Chào mừng các em học sinh lớp 8 đến với đề thi giữa kì 1 Toán 8 - Đề số 1 chương trình Kết nối tri thức.
Đề thi này được thiết kế để giúp các em làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và đánh giá năng lực học tập của bản thân.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán!
Phần trắc nghiệm (4 điểm) Câu 1: Tìm hệ số trong đơn thức ( - 36{a^2}{b^2}{x^2}{y^3}) với a,b là hằng số.
Phần trắc nghiệm (4 điểm)
Câu 1: Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\) với a,b là hằng số.
A. \( - 36\)
B. \( - 36{a^2}{b^2}\)
C. \(36{a^2}{b^2}\)
D. \( - 36{a^2}\)
Câu 2: Giá trị của đa thức \(4{x^2}y - \frac{2}{3}x{y^2} + 5xy - x\) tại \(x = 2;y = \frac{1}{3}\) là
A. \(\frac{{176}}{{27}}\)
B. \(\frac{{27}}{{176}}\)
C. \(\frac{{17}}{{27}}\)
D. \(\frac{{116}}{{27}}\)
Câu 3: Chọn câu sai.
Câu 4: Có bao nhiêu giá trị \(x\) thỏa mãn \({\left( {2x - 1} \right)^2} - {\left( {5x - 5} \right)^2} = 0\)
A. \(0\)
B. \(1\)
C. \(2\)
D. \(3\)
Câu 5: Chọn câu đúng.
Câu 6: Tứ giác ABCD có \(AB = BC,CD = DA,\;\hat B = {90^0};\;\hat D = {120^0}\). Hãy chọn câu đúng nhất:
A. \(\hat A = {85^0}\).
B. \(\hat C = {75^0}\).
C. \(\hat A = {75^0}\).
D. Chỉ \(B\) và \(C\) đúng.
Câu 7: Hình thang ABCD (AB//CD) có số đo góc D bằng \({70^0},\) số đo góc \(A\) là:
A. \({130^0}\)
B. \({90^0}\)
C. \({110^\circ }\)
D. \({120^0}\)
Câu 8: Chọn câu trả lời đúng. Tứ giác nào có hai đường chéo vuông góc với nhau?
A. Hình thoi
B. Hình vuông
C. Hình chữ nhật
D. Cả A và B.
Phần tự luận (6 điểm)
Bài 1. (1,5 điểm) Cho biểu thức: \(A = 3x(2x - y) + (x - y)(x + y) - 7{x^2} + {y^2}\).
a) Thu gọn A.
b) Tính giá trị của A biết x = \(\frac{{ - 2}}{3}\) và y = 2
Bài 2. (1,5 điểm) Tìm x biết:
a) \({\left( {x - 3} \right)^2} - {x^2} = 0\)
b) \({x^3} - 5{x^2} - 9x + 45 = 0\)
c) \(\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\)
Bài 3. (2,5 điểm) Cho tam giác \(ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Gọi \(H\) là điểm đối xứng với \(M\) qua \(AB\), \(E\) là giao điểm của \(MH\) và \(AB\). Gọi \(K\) là điểm đối xứng với \(M\) qua \(AC\), \(F\) là giao điểm của \(MK\) và \(AC\).
a) Các tứ giác \(AEMF\), \(AMBH\), \(AMCK\) là hình gì? Vì sao?
b) Chứng minh rằng \(H\) đối xứng với \(K\) qua \(A\).
c) Tam giác vuông \(ABC\) cần thêm điều kiện gì thì tứ giác \(AEMF\) là hình vuông?
Bài 4. (0,5 điểm) Cho a + b + c. Chứng minh \({a^3} + {b^3} + {c^3} = 3abc\).
Tải về
Phần trắc nghiệm (4 điểm)
Câu 1: Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\) với a,b là hằng số.
A. \( - 36\)
B. \( - 36{a^2}{b^2}\)
C. \(36{a^2}{b^2}\)
D. \( - 36{a^2}\)
Câu 2: Giá trị của đa thức \(4{x^2}y - \frac{2}{3}x{y^2} + 5xy - x\) tại \(x = 2;y = \frac{1}{3}\) là
A. \(\frac{{176}}{{27}}\)
B. \(\frac{{27}}{{176}}\)
C. \(\frac{{17}}{{27}}\)
D. \(\frac{{116}}{{27}}\)
Câu 3: Chọn câu sai.
Câu 4: Có bao nhiêu giá trị \(x\) thỏa mãn \({\left( {2x - 1} \right)^2} - {\left( {5x - 5} \right)^2} = 0\)
A. \(0\)
B. \(1\)
C. \(2\)
D. \(3\)
Câu 5: Chọn câu đúng.
Câu 6: Tứ giác ABCD có \(AB = BC,CD = DA,\;\hat B = {90^0};\;\hat D = {120^0}\). Hãy chọn câu đúng nhất:
A. \(\hat A = {85^0}\).
B. \(\hat C = {75^0}\).
C. \(\hat A = {75^0}\).
D. Chỉ \(B\) và \(C\) đúng.
Câu 7: Hình thang ABCD (AB//CD) có số đo góc D bằng \({70^0},\) số đo góc \(A\) là:
A. \({130^0}\)
B. \({90^0}\)
C. \({110^\circ }\)
D. \({120^0}\)
Câu 8: Chọn câu trả lời đúng. Tứ giác nào có hai đường chéo vuông góc với nhau?
A. Hình thoi
B. Hình vuông
C. Hình chữ nhật
D. Cả A và B.
Phần tự luận (6 điểm)
Bài 1. (1,5 điểm) Cho biểu thức: \(A = 3x(2x - y) + (x - y)(x + y) - 7{x^2} + {y^2}\).
a) Thu gọn A.
b) Tính giá trị của A biết x = \(\frac{{ - 2}}{3}\) và y = 2
Bài 2. (1,5 điểm) Tìm x biết:
a) \({\left( {x - 3} \right)^2} - {x^2} = 0\)
b) \({x^3} - 5{x^2} - 9x + 45 = 0\)
c) \(\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\)
Bài 3. (2,5 điểm) Cho tam giác \(ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Gọi \(H\) là điểm đối xứng với \(M\) qua \(AB\), \(E\) là giao điểm của \(MH\) và \(AB\). Gọi \(K\) là điểm đối xứng với \(M\) qua \(AC\), \(F\) là giao điểm của \(MK\) và \(AC\).
a) Các tứ giác \(AEMF\), \(AMBH\), \(AMCK\) là hình gì? Vì sao?
b) Chứng minh rằng \(H\) đối xứng với \(K\) qua \(A\).
c) Tam giác vuông \(ABC\) cần thêm điều kiện gì thì tứ giác \(AEMF\) là hình vuông?
Bài 4. (0,5 điểm) Cho a + b + c. Chứng minh \({a^3} + {b^3} + {c^3} = 3abc\).
Phần trắc nghiệm (4 điểm)
Câu 1: B | Câu 2: A | Câu 3: D | Câu 4: C | Câu 5: B | Câu 6: D | Câu 7: C | Câu 8: D |
Câu 1: Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\) với a,b là hằng số.
A. \( - 36\) | B. \( - 36{a^2}{b^2}\) |
C. \(36{a^2}{b^2}\) | D. \( - 36{a^2}\) |
Phương pháp
Sử dụng lý thuyết về đơn thức thu gọn:
Đơn thức thu gọn là đơn thức chỉ gồm tích của một số với các biến mà mỗi biến đã được nâng lên lũy thừa với số mũ nguyên dương. Số nói trên gọi là hệ số, phần còn lại gọi là phần biến của đơn thức thu gọn.
Lời giải
Đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\) với a,b là hằng số có hệ số là \( - 36{a^2}{b^2}.\)
Đáp án B.
Câu 2: Giá trị của đa thức \(4{x^2}y - \frac{2}{3}x{y^2} + 5xy - x\) tại \(x = 2;y = \frac{1}{3}\) là
A. \(\frac{{176}}{{27}}\) | B. \(\frac{{27}}{{176}}\) |
C. \(\frac{{17}}{{27}}\) | D. \(\frac{{116}}{{27}}\) |
Phương pháp
Thay \(x = 2;y = \frac{1}{3}\) vào đa thức rồi tính toán.
Lời giải
Thay \(x = 2;y = \frac{1}{3}\) vào đa thức \(4{x^2}y - \frac{2}{3}x{y^2} + 5xy - x\) ta được \({4.2^2}.\frac{1}{3} - \frac{2}{3}.2.{\left( {\frac{1}{3}} \right)^2} + 5.2.\frac{1}{3} - 2\)\( = \frac{{176}}{{27}}\).
Đáp án A.
Câu 3:
Chọn câu sai.
Phương pháp
Sử dụng các công thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\), \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) , \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
Lời giải
Ta có \(\left( {x + y} \right)\left( {x + y} \right) = {\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} \ne {y^2} - {x^2}\) nên câu D sai.
Đáp án D.
Câu 4: Có bao nhiêu giá trị \(x\) thỏa mãn \({\left( {2x - 1} \right)^2} - {\left( {5x - 5} \right)^2} = 0\)
A. \(0\) | B. \(1\) |
C. \(2\) | D. \(3\) |
Phương pháp
Sử dụng công thức \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\) để đưa về dạng tìm \(x\) thường gặp
Lời giải
Ta có \({\left( {2x - 1} \right)^2} - {\left( {5x - 5} \right)^2} = 0\)\( \Leftrightarrow \left( {2x - 1 + 5x - 5} \right)\left( {2x - 1 - 5x + 5} \right) = 0\)\( \Leftrightarrow \left( {7x - 6} \right)\left( {4 - 3x} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{7x - 6 = 0}\\{4 - 3x = 0}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{6}{7}}\\{x = \frac{4}{3}}\end{array}} \right.\)
Vậy có hai giá trị của \(x\) thỏa mãn yêu cầu.
Đáp án C.
Câu 5:
Chọn câu đúng.
Phương pháp
Sử dụng công thức lập phương của một tổng \({\left( {A + B} \right)^3}\)\( = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\) và lập phương của một hiệu
\({\left( {A - B} \right)^3}\)\( = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)
Lời giải
Ta có \(8 + 12y + 6{y^2} + {y^3}\)\( = {2^3} + {3.2^2}y + 3.2.{y^2} + {y^3}\)\( = {\left( {2 + y} \right)^3} \ne \left( {8 + {y^3}} \right)\) nên A sai.
+ Xét \({\left( {2x - y} \right)^3}\)\( = {\left( {2x} \right)^3} - 3.{\left( {2x} \right)^2}.y + 3.2x.{y^2} - {y^3}\)\( = 8{x^3} - 12{x^2}y + 6xy - {y^3}\)\( \ne 2{x^3} - 6{x^2}y + 6xy - {y^3}\) nên C sai.
+ Xét \({\left( {3a + 1} \right)^3}\)\( = {\left( {3a} \right)^3} + 3.{\left( {3a} \right)^2}.1 + 3.3a{.1^2} + 1\)\( = 27{a^3} + 27{a^2} + 9a + 1\)\( \ne 3{a^3} + 9{a^2} + 3a + 1\) nên D sai
Đáp án B.
Câu 6: Tứ giác ABCD có \(AB = BC,CD = DA,\;\hat B = {90^0};\;\hat D = {120^0}\). Hãy chọn câu đúng nhất:
A. \(\hat A = {85^0}\). | B. \(\hat C = {75^0}\). |
C. \(\hat A = {75^0}\). | D. Chỉ \(B\) và \(C\) đúng. |
Phương pháp
Ta sử dụng tính chất tam giác vuông cân , tam giác cân và tổng ba góc trong tam giác bằng \({180^\circ }\) .
Lời giải
Xét tam giác ABC có \(\hat B = {90^\circ };AB = BC \Rightarrow \Delta ABC\) vuông cân \( \Rightarrow \widehat {BAC} = \widehat {BCA} = \frac{{{{90}^\circ }}}{2} = {45^\circ }\)
Xét tam giác ADC có \(CD = DA \Rightarrow \Delta ADC\) cân tại \(D\) có \(\widehat {ADC} = {120^\circ }\) nên \(\widehat {DAC} = \widehat {DCA} = \frac{{{{180}^\circ }{\rm{\;}} - {{120}^\circ }}}{2} = {30^\circ }\)
Từ đó ta có \(\hat A = \widehat {BAD} = \widehat {BAC} + \widehat {CAD} = {45^\circ }{\rm{\;}} + {30^\circ }{\rm{\;}} = {75^\circ }\)
Và \(\hat C = \widehat {BCD} = \widehat {BCA} + \widehat {ACD} = {45^\circ }{\rm{\;}} + {30^\circ }{\rm{\;}} = {75^\circ }\)
Nên \(\hat A = \hat C = {75^\circ }\) .
Đáp án D.
Câu 7: Hình thang ABCD (AB//CD) có số đo góc D bằng \({70^0},\) số đo góc \(A\) là:
A. \({130^0}\) | B. \({90^0}\) |
C. \({110^\circ }\) | D. \({120^0}\) |
Phương pháp
Ta sử dụng tính chất của hình thang: Ta thấy góc \(A\) và \(D\) là hai góc trong cùng phía nên \(\hat A + \hat D = {180^0}\) từ đó ta suy ra số đo góc A.
Lời giải
\(\hat A + \hat D = {180^0}\)
\(\begin{array}{*{20}{l}}{ \Rightarrow \hat A = {{180}^0} - \hat D}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {{180}^0} - {{70}^0}}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {{110}^0}}\end{array}\)
Đáp án C.
Câu 8: Chọn câu trả lời đúng. Tứ giác nào có hai đường chéo vuông góc với nhau?
A. Hình thoi | B. Hình vuông |
C. Hình chữ nhật | D. Cả A và B. |
Phương pháp
Dựa vào tính chất của các hình đã học.
Lời giải
Hình thoi và hình vuông đều có hai đường chéo vuông góc với nhau.
Đáp án D.
Phần tự luận.
Bài 1. (1,5 điểm) Cho biểu thức: \(A = 3x(2x - y) + (x - y)(x + y) - 7{x^2} + {y^2}\).
a) Thu gọn A.
b) Tính giá trị của A biết x = \(\frac{{ - 2}}{3}\) và y = 2
Phương pháp
a) Sử dụng quy tắc cộng, trừ, nhân, chia đa thức và những hằng đẳng thức đáng nhớ để rút gọn.
b) Thay x, y vào A để tính giá trị.
Lời giải
a) \(A = 3x(2x - y) + (x - y)(x + y) - 7{x^2} + {y^2}\)
\(\begin{array}{l} = 6{x^2} - 3xy + {x^2} - {y^2} - 7{x^2} + {y^2}\\ = - 3xy\end{array}\)
b) Thay x = \(\frac{{ - 2}}{3}\) và y = 2 vào A, ta được:
\(A = - 3.\left( {\frac{{ - 2}}{3}} \right).2 = 4\).
Vậy A = -3xy, giá trị của A tại x = \(\frac{{ - 2}}{3}\) và y = 2 là 4.
Bài 2. (1,5 điểm) Tìm x biết:
a) \({\left( {x - 3} \right)^2} - {x^2} = 0\)
b) \({x^3} - 5{x^2} - 9x + 45 = 0\)
c) \(\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\)
Phương pháp
Dựa vào các hằng đẳng thức đáng nhớ, phân tích đa thức thành nhân tử để tìm x.
Lời giải
a) \({\left( {x - 3} \right)^2} - {x^2} = 0\)
\(\begin{array}{l}(x - 3 - x)(x - 3 + x) = 0\\ - 3.(2x - 3) = 0\\2x - 3 = 0\\x = \frac{3}{2}\end{array}\)
Vậy \(x = \frac{3}{2}\)
b) \({x^3} - 5{x^2} - 9x + 45 = 0\)
\(\begin{array}{l}{x^2}(x - 5) - 9(x - 5) = 0\\({x^2} - 9)(x - 5) = 0\\(x - 3)(x + 3)(x - 5) = 0\\\left[ \begin{array}{l}x - 3 = 0\\x + 3 = 0\\x - 5 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 3\\x = - 3\\x = 5\end{array} \right.\end{array}\)
Vậy x =3, x = -3 hoặc x = 5.
c) \(\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\)
\(\begin{array}{l}\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left[ {\left( {2x - 1} \right) - 4} \right] = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left( {2x - 1 - 2} \right)\left( {2x - 1 + 2} \right) = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left( {2x - 3} \right)\left( {2x + 1} \right) = 0\\\left( {5x - 3 - 2x + 3} \right)\left( {2x + 1} \right) = 0\\3x\left( {2x + 1} \right) = 0\\\left[ \begin{array}{l}x = 0\\2x + 1 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 0\\x = - \frac{1}{2}\end{array} \right.\end{array}\)
Vậy x = 0 hoặc x = \( - \frac{1}{2}\).
Bài 3. (2,5 điểm) Cho tam giác \(ABC\) vuông tại A, đường trung tuyến \(AM\). Gọi \(H\) là điểm đối xứng với \(M\) qua \(AB\), \(E\) là giao điểm của \(MH\) và \(AB\). Gọi \(K\) là điểm đối xứng với \(M\) qua \(AC\), \(F\) là giao điểm của \(MK\) và \(AC\).
a) Các tứ giác \(AEMF\), \(AMBH\), \(AMCK\) là hình gì? Vì sao?
b) Chứng minh rằng \(H\) đối xứng với \(K\) qua \(A\).
c) Tam giác vuông \(ABC\) cần thêm điều kiện gì thì tứ giác \(AEMF\) là hình vuông?
Phương pháp
a) Dựa vào dấu hiệu nhận biết các hình đã học.
b) Theo a) suy ra \(HA\parallel BM\), \(AK\parallel MC\) \( \Rightarrow \) \(H\), \(A\), \(K\) thẳng hàng.
Lại có \(AH = AM = AK\) \( \Rightarrow \) \(H\), \(K\) đối xứng với nhau qua \(A\).
c) Để hình chữ nhật \(AEMF\) là hình vuông thì cần thêm điều kiện \(AE = EM\). \( \Rightarrow \) \(AB = AC\). Vậy tam giác \(ABC\) vuông cân tại \(A\).
Lời giải
a)
+ Tứ giác AEMF:
Ta có:
\(\begin{array}{l}\widehat {MFA} = {90^0}(do\,MF \bot AC)\\\widehat {FAE} = {90^0}(gt)\\\widehat {MEA} = {90^0}(do\,ME \bot AB)\end{array}\)
=> AEMF là hình chữ nhật.
+ Tứ giác AMBH:
Tam giác ABC vuông tại A có AM là đường trung tuyến => AM = MB = MC = \(\frac{1}{2}BC\).
=> Tam giác AMB cân tại M.
Vì ME \( \bot \) AB => E là trung điểm của AB. => AE = EB.
Mà MH \( \bot \) AB tại E.
=> AMBH là hình thoi.
Chứng minh tương tự, ta cũng có AMCK là hình thoi.
b) Vì AMCK là hình thoi => AK // CM, AK = CM.
Tương tự, ta cũng có AH // BM, AH = BM.
=> K, A, H thẳng hàng và AK = AH = BM = CM.
=> H đối xứng với K qua A.
c) Để AEMF là hình vuông thì AE = MF, mà AE = \(\frac{1}{2}\)AB.
ME = \(\frac{1}{2}\)AC.
=> AB = AC hay tam giác ABC vuông cân tại A thì AEMF là hình vuông.
Bài 4. (0,5 điểm) Cho a + b + c. Chứng minh \({a^3} + {b^3} + {c^3} = 3abc\).
Phương pháp
Dựa vào hằng đẳng thức \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\) để suy ra \({(a + b + c)^3}\). Thay a + b + c = 0 để chứng minh.
Lời giải
Vì \(a + b + c = 0\) nên \({\left( {a + b + c} \right)^3} = 0\).
Phân tích \({\left( {a + b + c} \right)^3}\) ta được \({\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3{a^2}b + 3a{b^2} + 3{b^2}c + 3b{c^2} + 3{a^2}c + 3a{c^2} + 6abc\)
\( = > {a^3} + {b^3} + {c^3} + 3{a^2}b + 3a{b^2} + 3{b^2}c + 3b{c^2} + 3{a^2}c + 3a{c^2} + 6abc = 0\)
\( = > {a^3} + {b^3} + {c^3} + \left( {3{a^2}b + 3a{b^2} + 3abc} \right) + \left( {3{b^2}c + 3b{c^2} + 3abc} \right) + \left( {3{a^2}c + 3a{c^2} + 3abc} \right) - 3abc = 0\)
\( = > {a^3} + {b^3} + {c^3} + 3ab\left( {a + b + c} \right) + 3bc\left( {a + b + c} \right) + 3ac\left( {a + b + c} \right) = 3abc\)
\(Do{\rm{ }}a + b + c = 0\)
\( = > {a^3} + {b^3} + {c^3} = 3abc\) (đpcm).
Phần trắc nghiệm (4 điểm)
Câu 1: B | Câu 2: A | Câu 3: D | Câu 4: C | Câu 5: B | Câu 6: D | Câu 7: C | Câu 8: D |
Câu 1: Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\) với a,b là hằng số.
A. \( - 36\) | B. \( - 36{a^2}{b^2}\) |
C. \(36{a^2}{b^2}\) | D. \( - 36{a^2}\) |
Phương pháp
Sử dụng lý thuyết về đơn thức thu gọn:
Đơn thức thu gọn là đơn thức chỉ gồm tích của một số với các biến mà mỗi biến đã được nâng lên lũy thừa với số mũ nguyên dương. Số nói trên gọi là hệ số, phần còn lại gọi là phần biến của đơn thức thu gọn.
Lời giải
Đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\) với a,b là hằng số có hệ số là \( - 36{a^2}{b^2}.\)
Đáp án B.
Câu 2: Giá trị của đa thức \(4{x^2}y - \frac{2}{3}x{y^2} + 5xy - x\) tại \(x = 2;y = \frac{1}{3}\) là
A. \(\frac{{176}}{{27}}\) | B. \(\frac{{27}}{{176}}\) |
C. \(\frac{{17}}{{27}}\) | D. \(\frac{{116}}{{27}}\) |
Phương pháp
Thay \(x = 2;y = \frac{1}{3}\) vào đa thức rồi tính toán.
Lời giải
Thay \(x = 2;y = \frac{1}{3}\) vào đa thức \(4{x^2}y - \frac{2}{3}x{y^2} + 5xy - x\) ta được \({4.2^2}.\frac{1}{3} - \frac{2}{3}.2.{\left( {\frac{1}{3}} \right)^2} + 5.2.\frac{1}{3} - 2\)\( = \frac{{176}}{{27}}\).
Đáp án A.
Câu 3:
Chọn câu sai.
Phương pháp
Sử dụng các công thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\), \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) , \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
Lời giải
Ta có \(\left( {x + y} \right)\left( {x + y} \right) = {\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} \ne {y^2} - {x^2}\) nên câu D sai.
Đáp án D.
Câu 4: Có bao nhiêu giá trị \(x\) thỏa mãn \({\left( {2x - 1} \right)^2} - {\left( {5x - 5} \right)^2} = 0\)
A. \(0\) | B. \(1\) |
C. \(2\) | D. \(3\) |
Phương pháp
Sử dụng công thức \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\) để đưa về dạng tìm \(x\) thường gặp
Lời giải
Ta có \({\left( {2x - 1} \right)^2} - {\left( {5x - 5} \right)^2} = 0\)\( \Leftrightarrow \left( {2x - 1 + 5x - 5} \right)\left( {2x - 1 - 5x + 5} \right) = 0\)\( \Leftrightarrow \left( {7x - 6} \right)\left( {4 - 3x} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{7x - 6 = 0}\\{4 - 3x = 0}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{6}{7}}\\{x = \frac{4}{3}}\end{array}} \right.\)
Vậy có hai giá trị của \(x\) thỏa mãn yêu cầu.
Đáp án C.
Câu 5:
Chọn câu đúng.
Phương pháp
Sử dụng công thức lập phương của một tổng \({\left( {A + B} \right)^3}\)\( = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\) và lập phương của một hiệu
\({\left( {A - B} \right)^3}\)\( = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)
Lời giải
Ta có \(8 + 12y + 6{y^2} + {y^3}\)\( = {2^3} + {3.2^2}y + 3.2.{y^2} + {y^3}\)\( = {\left( {2 + y} \right)^3} \ne \left( {8 + {y^3}} \right)\) nên A sai.
+ Xét \({\left( {2x - y} \right)^3}\)\( = {\left( {2x} \right)^3} - 3.{\left( {2x} \right)^2}.y + 3.2x.{y^2} - {y^3}\)\( = 8{x^3} - 12{x^2}y + 6xy - {y^3}\)\( \ne 2{x^3} - 6{x^2}y + 6xy - {y^3}\) nên C sai.
+ Xét \({\left( {3a + 1} \right)^3}\)\( = {\left( {3a} \right)^3} + 3.{\left( {3a} \right)^2}.1 + 3.3a{.1^2} + 1\)\( = 27{a^3} + 27{a^2} + 9a + 1\)\( \ne 3{a^3} + 9{a^2} + 3a + 1\) nên D sai
Đáp án B.
Câu 6: Tứ giác ABCD có \(AB = BC,CD = DA,\;\hat B = {90^0};\;\hat D = {120^0}\). Hãy chọn câu đúng nhất:
A. \(\hat A = {85^0}\). | B. \(\hat C = {75^0}\). |
C. \(\hat A = {75^0}\). | D. Chỉ \(B\) và \(C\) đúng. |
Phương pháp
Ta sử dụng tính chất tam giác vuông cân , tam giác cân và tổng ba góc trong tam giác bằng \({180^\circ }\) .
Lời giải
Xét tam giác ABC có \(\hat B = {90^\circ };AB = BC \Rightarrow \Delta ABC\) vuông cân \( \Rightarrow \widehat {BAC} = \widehat {BCA} = \frac{{{{90}^\circ }}}{2} = {45^\circ }\)
Xét tam giác ADC có \(CD = DA \Rightarrow \Delta ADC\) cân tại \(D\) có \(\widehat {ADC} = {120^\circ }\) nên \(\widehat {DAC} = \widehat {DCA} = \frac{{{{180}^\circ }{\rm{\;}} - {{120}^\circ }}}{2} = {30^\circ }\)
Từ đó ta có \(\hat A = \widehat {BAD} = \widehat {BAC} + \widehat {CAD} = {45^\circ }{\rm{\;}} + {30^\circ }{\rm{\;}} = {75^\circ }\)
Và \(\hat C = \widehat {BCD} = \widehat {BCA} + \widehat {ACD} = {45^\circ }{\rm{\;}} + {30^\circ }{\rm{\;}} = {75^\circ }\)
Nên \(\hat A = \hat C = {75^\circ }\) .
Đáp án D.
Câu 7: Hình thang ABCD (AB//CD) có số đo góc D bằng \({70^0},\) số đo góc \(A\) là:
A. \({130^0}\) | B. \({90^0}\) |
C. \({110^\circ }\) | D. \({120^0}\) |
Phương pháp
Ta sử dụng tính chất của hình thang: Ta thấy góc \(A\) và \(D\) là hai góc trong cùng phía nên \(\hat A + \hat D = {180^0}\) từ đó ta suy ra số đo góc A.
Lời giải
\(\hat A + \hat D = {180^0}\)
\(\begin{array}{*{20}{l}}{ \Rightarrow \hat A = {{180}^0} - \hat D}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {{180}^0} - {{70}^0}}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {{110}^0}}\end{array}\)
Đáp án C.
Câu 8: Chọn câu trả lời đúng. Tứ giác nào có hai đường chéo vuông góc với nhau?
A. Hình thoi | B. Hình vuông |
C. Hình chữ nhật | D. Cả A và B. |
Phương pháp
Dựa vào tính chất của các hình đã học.
Lời giải
Hình thoi và hình vuông đều có hai đường chéo vuông góc với nhau.
Đáp án D.
Phần tự luận.
Bài 1. (1,5 điểm) Cho biểu thức: \(A = 3x(2x - y) + (x - y)(x + y) - 7{x^2} + {y^2}\).
a) Thu gọn A.
b) Tính giá trị của A biết x = \(\frac{{ - 2}}{3}\) và y = 2
Phương pháp
a) Sử dụng quy tắc cộng, trừ, nhân, chia đa thức và những hằng đẳng thức đáng nhớ để rút gọn.
b) Thay x, y vào A để tính giá trị.
Lời giải
a) \(A = 3x(2x - y) + (x - y)(x + y) - 7{x^2} + {y^2}\)
\(\begin{array}{l} = 6{x^2} - 3xy + {x^2} - {y^2} - 7{x^2} + {y^2}\\ = - 3xy\end{array}\)
b) Thay x = \(\frac{{ - 2}}{3}\) và y = 2 vào A, ta được:
\(A = - 3.\left( {\frac{{ - 2}}{3}} \right).2 = 4\).
Vậy A = -3xy, giá trị của A tại x = \(\frac{{ - 2}}{3}\) và y = 2 là 4.
Bài 2. (1,5 điểm) Tìm x biết:
a) \({\left( {x - 3} \right)^2} - {x^2} = 0\)
b) \({x^3} - 5{x^2} - 9x + 45 = 0\)
c) \(\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\)
Phương pháp
Dựa vào các hằng đẳng thức đáng nhớ, phân tích đa thức thành nhân tử để tìm x.
Lời giải
a) \({\left( {x - 3} \right)^2} - {x^2} = 0\)
\(\begin{array}{l}(x - 3 - x)(x - 3 + x) = 0\\ - 3.(2x - 3) = 0\\2x - 3 = 0\\x = \frac{3}{2}\end{array}\)
Vậy \(x = \frac{3}{2}\)
b) \({x^3} - 5{x^2} - 9x + 45 = 0\)
\(\begin{array}{l}{x^2}(x - 5) - 9(x - 5) = 0\\({x^2} - 9)(x - 5) = 0\\(x - 3)(x + 3)(x - 5) = 0\\\left[ \begin{array}{l}x - 3 = 0\\x + 3 = 0\\x - 5 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 3\\x = - 3\\x = 5\end{array} \right.\end{array}\)
Vậy x =3, x = -3 hoặc x = 5.
c) \(\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\)
\(\begin{array}{l}\left( {5x - 3} \right)\left( {2x + 1} \right) - {\left( {2x - 1} \right)^2} + 4 = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left[ {\left( {2x - 1} \right) - 4} \right] = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left( {2x - 1 - 2} \right)\left( {2x - 1 + 2} \right) = 0\\\left( {5x - 3} \right)\left( {2x + 1} \right) - \left( {2x - 3} \right)\left( {2x + 1} \right) = 0\\\left( {5x - 3 - 2x + 3} \right)\left( {2x + 1} \right) = 0\\3x\left( {2x + 1} \right) = 0\\\left[ \begin{array}{l}x = 0\\2x + 1 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 0\\x = - \frac{1}{2}\end{array} \right.\end{array}\)
Vậy x = 0 hoặc x = \( - \frac{1}{2}\).
Bài 3. (2,5 điểm) Cho tam giác \(ABC\) vuông tại A, đường trung tuyến \(AM\). Gọi \(H\) là điểm đối xứng với \(M\) qua \(AB\), \(E\) là giao điểm của \(MH\) và \(AB\). Gọi \(K\) là điểm đối xứng với \(M\) qua \(AC\), \(F\) là giao điểm của \(MK\) và \(AC\).
a) Các tứ giác \(AEMF\), \(AMBH\), \(AMCK\) là hình gì? Vì sao?
b) Chứng minh rằng \(H\) đối xứng với \(K\) qua \(A\).
c) Tam giác vuông \(ABC\) cần thêm điều kiện gì thì tứ giác \(AEMF\) là hình vuông?
Phương pháp
a) Dựa vào dấu hiệu nhận biết các hình đã học.
b) Theo a) suy ra \(HA\parallel BM\), \(AK\parallel MC\) \( \Rightarrow \) \(H\), \(A\), \(K\) thẳng hàng.
Lại có \(AH = AM = AK\) \( \Rightarrow \) \(H\), \(K\) đối xứng với nhau qua \(A\).
c) Để hình chữ nhật \(AEMF\) là hình vuông thì cần thêm điều kiện \(AE = EM\). \( \Rightarrow \) \(AB = AC\). Vậy tam giác \(ABC\) vuông cân tại \(A\).
Lời giải
a)
+ Tứ giác AEMF:
Ta có:
\(\begin{array}{l}\widehat {MFA} = {90^0}(do\,MF \bot AC)\\\widehat {FAE} = {90^0}(gt)\\\widehat {MEA} = {90^0}(do\,ME \bot AB)\end{array}\)
=> AEMF là hình chữ nhật.
+ Tứ giác AMBH:
Tam giác ABC vuông tại A có AM là đường trung tuyến => AM = MB = MC = \(\frac{1}{2}BC\).
=> Tam giác AMB cân tại M.
Vì ME \( \bot \) AB => E là trung điểm của AB. => AE = EB.
Mà MH \( \bot \) AB tại E.
=> AMBH là hình thoi.
Chứng minh tương tự, ta cũng có AMCK là hình thoi.
b) Vì AMCK là hình thoi => AK // CM, AK = CM.
Tương tự, ta cũng có AH // BM, AH = BM.
=> K, A, H thẳng hàng và AK = AH = BM = CM.
=> H đối xứng với K qua A.
c) Để AEMF là hình vuông thì AE = MF, mà AE = \(\frac{1}{2}\)AB.
ME = \(\frac{1}{2}\)AC.
=> AB = AC hay tam giác ABC vuông cân tại A thì AEMF là hình vuông.
Bài 4. (0,5 điểm) Cho a + b + c. Chứng minh \({a^3} + {b^3} + {c^3} = 3abc\).
Phương pháp
Dựa vào hằng đẳng thức \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\) để suy ra \({(a + b + c)^3}\). Thay a + b + c = 0 để chứng minh.
Lời giải
Vì \(a + b + c = 0\) nên \({\left( {a + b + c} \right)^3} = 0\).
Phân tích \({\left( {a + b + c} \right)^3}\) ta được \({\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3{a^2}b + 3a{b^2} + 3{b^2}c + 3b{c^2} + 3{a^2}c + 3a{c^2} + 6abc\)
\( = > {a^3} + {b^3} + {c^3} + 3{a^2}b + 3a{b^2} + 3{b^2}c + 3b{c^2} + 3{a^2}c + 3a{c^2} + 6abc = 0\)
\( = > {a^3} + {b^3} + {c^3} + \left( {3{a^2}b + 3a{b^2} + 3abc} \right) + \left( {3{b^2}c + 3b{c^2} + 3abc} \right) + \left( {3{a^2}c + 3a{c^2} + 3abc} \right) - 3abc = 0\)
\( = > {a^3} + {b^3} + {c^3} + 3ab\left( {a + b + c} \right) + 3bc\left( {a + b + c} \right) + 3ac\left( {a + b + c} \right) = 3abc\)
\(Do{\rm{ }}a + b + c = 0\)
\( = > {a^3} + {b^3} + {c^3} = 3abc\) (đpcm).
Đề thi giữa kì 1 Toán 8 - Đề số 1 chương trình Kết nối tri thức là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau một thời gian học tập. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính được giảng dạy trong chương trình học kì 1.
Đề thi thường bao gồm các nội dung sau:
Cấu trúc đề thi có thể thay đổi tùy theo từng trường và giáo viên, nhưng thường bao gồm các phần sau:
Để giải các bài tập về biểu thức đại số, học sinh cần nắm vững các quy tắc về phép toán, các tính chất của số và các công thức biến đổi biểu thức. Ví dụ:
Bài tập: Rút gọn biểu thức: 3x + 2y - x + 5y
Giải: 3x + 2y - x + 5y = (3x - x) + (2y + 5y) = 2x + 7y
Để giải các bài tập về hình học, học sinh cần nắm vững các định nghĩa, tính chất và định lý liên quan đến các hình. Ví dụ:
Bài tập: Cho hình thang cân ABCD (AB // CD). Chứng minh rằng AC = BD.
Giải: (Chứng minh dựa trên các tính chất của hình thang cân và tam giác cân)
Các bài tập ứng dụng thường yêu cầu học sinh vận dụng kiến thức toán học vào giải quyết các vấn đề thực tế. Ví dụ:
Bài tập: Một người đi xe máy từ A đến B với vận tốc 40km/h. Hỏi sau 2 giờ người đó đi được bao nhiêu km?
Giải: Quãng đường người đó đi được là: 40km/h * 2h = 80km
Để chuẩn bị tốt nhất cho kỳ thi giữa kì 1 Toán 8, học sinh nên tham khảo thêm các tài liệu sau:
Đề thi giữa kì 1 Toán 8 - Đề số 1 - Kết nối tri thức là một cơ hội để học sinh đánh giá năng lực và củng cố kiến thức. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi!