2} - {3^2}} \right) - 10\\ = {x^2} + 2x + 1 - {x^2} + 9 - 10\\ = \left( {{x^2} - {x^2}} \right) + 2x + \left( {1 + 9 - 10} \right)\\ = 2x\end{array}\)
b) \(\left( {x + 5} \right)\left( {{x^2} - 5x + 25} \right) - x{\left( {x - 4} \right)^2} + 16x\)
\(\begin{array}{l} = {x^3} + {5^3} - x\left( {{x^2} - 8x + 16} \right) + 16x\\ = {x^3} + 125 - {x^3} + 8{x^2} - 16x + 16x\\ = 8{x^2} + 125\end{array}\)
c) \({\left( {x - 2y} \right)^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + 6{x^2}y\)
\(\begin{array}{l} = {\left( {x - 2y} \right)^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + 6{x^2}y\\ = {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} - \left( {{x^3} + 8{y^3}} \right) + 6{x^2}y\\ = {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} - {x^3} - 8{y^3} + 6{x^2}y\\ = \left( {{x^3} - {x^3}} \right) + \left( { - 6{x^2}y + 6{x^2}y} \right) + 12x{y^2} + \left( { - 8{y^3} - 8{y^3}} \right)\\ = 12x{y^2} - 16{y^3}\end{array}\)
Tìm x, biết:
a) \({\left( {x + 3} \right)^2} - \left( {x + 2} \right)\left( {x - 2} \right) = 4x + 17\)
b) \(\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - x\left( {{x^2} - 4} \right) = 1\)
Dựa vào các hằng đẳng thức đáng nhớ, phân tích đa thức thành nhân tử để tìm x.
a) \({\left( {x + 3} \right)^2} - \left( {x + 2} \right)\left( {x - 2} \right) = 4x + 17\)
\(\begin{array}{l}{x^2} + 6x + 9 - {x^2} + 4 = 4x + 17\\6x + 13 = 4x + 17\\6x - 4x = 17 - 13\\2x = 4\\x = 2\end{array}\)
Vậy x = 2.
b) \(\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - x\left( {{x^2} - 4} \right) = 1\)
\(\begin{array}{l}\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - x\left( {{x^2} - 4} \right) = 1\\{x^3} - 27 - {x^3} + 4x = 1\\4x = 1 + 27\\4x = 28\\x = 7\end{array}\)
Vậy x = 7.
Thống kê số lượt hành khách vận chuyển bằng đường bộ ở Hải Phòng trong các năm 2018; 2019; 2020; 2021; 2022 lần lượt là 55,02; 62,00; 64,20; 57,14; 67,71. (đơn vi : triệu lượt người). (Nguồn : Niên giám thống kê 2023)
a) Lập bảng thống kê số lượt hành khách vận chuyển bằng đường bộ ở Hải Phòng trong các năm theo mẫu sau:
b) Hãy hoàn thiện biểu đồ ở hình bên để nhận được biểu đồ cột biểu diễn các dữ liệu thống kê số lượt hành khách vận chuyển bằng đường bộ ở Hải Phòng trong các năm trên.
a) Dựa vào dữ liệu đề bài cho để điền vào bảng.
b) Điền số tương ứng vào biểu đồ.
a) Ta có bảng thống kê số lượt hành khách vận chuyển bằng đường bộ ở Hải Phòng trong các năm:
b) Biểu đồ cột biểu diễn các dữ liệu thống kê số lượt hành khách vận chuyển bằng đường bộ ở Hải Phòng trong các năm trên là:
Cho hình chữ nhật ABCD có AB = 2AD. Vẽ BH vuông góc với AC . Gọi M, N, P lần lượt là trung điểm của AH, BH, CD.
a) Chứng minh tứ giác MNCP là hình bình hành.
b) Chứng minh MP vuông góc MB.
c) Gọi I là trung điểm của BP và J là giao điểm của MC và NP. Chứng minh rằng: MI – IJ < JP
a) Chứng minh tứ giác MNCP có hai cạnh đối song song và bằng nhau.
b) Chứng minh N là trực tâm của tam giác CMB nên NC\( \bot \)MB\( \Rightarrow \) MP\( \bot \)MB (MP // CN).
c) Chứng minh MI = PI, sử dụng bất đẳng thức tam giác để chứng minh PI – IJ < JP hay MI – IJ < JP.
a) Xét tam giác AHB có:
M là trung điểm của AH
N là trung điểm của BH
Suy ra MN là đường trung bình của tam giác AHB. DO đó MN // AB và MN = \(\frac{1}{2}\)AB.
Vì P là trung điểm của CD nên CP = PD = \(\frac{1}{2}\)CD.
Mà AB // CD; AB = CD (ABCD là hình chữ nhật) nên CP = \(\frac{1}{2}\)AB.
Suy ra MN // CP (cùng song song với AB) và MN = CP (\(\frac{1}{2}\)AB).
Do đó tứ giác MNCP là hình bình hành (đpcm)
b) Do MN // AB (cmt) mà AB \( \bot \) BC (ABCD là hình chữ nhật) nên MN \( \bot \) BC.
Ta có BH \( \bot \) MC (gt)
Mà MN \( \cap \) BH tại N.
Suy ra N là trực tâm của tam giác CMB, do đó CN \( \bot \) BM.
Mà CN // PM (MNCP là hình bình hành)
Suy ra PM \( \bot \) BM (đpcm)
c) Xét tam giác PMB vuông tại M có I là trung điểm của BP nên MI là đường trung tuyến ứng với cạnh huyền của tam giác PMB suy ra MI = \(\frac{1}{2}\)BP = PI.
Xét tam giác PIJ, ta có: PI – IJ < JP hay MI – IJ < JP (đpcm).
Cho các số x, y thoả mãn đẳng thức \(5{x^2} + 5{y^2} + 8xy - 2x + 2y + 2 = 0\).
Tính giá trị của biểu thức M = \({(x + y)^{2017}} + {(x - 2)^{2018}} + {(y + 1)^{2019}}\)
Dựa vào hằng đẳng thức \({a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\); \({a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}\) để tìm x, y.
Thay x, y vào biểu thức M để tính giá trị của biểu thức M.
Ta có:
\(\begin{array}{l}5{x^2} + 5{y^2} + 8xy - 2x + 2y + 2 = 0\\\left( {4{x^2} + 8xy + 4{y^2}} \right) + ({x^2} - 2x + 1) + ({y^2} + 2y + 1) = 0\\4{\left( {x + y} \right)^2} + {\left( {x-1} \right)^2} + {(y + 1)^2} = 0\left( * \right)\end{array}\)
Vì \(4{\left( {x + y} \right)^2} \ge 0;{\left( {x-1} \right)^2} \ge 0;{(y + 1)^2} \ge \;0\) với mọi x, y
Nên (*) xảy ra khi \(\left\{ \begin{array}{l}x + y = 0\\x - 1 = 0\\y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - y\\x = 1\\y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = - 1\end{array} \right.\).
Thay x = 1 và y = -1 vào biểu thức M, ta được:
\(M = {(1 - 1)^{2017}} + {(1 - 2)^{2018}} + {( - 1 + 1)^{2019}} = {\left( { - 1} \right)^{2018}} = 1\) .
Vậy M = 1 .
Kỳ thi học kì 1 Toán 8 là một bước quan trọng để đánh giá năng lực học tập của học sinh sau một nửa năm học. Đề thi không chỉ kiểm tra kiến thức về các khái niệm, định lý mà còn đánh giá khả năng vận dụng kiến thức vào giải quyết các bài toán thực tế. Đề thi học kì 1 Toán 8 - Đề số 1 - Kết nối tri thức là một trong những đề thi quan trọng mà học sinh cần chuẩn bị kỹ lưỡng.
Đề thi này bao gồm các nội dung chính sau:
Đề thi thường có cấu trúc gồm hai phần:
Thời gian làm bài thường là 90 phút.
Để đạt kết quả tốt trong kỳ thi học kì 1 Toán 8, học sinh cần:
Giaitoan.edu.vn cung cấp:
Dưới đây là một số dạng bài tập thường gặp trong đề thi học kì 1 Toán 8:
Dạng bài tập | Ví dụ |
---|---|
Phân tích đa thức thành nhân tử | Phân tích đa thức x^2 - 4x + 4 thành nhân tử. |
Giải phương trình bậc nhất một ẩn | Giải phương trình 2x + 3 = 7 . |
Chứng minh hình bình hành | Cho tứ giác ABCD có AB song song CD và AD song song BC. Chứng minh ABCD là hình bình hành. |
Đề thi học kì 1 Toán 8 - Đề số 1 - Kết nối tri thức là một cơ hội để học sinh đánh giá năng lực học tập và chuẩn bị cho các kỳ thi tiếp theo. Hãy ôn tập kỹ lưỡng, luyện tập thường xuyên và sử dụng các tài liệu ôn thi chất lượng để đạt kết quả tốt nhất. Chúc các em thành công!