Chào mừng các em học sinh đến với bài trắc nghiệm Toán 7 Bài 1: Biểu thức số và biểu thức đại số, thuộc chương trình Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp các em củng cố kiến thức đã học, rèn luyện kỹ năng giải bài tập và chuẩn bị tốt nhất cho các bài kiểm tra sắp tới.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều dạng bài tập khác nhau, từ cơ bản đến nâng cao, cùng với đáp án chi tiết và lời giải dễ hiểu.
Trong các biểu thức sau, đâu là biểu thức đại số?
0
\({x^2} - 5x + 1\)
\({x^4} - 7y + 3{z^3} - 21\)
Tất cả các đáp án trên đều đúng
Cho \(a,b\) là các hằng số. Tìm các biến trong biểu thức đại số \(x\left( {{a^2} - ab + {b^2}} \right) + y\)
\(a;b\)
\(a;b;x;y\)
\(x;y\)
\(a;b;x\)
“Tổng các lập phương của hai số a và b” được biểu thị bởi biểu thức:
\({a^3} + {b^3}\)
\({\left( {a + b} \right)^3}\)
\({a^2} + {b^2}\)
\({\left( {a + b} \right)^2}\)
Viết biểu thức đại số biểu thị tổng quãng đường đi được của một người, biết rằng người đó đi bộ trong \(x\) giờ với vận tốc \(4\) km/giờ và sau đó đi bằng xe đạp trong \(y\) giờ với vận tốc \(18\) km/giờ
\(4\left( {x + y} \right)\)
\(22\left( {x + y} \right)\)
\(4y + 18x\)
\(4x + 18y\)
Lập biểu thức đại số để tính: Diện tích hình thang có đáy lớn là \(a\) (cm), đáy nhỏ là \(b\) (cm), chiều cao là \(h\) (cm).
\(\dfrac{{(a + h).b}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{(a - b).h}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{(a + b).h}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{a + b}}{{2h}}\,\,\,(c{m^2}).\)
Giá trị của biểu thức \( - {x^3} - 2{x^2} - 5\) tại x = - 2 là
11
-7
-21
-5
Cho \(A = 4{x^2}y - 5\) và \(B = 3{x^3}y + 6{x^2}{y^2} + 3x{y^2}\). So sánh \(A\) và \(B\) khi \(x = - 1;\,y = 3\)
\(A > B\)
\(A = B\)
\(A < B\)
\(A \ge B\)
Một bể đang chứa \(480\) lít nước, có một vòi chảy vào mỗi phút chảy được \(x\) lít. Cùng lúc đó một vòi khác chảy nước từ bể ra. Mỗi phút lượng nước chảy ra bằng \(\dfrac{1}{4}\) lượng nước chảy vào . Hãy biểu thị lượng nước trong bể sau khi đồng thời mở cả hai vòi trên sau \(a\) phút.
\(480 - \dfrac{3}{4}ax\) (lít)
\(\dfrac{3}{4}ax\) (lít)
\(480 + \dfrac{3}{4}ax\) (lít)
\(480 + ax\) (lít)
Tính giá trị biểu thức \(B = 5{x^2} - 2x - 18\) tại \(\left| x \right| = 4\)
\(B = 54\)
\(B = 70.\)
\(B = 54\) hoặc \(B = 70.\)
\(B = 45\) hoặc \(B = 70.\)
Biểu thức \(P = {\left( {{x^2} - 4} \right)^2} + \left| {y - 5} \right| - 1\) đạt giá trị nhỏ nhất là
\(2\)
\(3\)
\(1\)
\( - 1\)
Lời giải và đáp án
Trong các biểu thức sau, đâu là biểu thức đại số?
0
\({x^2} - 5x + 1\)
\({x^4} - 7y + 3{z^3} - 21\)
Tất cả các đáp án trên đều đúng
Đáp án : D
Áp dụng định nghĩa biểu thức đại số: Biểu thức chỉ chứa số hoặc chỉ chứa chữ, hoặc chứa cả số và chữ được gọi chung là biểu thức đại số
Các biểu thức ở câu A, B,C đều là các biểu thức đại số
Cho \(a,b\) là các hằng số. Tìm các biến trong biểu thức đại số \(x\left( {{a^2} - ab + {b^2}} \right) + y\)
\(a;b\)
\(a;b;x;y\)
\(x;y\)
\(a;b;x\)
Đáp án : C
Trong biểu thức đại số
+ Những chữ đại diện cho một số tùy ý gọi là biến số
+ Những chữ đại diện cho một số xác định gọi là hằng số
Biểu thức \(x\left( {{a^2} - ab + {b^2}} \right) + y\) có các biến là \(x;y.\)
a, b là hằng số nên không phải biến số.
“Tổng các lập phương của hai số a và b” được biểu thị bởi biểu thức:
\({a^3} + {b^3}\)
\({\left( {a + b} \right)^3}\)
\({a^2} + {b^2}\)
\({\left( {a + b} \right)^2}\)
Đáp án : A
Dùng các chữ, các số và các phép toán để diễn đạt các mệnh đề phát biểu bằng lời hoặc các dữ kiện bài toán.
Lập phương của a là \({a^3}\)
Lập phương của b là \({b^3}\)
Do đó tổng các lập phương của hai số a và b là \({a^3} + {b^3}.\)
Viết biểu thức đại số biểu thị tổng quãng đường đi được của một người, biết rằng người đó đi bộ trong \(x\) giờ với vận tốc \(4\) km/giờ và sau đó đi bằng xe đạp trong \(y\) giờ với vận tốc \(18\) km/giờ
\(4\left( {x + y} \right)\)
\(22\left( {x + y} \right)\)
\(4y + 18x\)
\(4x + 18y\)
Đáp án : D
Áp dụng công thức: quãng đường = vận tốc . thời gian
Quãng đường đi được = quãng đường đi bộ + quãng đường đi xe đạp
Quãng đường mà người đó đi bộ là : \(4.x = 4x\)
Quãng đường mà người đó đi bằng xe máy là: \(18.y = 18y\)
Tổng quãng đường đi được của người đó là: \(4x + 18y\)
Lập biểu thức đại số để tính: Diện tích hình thang có đáy lớn là \(a\) (cm), đáy nhỏ là \(b\) (cm), chiều cao là \(h\) (cm).
\(\dfrac{{(a + h).b}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{(a - b).h}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{(a + b).h}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{a + b}}{{2h}}\,\,\,(c{m^2}).\)
Đáp án : C
Diện tích hình thang = (đáy lớn + đáy bé) . chiều cao : 2
Biểu thức đại số cần tìm là \(\dfrac{{(a + b).h}}{2}\,\,\,(c{m^2}).\)
Giá trị của biểu thức \( - {x^3} - 2{x^2} - 5\) tại x = - 2 là
11
-7
-21
-5
Đáp án : D
Thay x = -2 vào biểu thức \( - {x^3} - 2{x^2} - 5\) rồi thực hiện phép tính.
Thay x = -2 vào biểu thức \( - {x^3} - 2{x^2} - 5\), ta được:
\( - {\left( { - 2} \right)^3} - 2.{\left( { - 2} \right)^2} - 5 = - \left( { - 8} \right) - 2.4 - 5 = 8 - 8 - 5 = - 5\)
Cho \(A = 4{x^2}y - 5\) và \(B = 3{x^3}y + 6{x^2}{y^2} + 3x{y^2}\). So sánh \(A\) và \(B\) khi \(x = - 1;\,y = 3\)
\(A > B\)
\(A = B\)
\(A < B\)
\(A \ge B\)
Đáp án : C
+ Thay \(x = - 1;\,y = 3\) vào biểu thức \(A\) để tìm giá trị của biểu thức \(A.\)
+ Thay \(x = - 1;\,y = 3\) vào biểu thức \(B\) để tìm giá trị của biểu thức \(B\)
+ So sánh kết quả vừa tính được của \(A\) và \(B.\)
+ Thay \(x = - 1;\,y = 3\) vào biểu thức \(A\) ta được \(A = 4.{\left( { - 1} \right)^2}.3 - 5 = 7\)
+ Thay \(x = - 1;\,y = 3\) vào biểu thức \(B\) ta được \(B = 3.{\left( { - 1} \right)^3}.3 + 6.{\left( { - 1} \right)^2}{.3^2} + 3.\left( { - 1} \right){.3^2}\) \( = - 9 + 54 - 27 = 18.\)
Vậy\(A < B\) khi \(x = - 1;\,y = 3.\)
Một bể đang chứa \(480\) lít nước, có một vòi chảy vào mỗi phút chảy được \(x\) lít. Cùng lúc đó một vòi khác chảy nước từ bể ra. Mỗi phút lượng nước chảy ra bằng \(\dfrac{1}{4}\) lượng nước chảy vào . Hãy biểu thị lượng nước trong bể sau khi đồng thời mở cả hai vòi trên sau \(a\) phút.
\(480 - \dfrac{3}{4}ax\) (lít)
\(\dfrac{3}{4}ax\) (lít)
\(480 + \dfrac{3}{4}ax\) (lít)
\(480 + ax\) (lít)
Đáp án : C
Căn cứ vào nội dung bài toán, viết biểu thức đại số theo yêu cầu đề bài:
+ Tính lượng nước chảy vào trong \(a\) phút
+ Tính lượng nước chảy ra trong \(a\) phút
+ Lượng nước có trong bể sau \(a\) phút = Lượng nước có sẵn + lượng nước chảy vào – lượng nước chảy ra.
ong bể sau \(a\) phút = Lượng nước có sẵn + lượng nước chảy vào – lượng nước chảy ra.
Lời giải
Lượng nước chảy vào bể trong \(a\) phút là \(a.x\) (lít)
Lượng nước chảy ra trong \(a\) phút là \(\dfrac{1}{4}ax\) (lít)
Vì ban đầu bể đang chứa \(480\) lít nên lượng nước có trong bể sau \(a\) phút là
\(480 + ax - \dfrac{1}{4}ax = 480 + \dfrac{3}{4}ax\) (lít)
Tính giá trị biểu thức \(B = 5{x^2} - 2x - 18\) tại \(\left| x \right| = 4\)
\(B = 54\)
\(B = 70.\)
\(B = 54\) hoặc \(B = 70.\)
\(B = 45\) hoặc \(B = 70.\)
Đáp án : C
+ Tìm \(x\) từ \(\left| x \right| = 4\)
+ Thay các giá trị vừa tìm được của \(x\) vào \(B\) để tính giá trị của \(B.\)
Ta có \(\left| x \right| = 4 \Rightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)
+ Trường hợp 1: x = 4 : Thay x = 4 vào biểu thức ta có:
\({5.4^2} - 2.4 - 18 = 5.16 - 8 - 18 = 80 - 8 - 18 = 54\)
Vậy \(B = 54\) tại \(x = 4.\)
+ Trường hợp 2: x = –4: Thay x = –4 vào biểu thức ta có:
\(5.{( - 4)^2} - 2.( - 4) - 18 = 5.16 + 8 - 18 = 80 + 8 - 18 = 70\)
Vậy \(B = 70\) tại \(x = -4.\)
Với \(\left| x \right| = 4\) thì \(B = 54\) hoặc \(B = 70.\)
Biểu thức \(P = {\left( {{x^2} - 4} \right)^2} + \left| {y - 5} \right| - 1\) đạt giá trị nhỏ nhất là
\(2\)
\(3\)
\(1\)
\( - 1\)
Đáp án : D
Sử dụng các đánh giá : \({x^2} \ge 0\,;\,\left| x \right| \ge 0\) với mọi \(x.\)
Ta có \({\left( {{x^2} - 4} \right)^2} \ge 0;\,\,\left| {y - 5} \right| \ge 0\)với mọi \(x \in R,\,y \in R\)nên \(P = {\left( {{x^2} - 4} \right)^2} + \left| {y - 5} \right| - 1 \ge - 1\) với mọi \(x \in R,\,y \in R\)
Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}{x^2} - 4 = 0\\y - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} = 4\\y = 5\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}x = - 2\\y = 5\end{array} \right.\)
Giá trị nhỏ nhất của \(P\) là \( - 1\) khi \(\left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}x = - 2\\y = 5\end{array} \right.\)
Trong các biểu thức sau, đâu là biểu thức đại số?
0
\({x^2} - 5x + 1\)
\({x^4} - 7y + 3{z^3} - 21\)
Tất cả các đáp án trên đều đúng
Cho \(a,b\) là các hằng số. Tìm các biến trong biểu thức đại số \(x\left( {{a^2} - ab + {b^2}} \right) + y\)
\(a;b\)
\(a;b;x;y\)
\(x;y\)
\(a;b;x\)
“Tổng các lập phương của hai số a và b” được biểu thị bởi biểu thức:
\({a^3} + {b^3}\)
\({\left( {a + b} \right)^3}\)
\({a^2} + {b^2}\)
\({\left( {a + b} \right)^2}\)
Viết biểu thức đại số biểu thị tổng quãng đường đi được của một người, biết rằng người đó đi bộ trong \(x\) giờ với vận tốc \(4\) km/giờ và sau đó đi bằng xe đạp trong \(y\) giờ với vận tốc \(18\) km/giờ
\(4\left( {x + y} \right)\)
\(22\left( {x + y} \right)\)
\(4y + 18x\)
\(4x + 18y\)
Lập biểu thức đại số để tính: Diện tích hình thang có đáy lớn là \(a\) (cm), đáy nhỏ là \(b\) (cm), chiều cao là \(h\) (cm).
\(\dfrac{{(a + h).b}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{(a - b).h}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{(a + b).h}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{a + b}}{{2h}}\,\,\,(c{m^2}).\)
Giá trị của biểu thức \( - {x^3} - 2{x^2} - 5\) tại x = - 2 là
11
-7
-21
-5
Cho \(A = 4{x^2}y - 5\) và \(B = 3{x^3}y + 6{x^2}{y^2} + 3x{y^2}\). So sánh \(A\) và \(B\) khi \(x = - 1;\,y = 3\)
\(A > B\)
\(A = B\)
\(A < B\)
\(A \ge B\)
Một bể đang chứa \(480\) lít nước, có một vòi chảy vào mỗi phút chảy được \(x\) lít. Cùng lúc đó một vòi khác chảy nước từ bể ra. Mỗi phút lượng nước chảy ra bằng \(\dfrac{1}{4}\) lượng nước chảy vào . Hãy biểu thị lượng nước trong bể sau khi đồng thời mở cả hai vòi trên sau \(a\) phút.
\(480 - \dfrac{3}{4}ax\) (lít)
\(\dfrac{3}{4}ax\) (lít)
\(480 + \dfrac{3}{4}ax\) (lít)
\(480 + ax\) (lít)
Tính giá trị biểu thức \(B = 5{x^2} - 2x - 18\) tại \(\left| x \right| = 4\)
\(B = 54\)
\(B = 70.\)
\(B = 54\) hoặc \(B = 70.\)
\(B = 45\) hoặc \(B = 70.\)
Biểu thức \(P = {\left( {{x^2} - 4} \right)^2} + \left| {y - 5} \right| - 1\) đạt giá trị nhỏ nhất là
\(2\)
\(3\)
\(1\)
\( - 1\)
Trong các biểu thức sau, đâu là biểu thức đại số?
0
\({x^2} - 5x + 1\)
\({x^4} - 7y + 3{z^3} - 21\)
Tất cả các đáp án trên đều đúng
Đáp án : D
Áp dụng định nghĩa biểu thức đại số: Biểu thức chỉ chứa số hoặc chỉ chứa chữ, hoặc chứa cả số và chữ được gọi chung là biểu thức đại số
Các biểu thức ở câu A, B,C đều là các biểu thức đại số
Cho \(a,b\) là các hằng số. Tìm các biến trong biểu thức đại số \(x\left( {{a^2} - ab + {b^2}} \right) + y\)
\(a;b\)
\(a;b;x;y\)
\(x;y\)
\(a;b;x\)
Đáp án : C
Trong biểu thức đại số
+ Những chữ đại diện cho một số tùy ý gọi là biến số
+ Những chữ đại diện cho một số xác định gọi là hằng số
Biểu thức \(x\left( {{a^2} - ab + {b^2}} \right) + y\) có các biến là \(x;y.\)
a, b là hằng số nên không phải biến số.
“Tổng các lập phương của hai số a và b” được biểu thị bởi biểu thức:
\({a^3} + {b^3}\)
\({\left( {a + b} \right)^3}\)
\({a^2} + {b^2}\)
\({\left( {a + b} \right)^2}\)
Đáp án : A
Dùng các chữ, các số và các phép toán để diễn đạt các mệnh đề phát biểu bằng lời hoặc các dữ kiện bài toán.
Lập phương của a là \({a^3}\)
Lập phương của b là \({b^3}\)
Do đó tổng các lập phương của hai số a và b là \({a^3} + {b^3}.\)
Viết biểu thức đại số biểu thị tổng quãng đường đi được của một người, biết rằng người đó đi bộ trong \(x\) giờ với vận tốc \(4\) km/giờ và sau đó đi bằng xe đạp trong \(y\) giờ với vận tốc \(18\) km/giờ
\(4\left( {x + y} \right)\)
\(22\left( {x + y} \right)\)
\(4y + 18x\)
\(4x + 18y\)
Đáp án : D
Áp dụng công thức: quãng đường = vận tốc . thời gian
Quãng đường đi được = quãng đường đi bộ + quãng đường đi xe đạp
Quãng đường mà người đó đi bộ là : \(4.x = 4x\)
Quãng đường mà người đó đi bằng xe máy là: \(18.y = 18y\)
Tổng quãng đường đi được của người đó là: \(4x + 18y\)
Lập biểu thức đại số để tính: Diện tích hình thang có đáy lớn là \(a\) (cm), đáy nhỏ là \(b\) (cm), chiều cao là \(h\) (cm).
\(\dfrac{{(a + h).b}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{(a - b).h}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{(a + b).h}}{2}\,\,\,(c{m^2}).\)
\(\dfrac{{a + b}}{{2h}}\,\,\,(c{m^2}).\)
Đáp án : C
Diện tích hình thang = (đáy lớn + đáy bé) . chiều cao : 2
Biểu thức đại số cần tìm là \(\dfrac{{(a + b).h}}{2}\,\,\,(c{m^2}).\)
Giá trị của biểu thức \( - {x^3} - 2{x^2} - 5\) tại x = - 2 là
11
-7
-21
-5
Đáp án : D
Thay x = -2 vào biểu thức \( - {x^3} - 2{x^2} - 5\) rồi thực hiện phép tính.
Thay x = -2 vào biểu thức \( - {x^3} - 2{x^2} - 5\), ta được:
\( - {\left( { - 2} \right)^3} - 2.{\left( { - 2} \right)^2} - 5 = - \left( { - 8} \right) - 2.4 - 5 = 8 - 8 - 5 = - 5\)
Cho \(A = 4{x^2}y - 5\) và \(B = 3{x^3}y + 6{x^2}{y^2} + 3x{y^2}\). So sánh \(A\) và \(B\) khi \(x = - 1;\,y = 3\)
\(A > B\)
\(A = B\)
\(A < B\)
\(A \ge B\)
Đáp án : C
+ Thay \(x = - 1;\,y = 3\) vào biểu thức \(A\) để tìm giá trị của biểu thức \(A.\)
+ Thay \(x = - 1;\,y = 3\) vào biểu thức \(B\) để tìm giá trị của biểu thức \(B\)
+ So sánh kết quả vừa tính được của \(A\) và \(B.\)
+ Thay \(x = - 1;\,y = 3\) vào biểu thức \(A\) ta được \(A = 4.{\left( { - 1} \right)^2}.3 - 5 = 7\)
+ Thay \(x = - 1;\,y = 3\) vào biểu thức \(B\) ta được \(B = 3.{\left( { - 1} \right)^3}.3 + 6.{\left( { - 1} \right)^2}{.3^2} + 3.\left( { - 1} \right){.3^2}\) \( = - 9 + 54 - 27 = 18.\)
Vậy\(A < B\) khi \(x = - 1;\,y = 3.\)
Một bể đang chứa \(480\) lít nước, có một vòi chảy vào mỗi phút chảy được \(x\) lít. Cùng lúc đó một vòi khác chảy nước từ bể ra. Mỗi phút lượng nước chảy ra bằng \(\dfrac{1}{4}\) lượng nước chảy vào . Hãy biểu thị lượng nước trong bể sau khi đồng thời mở cả hai vòi trên sau \(a\) phút.
\(480 - \dfrac{3}{4}ax\) (lít)
\(\dfrac{3}{4}ax\) (lít)
\(480 + \dfrac{3}{4}ax\) (lít)
\(480 + ax\) (lít)
Đáp án : C
Căn cứ vào nội dung bài toán, viết biểu thức đại số theo yêu cầu đề bài:
+ Tính lượng nước chảy vào trong \(a\) phút
+ Tính lượng nước chảy ra trong \(a\) phút
+ Lượng nước có trong bể sau \(a\) phút = Lượng nước có sẵn + lượng nước chảy vào – lượng nước chảy ra.
ong bể sau \(a\) phút = Lượng nước có sẵn + lượng nước chảy vào – lượng nước chảy ra.
Lời giải
Lượng nước chảy vào bể trong \(a\) phút là \(a.x\) (lít)
Lượng nước chảy ra trong \(a\) phút là \(\dfrac{1}{4}ax\) (lít)
Vì ban đầu bể đang chứa \(480\) lít nên lượng nước có trong bể sau \(a\) phút là
\(480 + ax - \dfrac{1}{4}ax = 480 + \dfrac{3}{4}ax\) (lít)
Tính giá trị biểu thức \(B = 5{x^2} - 2x - 18\) tại \(\left| x \right| = 4\)
\(B = 54\)
\(B = 70.\)
\(B = 54\) hoặc \(B = 70.\)
\(B = 45\) hoặc \(B = 70.\)
Đáp án : C
+ Tìm \(x\) từ \(\left| x \right| = 4\)
+ Thay các giá trị vừa tìm được của \(x\) vào \(B\) để tính giá trị của \(B.\)
Ta có \(\left| x \right| = 4 \Rightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)
+ Trường hợp 1: x = 4 : Thay x = 4 vào biểu thức ta có:
\({5.4^2} - 2.4 - 18 = 5.16 - 8 - 18 = 80 - 8 - 18 = 54\)
Vậy \(B = 54\) tại \(x = 4.\)
+ Trường hợp 2: x = –4: Thay x = –4 vào biểu thức ta có:
\(5.{( - 4)^2} - 2.( - 4) - 18 = 5.16 + 8 - 18 = 80 + 8 - 18 = 70\)
Vậy \(B = 70\) tại \(x = -4.\)
Với \(\left| x \right| = 4\) thì \(B = 54\) hoặc \(B = 70.\)
Biểu thức \(P = {\left( {{x^2} - 4} \right)^2} + \left| {y - 5} \right| - 1\) đạt giá trị nhỏ nhất là
\(2\)
\(3\)
\(1\)
\( - 1\)
Đáp án : D
Sử dụng các đánh giá : \({x^2} \ge 0\,;\,\left| x \right| \ge 0\) với mọi \(x.\)
Ta có \({\left( {{x^2} - 4} \right)^2} \ge 0;\,\,\left| {y - 5} \right| \ge 0\)với mọi \(x \in R,\,y \in R\)nên \(P = {\left( {{x^2} - 4} \right)^2} + \left| {y - 5} \right| - 1 \ge - 1\) với mọi \(x \in R,\,y \in R\)
Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}{x^2} - 4 = 0\\y - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} = 4\\y = 5\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}x = - 2\\y = 5\end{array} \right.\)
Giá trị nhỏ nhất của \(P\) là \( - 1\) khi \(\left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}x = - 2\\y = 5\end{array} \right.\)
Bài 1 trong chương trình Toán 7 Chân trời sáng tạo giới thiệu về biểu thức số và biểu thức đại số, là nền tảng quan trọng cho việc học toán ở các lớp trên. Hiểu rõ khái niệm, cấu trúc và cách thực hiện các phép toán với biểu thức là điều cần thiết để giải quyết các bài toán phức tạp hơn.
Biểu thức số là dãy các số được liên kết với nhau bởi các phép toán cộng, trừ, nhân, chia, lũy thừa và dấu ngoặc. Ví dụ: 5 + 3 * 2, (10 - 4) / 2, 23 + 1.
Biểu thức đại số là dãy các số, chữ (biến) và các phép toán. Chữ thường được dùng để đại diện cho một số chưa biết hoặc một đại lượng thay đổi. Ví dụ: 3x + 5, a2 - 2b, (x + y) / z.
Để đảm bảo tính chính xác của kết quả, cần tuân thủ thứ tự thực hiện các phép toán sau:
Ví dụ 1: Tính giá trị của biểu thức: 12 + 6 : 3 - 2 * 4
Giải:
12 + 6 : 3 - 2 * 4 = 12 + 2 - 8 = 14 - 8 = 6
Ví dụ 2: Viết biểu thức đại số biểu diễn: "Tổng của ba lần số x và số y"
Giải:
Biểu thức đại số là: 3x + y
Để nắm vững kiến thức và rèn luyện kỹ năng giải bài tập, các em hãy tham gia các bài trắc nghiệm trên giaitoan.edu.vn. Các bài tập được thiết kế đa dạng, có đáp án chi tiết và lời giải dễ hiểu, giúp các em tự học hiệu quả.
Trắc nghiệm Bài 1: Biểu thức số và biểu thức đại số Toán 7 Chân trời sáng tạo là một bước khởi đầu quan trọng trong quá trình học toán của các em. Hãy dành thời gian ôn tập lý thuyết, luyện tập bài tập và sử dụng các tài liệu hỗ trợ để đạt kết quả tốt nhất.
Khái niệm | Mô tả |
---|---|
Biểu thức số | Dãy các số liên kết bởi các phép toán |
Biểu thức đại số | Dãy số, chữ và phép toán |